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Abstract
In this paper, we establish some identities of the relations between the (s, t)-Pell and (s, t)-
Pell-Lucas polynomial sequences. Moreover, we obtain some identities of limits for the (s, t)-Pell and

(s, t)-Pell-Lucas polynomial sequences.
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1. Introduction
For the recursive sequences, there are

many forms of the recursive sequences that have
been widely studied and appeared in various
fields of sciences (1-3). In 1883, the Belgian
mathematician  Eugene Charles  Catalan
introduced the polynomials sequence which are
defined by

Fpp1(x) = xF(x) + Fy(x0),n 21
where Fy(x)=0 and F;(x) = 1. Subsequently,
the Fibonacci polynomials studied by the
German mathematician E. Jacobsthal are defined
by

Jne1 (@) = Jn(x) + 2%/ 1 (x),n = 1
where J(x)=1and J; (x) = 1.

In 1970, the Lucas polynomial studied
by Bicknell, are defined by.
L1 (%) = xLpy(x) + L1 (), n =1
where Ly(x)=2 and L, (x) = x. For more details
can found in (4-5).

In 1985, A.F. Horadam and J.M.
Mahon (6) introduced the Pell polynomial

sequence and the Pell-Lucas polynomial
sequence which are defined by

By (x) = 2xPp_1(x) + Pp_p(x),

Qn(x) = 2xQp 1 (x) + Qn_2(x)
for n = 2, with initial conditions Py(x) = 0,
Pi(x) =1, Qp(x) = 2 and Q;(x) = 2x.

In 2012, Gulec and Taskara (7)
introduced the (s, t)-Pell sequence and (s,t)-
Pell-Lucas sequence which are defined by

B, (s,t) = 2sP,_1(s,t) + tP,_,(s, 1),

Qn(sr t) = szn—l(sr t) + th—Z (S, t)
for n = 2, where s and t are any real numbers
with s2 +t > 0,s > 0 and t # 0 with the initial
conditions Py(s,t) =0, P,(s,t) =1,
Qo(s,t)=2 and Qq(s,t) =2s. Later,
Srisawat and Sripad (8-9) introduced the matrix
methods and some more identities for the (s, t)-
Pell and (s, t)-Pell-Lucas numbers.

In 2021, S. Srisawat and W. Sriprad
(10) introduced the new generalizations of the
(s, t)-Pell polynomial sequence and the (s,t)-
Pell-Lucas polynomial sequence which are as
following definition.
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Definition 1.1 Let s and t be any real numbers
with s2+¢t>0,s>0 and t # 0. Then the
(s, t)-Pell polynomial sequence
{B.(s, )}, and the (s,t)-Pell-Lucas
polynomial sequence {Q,(s,t)(x)}r-, are
defined respectively by

Po(s, 0)(x) = 25xPy_1 (s, ) (x) + tPy_5(s, ) (%),
Qn(sl t)(x) = stQn—l(sJ t)(x) + th—Z (S' t)(x)
for n = 2, with the initial conditions

Po(s,t)(x) = 0, Py (s, t)(x) = 1, Qo(s, t)(x) = 2
and Q, (s, t)(x) = 2sx.

The first few terms of the (s, t)-Pell
polynomial sequence {B, (s, t)(x)}m=, are 0, 1,
2sx, 4s®x%+t, 8s3x3 + 4tsx, ... and so on.
Also, the first few terms of the (s, t)-Pell-Lucas
polynomial sequence {Q,(s,t)(x)}y, are 2,
2sx, 4s°x%+2t, 8s3x3 + 6tsx, 16s*x* +
16ts?x? + 2t2,... and so on.

The characteristic equation for the
recurrence relation of the (s, t)-Pell polynomial
sequence {P,(s,t)(x)}mo and the (s,t)-Pell-
Lucas polynomial sequence {Q,(s, t)(x)}n, in
Definition 1.1 is

r?2 —2sxr—t =0, (1.2)

where a and g are the roots of the equation (1.1),
where a =sx++Vs?x?2+t and B =sx—
Vs?x?+t. Note that a+ B =2sx, a—f =
2Vs?x? + tand aff = —t.

To convenience, we will use the symbol
P, (x) and Q,,(x) instead of the nt" term of (s, t)-
Pell polynomial {P,(s,t)(x)}2-, and the nt"
term of the (s,t)-Pell-Lucas polynomial
{Qn (s, £) ()}, respectively.

Theorem 1.2 (Binet’s formulas) The nt* (s, t)-
Pell and the nt* (s, t)-Pell-Lucas polynomials
are given by

P(x) = “a:lf; n=0 (1.2)
and
Qux) =a™+p"n=0, (1.3)

respectively, where « and g are the roots of the
characteristic equation 1% — 2sxr —t = 0 and
a>p.

2. Main Results
Theorem 2.1 For n and r are positive integers
withn > r. Let {B, (%)} and {Q, ()}, be
the (s, t)-Pell and (s, t)-Pell-Lucas polynomial
sequences, respectively. Then
() Prar(x) + t7"Pyr ()

_ (Pu(0)Qr(x), 7 iseven

_{ P.(x)Q,(x), r isodd
(") Qn+r(x) + trQn—‘r(x)
(Qr(x0)Qn(x) , T is even
B {4(529«72 + t)P.(x)P,(x), r is odd.

Proof. (i) Firstly, we assume that r is an even
number. By using Binet’s formulas for the
(s, t)-Pell and (s, t)-Pell-Lucas polynomial
sequences, we have

Pn+‘r (x) + trPn—‘r (x)

_an+r_ﬁn+r . an—‘r_ﬂn—r

=—a—p TP (W)

— - _B (an+r _ ﬁn+r + anﬁr _ arﬁn)

— 1 r n __ n T n __ n

= o @@ =B+ pr@ = M)
1

=@ =A@ BT

= R0, (),

and we obtain
Qnar () + t7Qp_r (x)
= (an+r + Bn+r) + (_aﬁ)r(an—r + ‘Bn—r)
= (an+r + Bn+r) + (aﬁ)r(an—r + ‘Bn—r)
= an+r + ‘Bn+1‘ + an'BT + ar‘Bn
=a"(a™+p") +pT(@" + ")
=(a" +p")(a™ + ")
= Qr(x)Qn(x)-
Secondly, if r is an odd number, then the result
are as follows:
Poyr () + £ (x)
an+r — 'Bn+r r<
- + (—ap)

(an+r — ﬁn+7‘

an—r — ﬁ?’l—’r
a—pf >
_ anﬁr + arﬂn)

a—p
1

(@@ B~ @+ )
@ = @+ )

= B (0)Qn (),
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and

QTH-T(x) + trQn—T(x)

(an+r + Bn+1') + (_aﬂ)r(an—r + ﬁn—T)
(an+r + Bn+1') — (aﬂ)r(an—r + ﬁn—T)
an+T _I_ ﬁ‘rH—T — anﬂr — arﬂn

a’(a™ —p") — T (a™ - ™)

(a" = B")(a™ — ™)

(a = B)*P-(x)P,(x)

4(s%x? + t)P-(x) P, (x). O

Corollary 2.2 For any positive integer n. Let
{Pn () )= and {Qn (X))o be the (s, t)-Pell
and (s, t)-Pell-Lucas polynomial sequences,
respectively. Then
(1) Pyn(x) = Bu(x)Qn(x),
(ii) Q2n(x) + 2t™

_ {Q,Zl(x) ,nis even

~ l4(s%x2 4 t)P2(x), nis odd.

Proof. Taking r = n in Theorem 2.1, the proof
completed. O

Remark 2.3 For r = 1 in Theorem 2.1, then we
have the following identities (Theorem 2.7 in
(20)),

Pn+1(x) + tPn—l(x) = Qn(x)
and

Qni1(X) + tQn_1(x) = 4(s*x* + )P, ().

Theorem 2.4 For m,n and r are positive
integers withm >n. Let {B,(x)}n, and
{0, ()} be the (s,t)-Pell and (s, t)-Pell-
Lucas polynomial sequences, respectively. Then
(1) Pn()Prir(x) = Py () B ()

= (—=t)"P-(x) Pp—n(x)
(”) Qm(x)Qn+r(x) - Qm+r(x)Qn(x)

= (a" = (=" Qm-n(x) — 2a™").

Proof. By using Binet’s formulas for the (s, t)-
Pell and (s, t)-Pell-Lucas polynomial
sequences, we have

m(x)Pn+r (x) = Prpyr () B ()

_ Bm n+r Bn+7‘
“\a-p a—p
am+r — ﬁm+1" an — ’Bn
- ( a—p ) < a—p )
1
— (a — B)Z (_ﬁman+r _ a,mﬁn+r + a,nﬁm+r
+ am+rﬁn)
@-pr (—a™p™(a” - B7)
+a™mpr(a” - 7))

(al?

1
= —(a ﬁ)Z (—a"ﬁm + am[))n)(ar _ [))r)

— G @@ = @ - )

= (—=0)"F- () Pp—n (%),

and

Qm(x)Qn+r (x) - Qm+r (x)Qn(x)

— (am + ﬁm)(an+r + ﬁn+r)

_(am+r +'Bm+r)(an +ﬁn)

an+rﬁm _ an'Bm+r + amﬁn+r _ am+rﬁn
a"pm(a” — ) —a™p"(a” — BT)

((XT _ Br)(anﬂm _ a,mﬁn)

=(a" = p)(@p)" (" —a™ ™)

— ((XT _ Br)(aﬁ)n(a,m—n + ﬂm—n _ Za,m—n)
=(a" = (=" Qm-n(x) —2a™™). D

Remark 2.5 If we take = 1 in Theorem 2.4.
Then we have (Theorem 2.6 in (10))
Pm(x)Pn+1(x) - Pm+1(x)Pn(x)
= (_t)an—n(x)
and
Qm(x)Qn+1 (x) - Qm+1(x)Qn(x)

= 2(—t)"VsZxZ + € (Quon ()
—2(sx +VsZxZ + t)m_n).

Remark 2.6 In Theorem 2.4 (ii), we have the
relation between the (s, t)-Pell and (s, t)-Pell-
Lucas polynomial sequences as follow,
Qm(x)Qn+r(x) - Qm+‘r (x)Qn(x)

=(a" = M=) (Qm-n(x) —2a™™™)
(@ =pN(E=m(m™ " —a™ ™)
—(a" == (@™ = pm )
—(a = B)?(=t)"P-(x) Py (%)
—4(=t)"(s%x% 4+ t)P-(x) Py (X).
Therefore,
Qm(x)Qn+r (x) - Qm+r (X)Qn(x)

= —4(=t)"*(s%x% 4+ t)P-(x) Ppy—p (X).
Ifr = 1, we have

Qm(x)Qn+1 (X) - Qm+1(x)Qn(x)
= —4(—t)"(s?x? + t) Py_pn(x).

Theorem 2.7 Let sequences {P,(x)}s-, and
{0}y be the (s,t)-Pell and (s, t)-Pell-
Lucas polynomial sequences, respectively. If
sx>0,s>+t>0andt =+ 0. Then

P yr(x) r
M) lim = & ="

(| |) lim <) Qn+r(%)

n-oo Qn((x)) a ’
Ppx 1
(i) Jim o G
(iv) lim Prr) _ @

noowo Qux)  a-p
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and
. Pp(x) 1
(V) TP—I;EO Qn+r(x) - (a-p)a” ’
where r is a non-negative integer.

Proof. By using Binet’s fomulas, we have:
) . Pn+r(x) s an+r_Bn+r
O 0 b0 = Al g
B n+r
= li 1_(2)

- nl—wo 1 1 (B)nﬂ'

n+r
Since |£| < 1,then lim (E) =0.
a n—-oo \a
Ppyr(x) _
Pa(x)
Next for (ii), we consider
Qnar(®) _ lim a™ttripntr

Therefore, lim a’.
n—oo

N o~ A g
B n+r
= lim aiw
oo g (2)
=a”.
Similarly,
. P . n_pn
lim () _ lim a’-p

n-0 Qu(x)  now (a—ﬁ)(a":ﬁ'")
()
= lim ——%——
)
1
a-B "’
Then, we have
lim Ppr(x)
n—oo Qn(x)

1 QT gnAT

a—-PBnooo at+pn

n+r
-t ()

e

—_ ar

a-p
Finally,
Pu®) _ 1y anpn
- a-p n_I;r.}o antT 4 gIAT

i (O
= mrlll—l;go ; <1+(§)n+r>
1

T a-pa

n—-00 Qu4r(x)

3. Conclusions

In this paper, we obtain some more
identities of relations between the (s, t)-Pell and
(s, t)-Pell-Lucas polynomial sequences by using
the Binet formulars. Furthermore, some
identities of limits for the (s, t)-Pell and (s, t)-
Pell-Lucas polynomial sequences are obtained.
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