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Abstract 

In this paper, we establish some identities of the relations between the (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-

Pell-Lucas polynomial sequences. Moreover, we obtain some identities of limits for the (𝑠, 𝑡)-Pell and 
(𝑠, 𝑡)-Pell-Lucas polynomial sequences. 
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1. Introduction  

For the recursive sequences, there are 

many forms of the recursive sequences that have 

been widely studied and appeared in various 

fields of sciences (1-3). In 1883, the Belgian 

mathematician Eugene Charles Catalan 

introduced the polynomials sequence which are 

defined by  

     𝐹𝑛+1(𝑥) = 𝑥𝐹𝑛(𝑥) + 𝐹𝑛−1(𝑥), 𝑛 ≥ 1 
where 𝐹0(𝑥)=0 and 𝐹1(𝑥) = 1. Subsequently, 

the Fibonacci polynomials studied by the 

German mathematician E. Jacobsthal are defined 

by 

     𝐽𝑛+1(𝑥) = 𝐽𝑛(𝑥) + 2𝑥𝐽𝑛−1(𝑥), 𝑛 ≥ 1 

where 𝐽0(𝑥)=1 and 𝐽1(𝑥) = 1.  

In 1970, the Lucas polynomial studied 

by Bicknell, are defined by. 

    𝐿𝑛+1(𝑥) = 𝑥𝐿𝑛(𝑥) + 𝐿𝑛−1(𝑥), 𝑛 ≥ 1 

where 𝐿0(𝑥)=2 and 𝐿1(𝑥) = 𝑥. For more details 

can found in (4-5).  

In 1985, A.F. Horadam and J.M. 

Mahon (6) introduced the Pell polynomial 

sequence and the Pell-Lucas polynomial 

sequence which are defined by 

     𝑃𝑛(𝑥) = 2𝑥𝑃𝑛−1(𝑥) + 𝑃𝑛−2(𝑥), 

     𝑄𝑛(𝑥) = 2𝑥𝑄𝑛−1(𝑥) + 𝑄𝑛−2(𝑥) 

for 𝑛 ≥ 2, with initial conditions 𝑃0(𝑥) = 0, 

𝑃1(𝑥) = 1, 𝑄0(𝑥) = 2 and 𝑄1(𝑥) = 2𝑥. 

In 2012, Gulec and Taskara (7) 

introduced the (𝑠, 𝑡)-Pell sequence and (𝑠, 𝑡)-

Pell-Lucas sequence which are defined by 

     𝑃𝑛(𝑠, 𝑡) = 2𝑠𝑃𝑛−1(𝑠, 𝑡) + 𝑡𝑃𝑛−2(𝑠, 𝑡), 

     𝑄𝑛(𝑠, 𝑡) = 2𝑠𝑄𝑛−1(𝑠, 𝑡) + 𝑡𝑄𝑛−2(𝑠, 𝑡) 

for 𝑛 ≥ 2, where 𝑠 and 𝑡 are any real numbers 

with 𝑠2 + 𝑡 > 0, 𝑠 > 0 and 𝑡 ≠ 0 with the initial 

conditions 𝑃0(𝑠, 𝑡) = 0, 𝑃1(𝑠, 𝑡) = 1,  

𝑄0(𝑠, 𝑡) = 2 and 𝑄1(𝑠, 𝑡) = 2𝑠. Later,  

Srisawat and Sripad (8-9) introduced the matrix 

methods and some more identities for the (𝑠, 𝑡)-

Pell and (𝑠, 𝑡)-Pell-Lucas numbers.  

In 2021, S. Srisawat and W. Sriprad 

(10) introduced the new generalizations of the  
(𝑠, 𝑡)-Pell polynomial sequence and the (𝑠, 𝑡)-

Pell-Lucas polynomial sequence which are as 

following definition. 

Prog Appl Sci Tech. 2022; 12(3):15-18 

http://sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index
https://doi.nrct.go.th/ListDoi/listDetail?Resolve_DOI=10.14456/past.2022.9


16 Prog Appl Sci Tech. 2022; 12(3):15-18 

Prog Appl Sci Tech © 2022 Faculty of Science and Technology, RMUTT 

Definition 1.1 Let 𝑠 and 𝑡 be any real numbers 

with 𝑠2 + 𝑡 > 0, 𝑠 > 0 and 𝑡 ≠ 0. Then the 
(𝑠, 𝑡)-Pell polynomial sequence 
{𝑃𝑛(𝑠, 𝑡)(𝑥)}𝑛=0

∞  and the (𝑠, 𝑡)-Pell-Lucas 

polynomial sequence {𝑄𝑛(𝑠, 𝑡)(𝑥)}𝑛=0
∞  are 

defined respectively by 
𝑃𝑛(𝑠, 𝑡)(𝑥) = 2𝑠𝑥𝑃𝑛−1(𝑠, 𝑡)(𝑥) + 𝑡𝑃𝑛−2(𝑠, 𝑡)(𝑥), 

𝑄𝑛(𝑠, 𝑡)(𝑥) = 2𝑠𝑥𝑄𝑛−1(𝑠, 𝑡)(𝑥) + 𝑡𝑄𝑛−2(𝑠, 𝑡)(𝑥) 

for 𝑛 ≥ 2,  with the initial conditions 

𝑃0(𝑠, 𝑡)(𝑥) = 0, 𝑃1(𝑠, 𝑡)(𝑥) = 1, 𝑄0(𝑠, 𝑡)(𝑥) = 2 

and 𝑄1(𝑠, 𝑡)(𝑥) = 2𝑠𝑥. 

The first few terms of the (𝑠, 𝑡)-Pell 

polynomial sequence {𝑃𝑛(𝑠, 𝑡)(𝑥)}𝑛=0
∞  are 0, 1, 

2𝑠𝑥, 4𝑠2𝑥2 + 𝑡, 8𝑠3𝑥3 + 4𝑡𝑠𝑥, … and so on. 

Also, the first few terms of the (𝑠, 𝑡)-Pell-Lucas 

polynomial sequence {𝑄𝑛(𝑠, 𝑡)(𝑥)}𝑛=0
∞  are 2, 

2𝑠𝑥, 4𝑠2𝑥2 + 2𝑡, 8𝑠3𝑥3 + 6𝑡𝑠𝑥, 16𝑠4𝑥4 +
16𝑡𝑠2𝑥2 + 2𝑡2,… and so on. 

The characteristic equation for the 

recurrence relation of the (𝑠, 𝑡)-Pell polynomial 

sequence {𝑃𝑛(𝑠, 𝑡)(𝑥)}𝑛=0
∞  and the (𝑠, 𝑡)-Pell-

Lucas polynomial sequence {𝑄𝑛(𝑠, 𝑡)(𝑥)}𝑛=0 
∞ in 

Definition 1.1 is  

𝑟2 − 2𝑠𝑥𝑟 − 𝑡 = 0, (1.1) 

where 𝛼 and 𝛽 are the roots of the equation (1.1), 

where 𝛼 = 𝑠𝑥 + √𝑠2𝑥2 + 𝑡 and 𝛽 = 𝑠𝑥 −

√𝑠2𝑥2 + 𝑡. Note that 𝛼 + 𝛽 = 2𝑠𝑥, 𝛼 − 𝛽 =

2√𝑠2𝑥2 + 𝑡 and 𝛼𝛽 = −𝑡. 

To convenience, we will use the symbol 

𝑃𝑛(𝑥) and 𝑄𝑛(𝑥) instead of the 𝑛𝑡ℎ term of (𝑠, 𝑡)-

Pell polynomial {𝑃𝑛(𝑠, 𝑡)(𝑥)}𝑛=0
∞  and the 𝑛𝑡ℎ 

term of the (𝑠, 𝑡)-Pell-Lucas polynomial 
{𝑄𝑛(𝑠, 𝑡)(𝑥)}𝑛=0

∞ , respectively. 

Theorem 1.2 (Binet’s formulas) The 𝑛𝑡ℎ (𝑠, 𝑡)-

Pell and the 𝑛𝑡ℎ (𝑠, 𝑡)-Pell-Lucas polynomials 

are given by 

𝑃𝑛(𝑥) =
𝛼𝑛−𝛽𝑛

𝛼−𝛽
, 𝑛 ≥ 0 (1.2) 

and 

𝑄𝑛(𝑥) = 𝛼𝑛 + 𝛽𝑛 , 𝑛 ≥ 0, (1.3) 

respectively, where 𝛼 and 𝛽 are the roots of the 

characteristic equation   𝑟2 − 2𝑠𝑥𝑟 − 𝑡 = 0 and 

𝛼 > 𝛽. 

2. Main Results 

Theorem 2.1 For 𝑛 and 𝑟 are positive integers 

with 𝑛 ≥ 𝑟. Let {𝑃𝑛(𝑥)}𝑛=0
∞  and {𝑄𝒏(𝑥)}𝑛=0

∞  be 

the (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-Pell-Lucas polynomial 

sequences, respectively. Then 

(i) 𝑃𝑛+𝑟(𝑥) + 𝑡𝑟𝑃𝑛−𝑟(𝑥) 

= {
𝑃𝑛(𝑥)𝑄𝑟(𝑥),     𝑟  is even 

𝑃𝑟(𝑥)𝑄𝑛(𝑥),    𝑟  is odd
  

(ii) 𝑄𝑛+𝑟(𝑥) + 𝑡𝑟𝑄𝑛−𝑟(𝑥) 

= {
𝑄𝑟(𝑥)𝑄𝑛(𝑥)                    , 𝑟 is even

4(𝑠2𝑥2 + 𝑡)𝑃𝑟(𝑥)𝑃𝑛(𝑥), 𝑟 is odd.
  

Proof. (i) Firstly, we assume that 𝑟 is an even 

number. By using Binet’s formulas for the 
(𝑠, 𝑡)-Pell and (𝑠, 𝑡)-Pell-Lucas polynomial 

sequences, we have 

𝑃𝑛+𝑟(𝑥) + 𝑡𝑟𝑃𝑛−𝑟(𝑥) 

=
𝛼𝑛+𝑟 − 𝛽𝑛+𝑟

𝛼 − 𝛽
+ (−𝛼𝛽)𝑟 (

𝛼𝑛−𝑟 − 𝛽𝑛−𝑟

𝛼 − 𝛽
) 

=
1

𝛼 − 𝛽
(𝛼𝑛+𝑟 − 𝛽𝑛+𝑟 + 𝛼𝑛𝛽𝑟 − 𝛼𝑟𝛽𝑛) 

=
1

𝛼 − 𝛽
(𝛼𝑟(𝛼𝑛 − 𝛽𝑛) + 𝛽𝑟(𝛼𝑛 − 𝛽𝑛)) 

=
1

𝛼 − 𝛽
(𝛼𝑛 − 𝛽𝑛)(𝛼𝑟 + 𝛽𝑟) 

= 𝑃𝑛(𝑥)𝑄𝑟(𝑥), 

and we obtain 

𝑄𝑛+𝑟(𝑥) + 𝑡𝑟𝑄𝑛−𝑟(𝑥) 

= (𝛼𝑛+𝑟 + 𝛽𝑛+𝑟) + (−𝛼𝛽)𝑟(𝛼𝑛−𝑟 + 𝛽𝑛−𝑟) 

= (𝛼𝑛+𝑟 + 𝛽𝑛+𝑟) + (𝛼𝛽)𝑟(𝛼𝑛−𝑟 + 𝛽𝑛−𝑟) 

= 𝛼𝑛+𝑟 + 𝛽𝑛+𝑟 + 𝛼𝑛𝛽𝑟 + 𝛼𝑟𝛽𝑛 

= 𝛼𝑟(𝛼𝑛 + 𝛽𝑛) + 𝛽𝑟(𝛼𝑛 + 𝛽𝑛) 

= (𝛼𝑟 + 𝛽𝑟)(𝛼𝑛 + 𝛽𝑛) 

= 𝑄𝑟(𝑥)𝑄𝑛(𝑥). 

Secondly, if 𝑟 is an odd number, then the result 

are as follows: 

𝑃𝑛+𝑟(𝑥) + 𝑡𝑟𝑃𝑛−𝑟(𝑥) 

=
𝛼𝑛+𝑟 − 𝛽𝑛+𝑟

𝛼 − 𝛽
+ (−𝛼𝛽)𝑟 (

𝛼𝑛−𝑟 − 𝛽𝑛−𝑟

𝛼 − 𝛽
) 

=
1

𝛼 − 𝛽
(𝛼𝑛+𝑟 − 𝛽𝑛+𝑟 − 𝛼𝑛𝛽𝑟 + 𝛼𝑟𝛽𝑛) 

=
1

𝛼 − 𝛽
(𝛼𝑟(𝛼𝑛 + 𝛽𝑛) − 𝛽𝑟(𝛼𝑛 + 𝛽𝑛)) 

=
1

𝛼 − 𝛽
(𝛼𝑟 − 𝛽𝑟)(𝛼𝑛 + 𝛽𝑛) 

= 𝑃𝑟(𝑥)𝑄𝑛(𝑥), 
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and  

𝑄𝑛+𝑟(𝑥) + 𝑡𝑟𝑄𝑛−𝑟(𝑥) 

= (𝛼𝑛+𝑟 + 𝛽𝑛+𝑟) + (−𝛼𝛽)𝑟(𝛼𝑛−𝑟 + 𝛽𝑛−𝑟) 

= (𝛼𝑛+𝑟 + 𝛽𝑛+𝑟) − (𝛼𝛽)𝑟(𝛼𝑛−𝑟 + 𝛽𝑛−𝑟) 

= 𝛼𝑛+𝑟 + 𝛽𝑛+𝑟 − 𝛼𝑛𝛽𝑟 − 𝛼𝑟𝛽𝑛 

= 𝛼𝑟(𝛼𝑛 − 𝛽𝑛) − 𝛽𝑟(𝛼𝑛 − 𝛽𝑛) 

= (𝛼𝑟 − 𝛽𝑟)(𝛼𝑛 − 𝛽𝑛) 

= (𝛼 − 𝛽 )2𝑃𝑟(𝑥)𝑃𝑛(𝑥) 

= 4(𝑠2𝑥2 + 𝑡)𝑃𝑟(𝑥)𝑃𝑛(𝑥). ◻ 

Corollary 2.2 For any positive integer 𝑛. Let 
{𝑃𝑛(𝑥)}𝑛=0

∞  and {𝑄𝑛(𝑥)}𝑛=0
∞  be the (𝑠, 𝑡)-Pell 

and (𝑠, 𝑡)-Pell-Lucas polynomial sequences, 

respectively. Then 

(i)  𝑃2𝑛(𝑥) = 𝑃𝑛(𝑥)𝑄𝑛(𝑥), 

(ii) 𝑄2𝑛(𝑥) + 2𝑡𝑛 

= {
𝑄𝑛

2(𝑥)                      , 𝑛 is even

4(𝑠2𝑥2 + 𝑡)𝑃𝑛
2(𝑥), 𝑛 is odd.

  

Proof. Taking 𝑟 = 𝑛 in Theorem 2.1, the proof 

completed. ◻ 

Remark 2.3 For 𝑟 = 1 in Theorem 2.1, then we 

have the following identities (Theorem 2.7 in 

(10)), 

    𝑃𝑛+1(𝑥) + 𝑡𝑃𝑛−1(𝑥) = 𝑄𝑛(𝑥) 

and  

    𝑄𝑛+1(𝑥) + 𝑡𝑄𝑛−1(𝑥) = 4(𝑠2𝑥2 + 𝑡)𝑃𝑛(𝑥). 

Theorem 2.4 For 𝑚, 𝑛 and 𝑟 are positive 

integers with 𝑚 ≥ 𝑛. Let {𝑃𝑛(𝑥)}𝑛=0
∞  and 

{𝑄𝑛(𝑥)}𝑛=0
∞  be the (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-Pell-

Lucas polynomial sequences, respectively. Then 

(i)  𝑃𝑚(𝑥)𝑃𝑛+𝑟(𝑥) − 𝑃𝑚+𝑟(𝑥)𝑃𝑛(𝑥) 
= (−𝑡)𝑛𝑃𝑟(𝑥)𝑃𝑚−𝑛(𝑥)  

(ii) 𝑄𝑚(𝑥)𝑄𝑛+𝑟(𝑥) − 𝑄𝑚+𝑟(𝑥)𝑄𝑛(𝑥) 

= (𝛼𝑟 − 𝛽𝑟)(−𝑡)𝑛( 𝑄𝑚−𝑛(𝑥) − 2𝛼𝑚−𝑛).  

Proof. By using Binet’s formulas for the (𝑠, 𝑡)-

Pell and (𝑠, 𝑡)-Pell-Lucas polynomial 

sequences, we have 

𝑃𝑚(𝑥)𝑃𝑛+𝑟(𝑥) − 𝑃𝑚+𝑟(𝑥)𝑃𝑛(𝑥) 

= (
𝛼𝑚 − 𝛽𝑚

𝛼 − 𝛽
) (

𝛼𝑛+𝑟 − 𝛽𝑛+𝑟

𝛼 − 𝛽
)

− (
𝛼𝑚+𝑟 − 𝛽𝑚+𝑟

𝛼 − 𝛽
) (

𝛼𝑛 − 𝛽𝑛

𝛼 − 𝛽
) 

=
1

(𝛼 − 𝛽)2
(−𝛽𝑚𝛼𝑛+𝑟 − 𝛼𝑚𝛽𝑛+𝑟 + 𝛼𝑛𝛽𝑚+𝑟

+ 𝛼𝑚+𝑟𝛽𝑛) 

=
1

(𝛼 − 𝛽)2 (−𝛼𝑛𝛽𝑚(𝛼𝑟 − 𝛽𝑟)

+ 𝛼𝑚𝛽𝑛(𝛼𝑟 − 𝛽𝑟)) 

=
1

(𝛼 − 𝛽)2
(−𝛼𝑛𝛽𝑚 + 𝛼𝑚𝛽𝑛)(𝛼𝑟 − 𝛽𝑟) 

=
1

(𝛼 − 𝛽)2
(𝛼𝛽)𝑛(𝛼𝑚−𝑛 − 𝛽𝑚−𝑛)(𝛼𝑟 − 𝛽𝑟) 

= (−𝑡)𝑛𝑃𝑟(𝑥)𝑃𝑚−𝑛(𝑥), 

and  

𝑄𝑚(𝑥)𝑄𝑛+𝑟(𝑥) − 𝑄𝑚+𝑟(𝑥)𝑄𝑛(𝑥) 

= (𝛼𝑚 + 𝛽𝑚)(𝛼𝑛+𝑟 + 𝛽𝑛+𝑟) 
     −(𝛼𝑚+𝑟 + 𝛽𝑚+𝑟)(𝛼𝑛 + 𝛽𝑛)  

= 𝛼𝑛+𝑟𝛽𝑚 − 𝛼𝑛𝛽𝑚+𝑟 + 𝛼𝑚𝛽𝑛+𝑟 − 𝛼𝑚+𝑟𝛽𝑛 

= 𝛼𝑛𝛽𝑚(𝛼𝑟 − 𝛽𝑟) − 𝛼𝑚𝛽𝑛(𝛼𝑟 − 𝛽𝑟) 

= (𝛼𝑟 − 𝛽𝑟)(𝛼𝑛𝛽𝑚 − 𝛼𝑚𝛽𝑛) 

= (𝛼𝑟 − 𝛽𝑟)(𝛼𝛽)𝑛(𝛽𝑚−𝑛 − 𝛼𝑚−𝑛) 

= (𝛼𝑟 − 𝛽𝑟)(𝛼𝛽)𝑛(𝛼𝑚−𝑛 + 𝛽𝑚−𝑛 − 2𝛼𝑚−𝑛) 

= (𝛼𝑟 − 𝛽𝑟)(−𝑡)𝑛( 𝑄𝑚−𝑛(𝑥) − 2𝛼𝑚−𝑛). ◻ 

Remark 2.5 If we take 𝑟 = 1 in Theorem 2.4. 

Then we have (Theorem 2.6 in (10)) 

     𝑃𝑚(𝑥)𝑃𝑛+1(𝑥) − 𝑃𝑚+1(𝑥)𝑃𝑛(𝑥) 

= (−𝑡)𝑛𝑃𝑚−𝑛(𝑥)  

and 

     𝑄𝑚(𝑥)𝑄𝑛+1(𝑥) − 𝑄𝑚+1(𝑥)𝑄𝑛(𝑥) 

= 2(−𝑡)𝑛√𝑠2𝑥2 + 𝑡 (𝑄𝑚−𝑛(𝑥) −

     −2(𝑠𝑥 + √𝑠2𝑥2 + 𝑡)
𝑚−𝑛

). 

Remark 2.6 In Theorem 2.4 (ii), we have the 

relation between the (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-Pell-

Lucas polynomial sequences as follow, 

𝑄𝑚(𝑥)𝑄𝑛+𝑟(𝑥) − 𝑄𝑚+𝑟(𝑥)𝑄𝑛(𝑥) 

= (𝛼𝑟 − 𝛽𝑟)(−𝑡)𝑛( 𝑄𝑚−𝑛(𝑥) − 2𝛼𝑚−𝑛) 

= (𝛼𝑟 − 𝛽𝑟)(−𝑡)𝑛(𝛽𝑚−𝑛 − 𝛼𝑚−𝑛) 

= −(𝛼𝑟 − 𝛽𝑟)(−𝑡)𝑛(𝛼𝑚−𝑛 − 𝛽𝑚−𝑛) 

= −(𝛼 − 𝛽)2(−𝑡)𝑛𝑃𝑟(𝑥)𝑃𝑚−𝑛(𝑥) 

= −4(−𝑡)𝑛(𝑠2𝑥2 + 𝑡)𝑃𝑟(𝑥)𝑃𝑚−𝑛(𝑥). 
Therefore, 

𝑄𝑚(𝑥)𝑄𝑛+𝑟(𝑥) − 𝑄𝑚+𝑟(𝑥)𝑄𝑛(𝑥) 

       = −4(−𝑡)𝑛(𝑠2𝑥2 + 𝑡)𝑃𝑟(𝑥)𝑃𝑚−𝑛(𝑥).          
If 𝑟 = 1, we have 

𝑄𝑚(𝑥)𝑄𝑛+1(𝑥) − 𝑄𝑚+1(𝑥)𝑄𝑛(𝑥) 

       = −4(−𝑡)𝑛(𝑠2𝑥2 + 𝑡)𝑃𝑚−𝑛(𝑥).          

Theorem 2.7 Let sequences {𝑃𝑛(𝑥)}𝑛=0
∞  and 

{𝑄𝑛(𝑥)}𝑛=0
∞  be the (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-Pell-

Lucas polynomial sequences, respectively. If 

𝑠𝑥 > 0, 𝑠2 + 𝑡 > 0 and 𝑡 ≠ 0. Then 

(i) lim
𝑛→∞

𝑃𝑛+𝑟(𝑥)

𝑃𝑛(𝑥)
= 𝛼𝑟 , 

(ii) lim
𝑛→∞

𝑄𝑛+𝑟(𝑥)

𝑄𝑛(𝑥)
= 𝛼𝑟 , 

(iii) lim
𝑛→∞

𝑃𝑛(𝑥)

𝑄𝑛(𝑥)
=

1

𝛼−𝛽
 , 

(iv) lim
𝑛→∞

𝑃𝑛+𝑟(𝑥)

𝑄𝑛(𝑥)
=

𝛼𝑟

𝛼−𝛽
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and  

(v) lim
𝑛→∞

𝑃𝑛(𝑥)

𝑄𝑛+𝑟(𝑥)
=

1

(𝛼−𝛽)𝛼𝑟
 , 

where 𝑟 is a non-negative integer. 

Proof. By using Binet’s fomulas, we have: 

(i) lim
𝑛→∞

𝑃𝑛+𝑟(𝑥)

𝑃𝑛(𝑥)
= lim

𝑛→∞

𝛼𝑛+𝑟−𝛽𝑛+𝑟

𝛼𝑛−𝛽𝑛   

= lim
𝑛→∞

1−(
𝛽

𝛼
)

𝑛+𝑟

1

𝛼𝑟−
1

𝛽𝑟(
𝛽

𝛼
)

𝑛+𝑟  

Since |
𝛽

𝛼
| < 1, then lim

𝑛→∞
(

𝛽

𝛼
)

𝑛+𝑟
= 0. 

Therefore, lim
𝑛→∞

𝑃𝑛+𝑟(𝑥)

𝑃𝑛(𝑥)
= 𝛼𝑟 . 

Next for (ii), we consider 

lim
𝑛→∞

𝑄𝑛+𝑟(𝑥)

𝑄𝑛(𝑥)
= lim

𝑛→∞

𝛼𝑛+𝑟+𝛽𝑛+𝑟

𝛼𝑛+𝛽𝑛
  

= lim
𝑛→∞

1+(
𝛽

𝛼
)

𝑛+𝑟

1

𝛼𝑟+
1

𝛽𝑟(
𝛽

𝛼
)

𝑛+𝑟  

= 𝛼𝑟 . 
Similarly,  

lim
𝑛→∞

𝑃𝑛(𝑥)

𝑄𝑛(𝑥)
= lim

𝑛→∞

𝛼𝑛−𝛽𝑛

(𝛼−𝛽)(𝛼𝑛+𝛽𝑛)
  

= lim
𝑛→∞

1−(
𝛽

𝛼
)

𝑛

(𝛼−𝛽)(1+(
𝛽

𝛼
)

𝑛
)
  

=
1

𝛼−𝛽
 .  

Then, we have 

lim
𝑛→∞

𝑃𝑛+𝑟(𝑥)

𝑄𝑛(𝑥)
 

=
1

𝛼−𝛽
lim

𝑛→∞

𝛼𝑛+𝑟−𝛽𝑛+𝑟

𝛼𝑛+𝛽𝑛   

=
1

𝛼−𝛽
lim

𝑛→∞
𝛼𝑟 (

1−(
𝛽

𝛼
)

𝑛+𝑟

1+(
𝛽

𝛼
)

𝑛 )  

=
𝛼𝑟

𝛼−𝛽
 . 

Finally,  

lim
𝑛→∞

𝑃𝑛(𝑥)

𝑄𝑛+𝑟(𝑥)
=

1

𝛼−𝛽
lim

𝑛→∞

𝛼𝑛−𝛽𝑛

𝛼𝑛+𝑟+𝛽𝑛+𝑟  

=
1

𝛼−𝛽
lim

𝑛→∞

1

𝛼𝑟 (
1−(

𝛽

𝛼
)

𝑛

1+(
𝛽

𝛼
)

𝑛+𝑟)  

=
1

(𝛼−𝛽)𝛼𝑟 .  

3. Conclusions  

In this paper, we obtain some more 

identities of relations between the (𝑠, 𝑡)-Pell and 
(𝑠, 𝑡)-Pell-Lucas polynomial sequences by using 

the Binet formulars. Furthermore, some 

identities of limits for the (𝑠, 𝑡)-Pell and (𝑠, 𝑡)-

Pell-Lucas polynomial sequences are obtained. 
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