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Abstract
In this paper, we study Jacobsthal sine, Jacobsthal-Lucas sine, Jacobsthal cosine, Jacobsthal-
Lucas cosine, Jacobsthal tangent, Jacobsthal-Lucas tangent, Jacobsthal cotangent, Jacobsthal-Lucas
cotangent, Jacobsthal secant, Jacobsthal-Lucas secant, Jacobsthal cosecant, and Jacobsthal-Lucas
cosecant. Furthermore, we establish some identities of Jacobsthal sine, Jacobsthal-Lucas sine,
Jacobsthal cosine, Jacobsthal-Lucas cosine, Jacobsthal tangent, Jacobsthal-Lucas tangent, Jacobsthal
cotangent, Jacobsthal-Lucas cotangent, Jacobsthal secant, Jacobsthal-Lucas secant, Jacobsthal

cosecant, and Jacobsthal-Lucas cosecant.
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1. Introduction
The well-known Fibonacci{F } ,

n

Lucas {Ln} , Pell {Pn} , and Pell-Lucas {Qn}

sequences have been found for several years.

Their Binet’s formulas are F, -4 b s
a—b

an_ n

L =a"+b", Jn=—ﬁ, and
a-p

J,=a"+ ", where nis an integer,

1++/5 1-+5
a= ZJ_,b= 2\/_ and a=2, f=-1

are the root of the characteristic equation
> —r—=1=0and r* —r—2=0, respectively
[124]. So a>b, a+b=1la-b=A5,
ab=-2ad a>f, a+p=1, a—-fF=3,
aff=-2.

Recently, the general solution of a
second-order homogeneous linear differential
equation in terms of numbers was studied by
many authors in different ways to derive many
identities. In 1964, Verner E. Hoggatt, Jr. [3]
studied a general solution of a second-order
homogeneous linear differential equation

»"—y'—y =0 with an initial value y(0)=0
»'(0) =1, which is defined by

ax bx n n o _n
e“ —e a'—b" x
= = - 1.1
Y a-b ,;) a-b n!’ (1.1)
1+4/5
where a = ZJ_ and b= are the
roots of the characteristic  equation

r* —r—1=0. They obtained some identities of
these (5, 7).
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In 2016, Prasanta Kumar Ray (6)
studied a general solution of a second-order
homogeneous linear differential equation
y'—6y'+y=0 with an initial value

y(0)=0 y'(O)Zl. The author obtained

some identities of these.

The inspiration for doing this research
due to the direction of this research and
development. We present the general solution of
a second-order homogeneous linear differential
equation in terms of Jacobsthal and Jacobsthal-
Lucas numbers, along with finding these
identities.

2. Main results

In this section, we begin to give
second-order homogeneous linear differential
equations

y'=y'=2y=0 (2.1)

with initial value y(O) =0 ) (0) =1 and
y(O) =2 y'(O) =1, respectively.

Next, we define Jacobsthal sine and
Jacobsthal-Lucas sine, which correspond to the
following definition.

Definition 2.1 Let & > . Then the Jacobsthal
sine sinJ (x) and Jacobsthal-Lucas sine

sin j (x) are defined respectively by

ax ___px

sinJ (x) = ¢ -° (2.2)
a-f

sin j(x)=e™ +e™. 2.3)

Note that equations (2.2) and (2.3) are the
general solution of (2.1).

Also, we find some identities of
Jacobsthal and Jacobsthal-Lucas numbers which
correspond to the following lemma.

Lemma 2.2 Let n>0 and =2, f=-1.
The following results hold.
W J,,+2J,,=]J,

n+l

() Jou +2J,5 =97,,
(111) jn+1 +4]n + 2jn71 +8jn72 = 9]n ’

i) o' =J,a+2J, _,,
(V) ﬂ” = Jnﬂ_'_z‘]nfl °

Proof. Since Binet’s formulas, we have

n+l n+1 n-1 n—1
J 20 =2 ﬁ +22 ﬁ
o — o —
— aﬂ +ﬂﬂ
= jn °

Jpat 2=t fr 2 a4 )
3 ~ 2 an _ﬂn
_(a ,3) [—a—ﬂ J
=9J,.
Jon ¥4, +2j, ,+8j,,
:an+l +ﬁn+l +4(an +ﬂn)+2(an—] +ﬂn—l)
+8(0¢”‘2 +/3”‘2)

=(a—ﬂ)2 (a” +ﬂ”)
=9j,.

Next, If n=0, then the proof is
obvious. Next, we will be shown by
mathematical induction that " =J a+2J,
forn e N . Since J & +2J, = e , it follows that
n =1 is ture. Assume that the result is true for
n=k. Then
ot = Joo+2J, . Now, we need to show that

the  positive  integer,

(iv) also holds for n =k +1 as follows:

ak+1 zaka
=(J,a+2J,_)a
=J.a+2J_a
=J, (a+2)+2J
=J,a+2J,+2J, ,a
=Ja+2J,_a+2J,
=(J, +2J,_ )a+2J,
=J,,0+2J,.

Thus, 7 =k +1 is ture. The similar proof of (iv)
is applied for (v). Therefore, the proof is
complete.

After that, we find undetermined
coefficients of the Maclaurin series, the general
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sglution .of secqnd-order homogeneous linear B (2 Jot + v )Cl + 2( 25+ ], ) c,
differential equations, as follows. c, = ' .
9n! (2.8)
Lemma 2.3 Let n>0. Then the recurrence J 57
¢ +2J ¢
relation ¢, is given by Proof. If n=0, then w = ¢, the
(n+2)(n+1)cn+2 —(n+1)cn+1 -2c,=0. proof is obvious. Next, we will be shown that
Proof: Let the Maclaurin series - J.o+ Z'Jmco for neN . It is not hard
n!

> n Jec +2J.c
y= chx (2.4) to see that ———%0 =¢ . Thus (2.7) holds

n=0

Since the differentiation of equation (2.4), we
have

yl — i ncnxn—] (25)
n=1

and

y'= in(n —1)c,x"2. (2.6)

n=2

By using equations (2.4), (2.5), and (2.6) in (2.1),
we obtain

0 0

©
-2 -1
n(n—-1)c,x"> - E ne,x" —22 ¢,x"=0
2 n=1

n=0

3
I

0

(n+2)(n+1)c,,,x" =D (n+1)c,,x"

n=0

M

=3

n=l

n=0
Zw: [(n +2)(n +1)cn+2 —(n+1)c,Hl —26‘"])("
n=0
=0.
Thus,
(n+2)(n+1)c,,, —(n+1)c,,, —2¢, =0.

Therefore, the proof is complete.

Lemma 2.4 Let 7> 0. The following results
hold.

_Je+2J, ¢
n - 9

2.7)
n!

n=1. Let us assume that the equality in (2.7)

holds for all n<keN by iterating this
procedure and considering induction steps. To
finish the proof. We must show that (2.7) also
holds n=k+1 by considering Lemma 2.3.
Thus

Cra1

ke, +2¢,,

 k(k+1)

k Je +2J, ¢, 49 Jie +2J, ¢,

k! (k=1)!

- k(k+1)

3 J.o+2J, ¢, 4—2(J,HcI +2Jk72€0)

- (k+1)!

_ (N +200)e +2(J +20,5) e

(k+1)!
_ JeaG +2J,c
(k1)

Thus, n=/k+1 is true. The similar proof of
(2.7) is applied for (2.8). Therefore, the proof is
complete.

Now, we find SinJ(x) and

sin j (x) in terms of sums, which corresponds

to the following theorem.

Theorem 2.5 Let n>0. Then sinJ(x) and

sin j (x) are given respectively by

sinJg (x)=J, % : 2.9)
n=0 .
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sin j(x ZJ,, (2.10)
Proof. Let y = chx" , we have
n=0
J,c +2Jc
y=c,+ex+ 2110 4
2!
Jc +2J
+ 2O T2 G oy @.11)
n!
and
V' =¢ +(Jyq+2J¢))x+...
JnCl +2Jn7100 n—1
=+ (2.12)

(n—l)!

By using initial values y(0)=0, »'(0)=1 in
(2.11) and (2.12), we obtain

¢,=0and ¢ =1. (2.13)
By using (2.13) in (2.11), we get
J, J, x"
yEx+2x X+ J —
2 }’l n=0 n'

Thus, s1nJ ZJ —. The similar proof

of (2.9) is applied for (2.10). Therefore, the proof
is complete.
Then, we define Jacobsthal cosine

cosJ (x) and Jacobsthal-Lucas cosine

derivatives,  which

cos j (x) by  using
correspond to the following definition.

Definition 2.6 Let & > . Then the Jacobsthal
cosine cosJ (x) and Jacobsthal-Lucas cosine

cos j (x) are defined respectively by

Px
cos.J (x)= 2 =P 2.14)
a-p
cos j(x) = ae™ + e, (2.15)

Moreover, we find cos.J(x) and cos j(x) in

terms of sums, which corresponds to the
following theorem.

Theorem 2.7 Let n >0 . Then COSJ(x) and

cos j (x) are given respectively by

ZJ)1+1 s
cos j (x ZJM

cosJ (2.16)
(2.17)

Proof. Since Theorem 2.4, we have

%sinJ(x) =

Thus, cosJ(x)= iJnH x

The similar

proof of (2.9) is applied for (2.10). Therefore,
the proofis complete.

Furthermore, we find Jacobsthal
tangent, Jacobsthal-Lucas tangent, Jacobsthal
cotangent, and Jacobsthal-Lucas cotangent,
which corresponds to the following lemma
definition and theorem.

Lemma 2.8 For all real numbers X. The

following results hold.

(i) cosJ(x)=0,

(i) cos j(x)=0"

(iii) sinJ (x)#0,

(iv) sin j(x)#0.

Proof. Suppose that cos J(x) =0, then
ae™ — B’

o _/; ~0.
ae™ — e =0.S0 ae™ = e’ . Therefore
a =/ .But > [, we have a contradiction.

It follows that
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Thus cosJ (x) #0, for all real numbers X .

The similar proof of (i) is applied for (ii), (iii),
and (iv). Therefore, the proof is complete.
Definition 2.9 Let & > . Then the Jacobsthal

tangent tanJ (x), Jacobsthal-Lucas tangent
tan ](x) , Jacobsthal cotangent cotJ (x) s

and Jacobsthal-Lucas cotangent cot j (x) are

defined respectively by

tan J (x) = z:;‘;((i)) = aZ: :eﬂﬂexﬂx . (2.18)
tan j(x) = ZLZ((?) o I;; . @19)
-G g e
cot j(x) = :jj((j)) - az :fﬂiﬂx (221)

Theorem 2.10 Let n>0. Then tanJ(x),

tanj(x), CotJ(x),and Cotj(x) are given

respectively by
tanJ (x) =
B B +4B n (JmBJr 2J,., )2 ~(n+1)(a-p)x
_E L TN (L) A et
2 Z;( ) 2" ¢ ’
(2.22)
tan j(x) =

2 324 3 2"

(2.23)

t ﬂ+4 — —(n+1)(a—B)x
cotJ(x)=——~- e
W= &
,(2.24)

cot j(x) = -é A

Proof. Since (2.18), we have
ax Bx

e —e

tanJ (x) = ——— i

ae” — pe”

. . . . \2
B_B+48 i (2J, 1B+ J,aB+4),2+2),) e

B 1+

2 l+ﬁ—ze(ﬁ_a)x

2

:g _1+_ﬂ+4e(ﬁ*a)x_ﬂ;“'ﬂ_zeZ(ﬁfa)x
:_£+ﬂ2+4ﬂe(5*“)“_ﬂ2+4ﬁﬂ_282(ﬁfa)x+'“

2 4 4 2

LA o B e

=_§+¥§(_1) ﬁz o)

Thus, tanJ (x)=
pLF Sy (LB +2J11)" prsiams

2 pr 2"
The similar proof of (2.18) is applied for (2.19),
(2.20), and (2.21). Therefore, the proof is
complete.

Next, we find Jacobsthal secant,
Jacobsthal-Lucas secant, Jacobsthal cosecant,
and  Jacobsthal-Lucas  cosecant,  which
corresponds to the following definition and
theorem.

Definition 2.11 Let & > £ . Then the Jacobsthal
secant secJ (x) , Jacobsthal-Lucas secant
sec j (x) , Jacobsthal cosecant cosecJ (x) ,

and Jacobsthal-Lucas cosecant cosec j (x) are
defined respectively by

1 a-pf
secJ (x)= cos T (%) = g (2.26)
. _ 1 _ 1
secj(x)= cos j(x) e + B’ (2.27)
1 a-p
cosec/ (x) = S (+) = e (229
, 1 1
cosecj(x)= 7 () =g (229

Theorem 2.12 Let 7>0. Then secJ(x),

sec j(x), cosec/(x), and cosecj(x) are

given respectively by
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cosecy (X) = W’l:o

Proof. The proof of Theorem 2.10 is applied for
(2.30), (2.31), (2.32), and (2.33).

Finally, we find some identities of the
Jacobsthal sine, Jacobsthal-Lucas sine,
Jacobsthal cosine, Jacobsthal-Lucas cosine,
Jacobsthal tangent, Jacobsthal-Lucas tangent,
Jacobsthal cotangent, Jacobsthal-Lucas
cotangent, Jacobsthal secant, Jacobsthal-Lucas
secant, Jacobsthal cosecant, and Jacobsthal -
Lucas cosecant, which corresponds to the
following definition and theorem.

Theorem 2.13 Let o> . The following
results hold.

(1) cosJ? (x)—sinJ(x)cosJ(x)—ZSinJ2 (x)=e",
(i) cos (x)—sinj(x)cosj(x)—2sinj2 (x) =-9¢",
(iii) e"secJ? (x)+tanJ (x)+2tanJ> (x) =1,
(iv) —9¢" sec j* (x)+tan j(x)+2tan ; (x)=1.
Proof. Since (2.2) and (2.14), we have

cos.J? (x)—sinJ (x)cosJ (x)—2sinJ? (x)

2
[ ae™ —ﬂeﬂx
- eax _e,b‘x

2
eax _ eﬂx aeax _ ﬂeﬁx eax _ e/)’x
- ax Px ax px - 2 ax px
e —e e —e e —e
=e".
Thus,
cos.J* (x)—sinJ (x)cosJ (x)—2sinJ? (x)
= ¢", The proof of (i) is applied for (ii), (iii), and

(iv). by using (2.3), (2.15), (2.18), (2.26), and
(2.27). Therefore, the proof is complete.

3. Conclusions

In this paper, we investigate
Jacobsthal  sine, Jacobsthal-Lucas sine,
Jacobsthal cosine, Jacobsthal-Lucas cosine,
Jacobsthal tangent, Jacobsthal-Lucas tangent,
Jacobsthal cotangent, Jacobsthal-Lucas
cotangent, Jacobsthal secant, Jacobsthal-Lucas
secant, Jacobsthal cosecant, and Jacobsthal-
Lucas cosecant. Furthermore, we obtain some
identities of Jacobsthal sine, Jacobsthal-Lucas
sine, Jacobsthal cosine, Jacobsthal-Lucas cosine,
Jacobsthal tangent, Jacobsthal-Lucas tangent,
Jacobsthal cotangent, Jacobsthal-Lucas
cotangent, Jacobsthal secant, Jacobsthal-Lucas
secant, Jacobsthal cosecant, and Jacobsthal-
Lucas cosecant.
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