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Abstract 
The zero-truncated Poisson-Shanker distribution (ZTPS) has been introduced for count data, 

which is of primary interest in several fields. However, the construction of bootstrap confidence 

intervals for its index of dispersion (IOD) has not yet been studied. The bootstrap confidence intervals 

using the percentile, simple, biased-corrected, and accelerated bootstrap methods were proposed in this 

paper. A Monte Carlo simulation study was conducted to evaluate the performance of three bootstrap 

confidence intervals based on the coverage probability and average length of the bootstrap confidence 

intervals. The results indicate that attaining the nominal confidence level using the bootstrap methods 

was impossible for small sample sizes regardless of the other settings. 

Moreover, when the sample size was large, the performances of all methods were not 

substantially different. The percentile bootstrap and the simple bootstrap methods perform well 

regarding coverage probability and average length for large sample sizes. However, calculating the 

percentile bootstrap method is easier than calculating the simple bootstrap method. In the end, real data 

sets from different fields were analyzed to verify the usefulness of the bootstrap confidence intervals. 

It is manifested that the results match those from the simulation study. 
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1. Introduction 

A discrete distribution is a probability 

distribution that depicts the occurrence of 

discrete (countable) outcomes (1). One of the 

discrete distributions is the Poisson distribution 

which measures the probability of an event 

happening a certain number of times within a 

given interval of time or space (2-3). Data such 

as the number of orders a firm will receive 

tomorrow, the number of defects in a finished 

product, the number of customers arriving at a 

checkout counter in a supermarket from 4 to 6 

pm, etc. (4), follow a Poisson distribution. 

The probability mass function (pmf) of 

a Poisson distribution is defined as 
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= 0,1,2,...,x = 0,   (1.1) 

where e  is a constant approximately equal to 

2.71828 and   is the mean number of events 

within a given interval of time or space. 

This probability model can analyze 

data containing zeros and positive values with 

low occurrence probabilities within a predefined 

time or area range (5). However, probability 

models can become truncated when a range of 

possible variable values is disregarded or 

impossible to observe. Indeed, zero truncation is 

often enforced when one wants to analyze the 

count data without zeros. Reference (6) 
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developed the zero-truncated (ZT) Poisson 

(ZTP) distribution, which has been applied to 

datasets of the length of stay in the hospital, the 

number of fertile mothers who have experienced 

at least one child death, the number of children 

ever born to a sample of mothers over 40 years 

old, and the number of passengers in cars (7). Let 

be a ZT distribution, and then the pmf can be 

derived as 

0

0
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where 
0( ; )p x   and 

0(0; )p   are the pmf of the 

un-truncated distribution for any value of x  and 

0,x =  respectively. Reference (8) defined the 

pmf of the Poisson-Shanker (PS) distribution 

having as 
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0,1,2,..., 0.x =          (1.3) 

The mathematical and statistical 

properties of the PS distribution for modeling 

count data were established by (8). The PS 

distribution arises from the Poisson distribution 

when parameter   follows the Shanker 

distribution proposed by (9) with probability 

density function (pdf) 
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Reference (9) showed that the pdf in Eq. (1.4) is 

a better model than the exponential and Lindley 

(10) distributions for modeling lifetime data. 

Several distributions have been introduced as an 

alternative to the ZTP distribution for handling 

over-dispersion in data, such as ZT Poisson-

Lindley (ZTPL) (11), ZT Poisson-Amarendra 

(ZTPA) (12), ZT Poisson-Akash (13) and ZT 

Poisson-Ishita (14) distributions. 

Reference (8) proposed the ZTPS 

distribution and its properties, such as the 

moment, coefficient of variation, skewness, 

kurtosis, and the index of dispersion (IOD). The 

method of moments and the maximum 

likelihood have also been derived for estimating 

its parameter. Furthermore, when the ZTPS 

distribution was applied to real data set, it was 

more suitable than the ZTP and ZTPL 

distributions.  

The IOD, like the coefficient of 

variation, is a normalized measure of the 

dispersion of a probability distribution. It is a 

measure used to quantify whether a set of 

observed occurrences are clustered or dispersed 

compared to a standard statistical model. It is 

defined as the ratio of the population variance 
2  to the population mean ;  2 / .   This 

index should typically only be used for data 

measured on a ratio scale. It is sometimes used 

for count data. Therefore, this measure can be 

used to assess whether observed count data can 

be modeled using a Poisson distribution. When 

the IOD is less than one, a dataset is said to be 

under-dispersed. On the other hand, if the IOD is 

larger than one, a dataset is said to be over-

dispersed (15). Some distributions, most notably 

the Poisson distribution, have IOD = 1. The 

geometric and negative binomial distributions 

have IOD > 1, while the binomial distribution 

has IOD < 1, and the constant random variable 

has IOD = 0 (15). 

To the best of our knowledge, no 

research has been conducted on estimating the 

confidence interval for the IOD of the ZTPS 

distribution. Bootstrap methods for estimating 

the confidence interval provide a way of 

quantifying the uncertainties in statistical 

inferences based on a sample of data. The 

concept is to run a simulation study based on the 

actual data to estimate the likely extent of 

sampling error (16). Therefore, the objective of 

the current study is to assess the efficiencies of 

three bootstrap methods, namely the percentile 

bootstrap (PB), the simple bootstrap (SB), and 

the bias-corrected and accelerated bootstrap 

(BCa), to estimate the confidence interval for the 

IOD of the ZTPS distribution. Because a 

theoretical comparison is impossible, we 

conducted a simulation study to compare their 

performance. We used the results to determine 

the best-performing method based on the 

coverage probability and the average length. 

 

2. Theoretical Background 

Compounding probability distributions 

is a sound and innovative technique to obtain 

new probability distributions to fit data sets not 

adequately fit by common parametric distributions. 

Reference (8) proposed a new compounding 

distribution by compounding the Poisson 
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distribution with the Shanker distribution, as a 

more flexible model for analyzing statistical data 

is needed. The pmf of the PS distribution is given 

in Eq. (1.3). 

Let X  be a random variable which 

follow the ZTPS distribution with parameter ,  

it is denoted as X ~ ZTPS( ).  Using Eqs. (1.2) 

and (1.3), the pmf of the ZTPS distribution can 

be obtained as 
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1,2,3,..., 0.x =   

The plots of the pmf of the ZTPS distribution 

with some specified parameter values   are 

shown in Figure 1. 

 

Figure 1 The plots of the pmf of the ZTPS 

distribution with  =0.5, 1, 1.5 and 2. 

The expected value, variance of X  

and the IOD are as follows: 
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(2.1) 

The point estimator of   is obtained 

by maximizing the log-likelihood function 

log ( ; )iL x   or the logarithm of joint pmf of 

1,..., .nX X  Therefore, the maximum likelihood 

(ML) estimator for   of the ZTPS distribution 

is derived by the following processes: 
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Solving the equation log ( ; ) 0iL x 



=


 for ,  

we have the non-linear equation 
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where 
1

/
n

i

i

x x n
=

=  denotes the sample mean. 

Since the ML estimator for   does not provide 

the closed-form solution, the non-linear equation 

can be solved by the numerical iteration methods 

such as Newton-Raphson, bisection, and Ragula-

Falsi methods. In this research, we use maxLik 

package (18) with Newton-Raphson method for 

ML estimation in the statistical software R. 

The point estimator of the IOD can be 

estimated by replacing the parameter   with the 

ML estimator for   shown in Eq. (2.1). 

Therefore, the point estimator of the IOD ( ̂ ) is 

given by 
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where ̂  is the ML estimator for .  
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3. Bootstrap Methods 

In this paper, we focus on the three 

bootstrap methods for estimating the confidence 

interval for the IOD of the ZTPS distribution. In 

practice, the popular bootstrap methods are the 

percentile, the simple and the bias-corrected and 

accelerated bootstrap methods. See the details of 

some bootstrap methods in (19-20). 

3.1 Percentile Bootstrap (PB) Method 

The percentile bootstrap confidence 

interval is the interval between the ( / 2) 100   

and (1 ( / 2)) 100−   percentiles of the 

distribution of   estimates obtained from 

resampling or the distribution of *ˆ ,  where   

represents a parameter of interest and   is the 

level of significance (e.g.,  = 0.05 for 95% 

confidence intervals) (19, 21). A percentile 

bootstrap confidence interval for   can be 

obtained as follows:  

1)  B  random bootstrap samples are 

generated, 

2)  a parameter estimate 
*̂  is calculated 

from each bootstrap sample, 

3)  all B  bootstrap parameter estimates 

are ordered from the lowest to highest, and 

4) the (1 )100%−  percentile bootstrap 

confidence interval is given by 

* *

( ) ( )
ˆ ˆ, ,PB r sCI   =                (3.1) 

where 
*

( )
ˆ

r  represents the 
thr  quantile of the set 

of ordered quantiles from lowest to highest, 
*

( )
ˆ

s  

represents the 
ths  quantile of the same set, 

( / 2) ,r B=     (1 ( / 2)) ,s B= −    where 

 x  is the ceiling function of ,x  and   is the 

significance level.  This study use B = 1,000 and 
  = 0.05; the quantile corresponding to the 

lower limit of confidence interval was  
* *

( ) (25)
ˆ ˆ

r =  (the 25th quantile) and that 

corresponding to the upper limit was 
* *

( ) (1975)
ˆ ˆ

s =  (the 1975th quantile). 

3.2 Simple Bootstrap (SB) Method 

The simple bootstrap method is 

sometimes called the basic bootstrap method and  

 

 

is a method as easy to apply as the percentile 

bootstrap method. Suppose that the quantity of 

interest is   and that the estimator of   is ˆ.  

The simple bootstrap method assumes that the 

distributions of ̂ −  and 
*ˆ ˆ −  are 

approximately the same (22). The (1 )100%−  

simple bootstrap confidence interval for   is 

* *

( ) ( )
ˆ ˆ ˆ ˆ2 , 2 ,SB s rCI     = − −         (3.2) 

where the quantiles 
*

( )
ˆ

r  and  
*

( )
ˆ

s  are the same 

percentile of empirical distribution of bootstrap 

estimates 
*̂  used in Eq. (3.1) for the percentile 

bootstrap method. 

3.3 Bias-Corrected and Accelerated Bootstrap 

(BCa) Method 

To overcome the over coverage issues 

in percentile bootstrap confidence intervals, the 

BCa bootstrap method corrects for both bias and 

skewness of the bootstrap parameter estimates 

by incorporating a bias-correction factor and an 

acceleration factor (19, 21). The bias-correction 

factor 
0ẑ  is estimated as the proportion of the 

bootstrap estimates less than the original 

estimate value ˆ,  ( )1 *

0
ˆ ˆˆ # / ,z B −=   

where 
1−  is the inverse function of a standard 

normal cumulative distribution function (e.g., 
1(0.975) 1.96)−   and  *ˆ ˆ#    represent 

the number of times that 
*̂  is less than ̂  in 

each replication. The acceleration factor â  is 

estimated through jackknife resampling (i.e., 

“leave one out” resampling), which involves 

generating n  replicates of the original sample, 

where n  is the number of observations in the 

sample. The first jackknife replicate is obtained 

by leaving out the first case ( 1)i =  of the 

original sample, the second by leaving out the 

second case ( 2),i =  and so on, until n  samples 

of size 1n −  are obtained. For each of the 

jackknife resamples, ( )
ˆ

i −  is obtained. The 

average of these estimates is ( ) ( )

1

ˆ ˆ / .
n

i

i

n  −

=

=

Then, the acceleration factor â  is calculated as 

follow, 
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The values of 
0ẑ  and ˆ,a  the values 

1  and 
2  

are calculated, 
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where 
/ 2z  is the   quantile of the standard 

normal distribution (e.g.
0.05/2 1.96).z  −  Then, 

the (1 )100%−  BCa bootstrap confidence 

interval for   is as follows 

* *

( ) ( )
ˆ ˆ, ,BCa j kCI   =             (3.3) 

where 
1j B=     and 

2 .k B=      

 

 

4. Simulation Study 

The confidence interval for the IOD of 

a ZTPS distribution estimated via various 

bootstrap methods was considered in this study. 

Because a theoretical comparison is not possible, 

a Monte Carlo simulation study was designed 

using R version 4.2.2 (23) to cover cases with 

different sample sizes (n  = 10, 30, 50, 100 and 

500). To cover over-dispersion and under-

dispersion cases, the true parameter ( )  was set 

as 0.25, 0.5, 1, 1.5 and 2, then the index of 

dispersion ( )  were 4.7105, 2.5146, 1.2667, 

0.8072 and 0.5784, respectively. B =1000 

bootstrap samples of size n were generated from 

the original sample and each simulation was 

repeated 1,000 times. This paper used the 

acceptance-rejection method (24) to generate 

random variate with PA distribution. Without 

loss of generality, the nominal confidence level 

(1 )−  was set at 0.95. The performances of the 

bootstrap methods were compared in terms of 

their coverage probabilities and average lengths. 

The one with a coverage probability greater than 

or close to the nominal confidence level means 

that it contains the true value and can be used to 

precisely estimate the confidence interval for the 

index of dispersion.

Table 1 Coverage probability and average length of the 95% confidence intervals for the IOD of the 
ZTPS distribution. 

n      
Coverage probability  Average length 

PB SB BCa  PB SB BCa 

10 0.25 4.7105 0.868 0.860 0.880  3.6878 3.6845 3.8709 

 0.5 2.5146 0.885 0.891 0.899  2.2686 2.2678 2.3697 

 1 1.2667 0.866 0.839 0.893  1.4459 1.4462 1.5207 

 1.5 0.8072 0.861 0.831 0.901  1.1167 1.1191 1.2086 

 2 0.5784 0.881 0.861 0.928  0.9119 0.9127 1.0152 

30 0.25 4.7105 0.927 0.926 0.925  2.2936 2.2884 2.3485 

 0.5 2.5146 0.922 0.923 0.929  1.3644 1.3646 1.3943 

 1 1.2667 0.935 0.926 0.940  0.9188 0.9200 0.9421 

 1.5 0.8072 0.908 0.899 0.933  0.7185 0.7202 0.7462 

 2 0.5784 0.924 0.909 0.939  0.5962 0.5963 0.6255 

50 0.25 4.7105 0.939 0.932 0.934  1.7956 1.7948 1.8229 

 0.5 2.5146 0.934 0.930 0.943  1.0749 1.0767 1.0920 

 1 1.2667 0.938 0.934 0.936  0.7232 0.7238 0.7351 

 1.5 0.8072 0.928 0.911 0.935  0.5733 0.5728 0.5857 

 2 0.5784 0.920 0.903 0.940  0.4777 0.4770 0.4919 

100 0.25 4.7105 0.945 0.941 0.941  1.2954 1.3005 1.3104 

 0.5 2.5146 0.948 0.948 0.944  0.7731 0.7721 0.7785 

 1 1.2667 0.935 0.937 0.940  0.5148 0.5153 0.5198 

 1.5 0.8072 0.941 0.937 0.941  0.4143 0.4147 0.4198 

 2 0.5784 0.944 0.923 0.947  0.3451 0.3443 0.3504 

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index


22 Prog Appl Sci Tech. 2023; 13(2):17-25 

Prog Appl Sci Tech © 2023 Faculty of Science and Technology, RMUTT 

n      
Coverage probability  Average length 

PB SB BCa  PB SB BCa 

500 0.25 4.7105 0.937 0.932 0.935  0.5795 0.5786 0.5790 

 0.5 2.5146 0.948 0.951 0.951  0.3489 0.3489 0.3499 

 1 1.2667 0.954 0.953 0.957  0.2325 0.2323 0.2329 

 1.5 0.8072 0.939 0.940 0.942  0.1856 0.1853 0.1859 

 2 0.5784 0.937 0.932 0.939  0.1555 0.1559 0.1562 

 

The results of the study are reported in 

Table 1. For n  = 10, 30 and 50, the coverage 

probabilities of the three methods tended to be 

less than 0.95 and so did not reach the nominal 

confidence level. All bootstrap methods had 

coverage probabilities close to the nominal 

confidence levels for large sample sizes 

( 100).n   Additionally, the coverage probabilities 

of all bootstrap methods were not significantly 

different for these situations by testing with the 

Kruskal-Wallis test (25) (H = 1.559, p-value = 

0.459). Thus, as the sample size was increased, 

the coverage probabilities of the methods tended 

to increase and approach 0.95. 

Moreover, the average length of the 

methods decreased when the value of   was 

decreased because of the relationship between 

the variance and   (see Figure 2). As the sample 

size was increased, the average lengths 

decreased. For small sample sizes ( 50),n   the 

average lengths of the PB and SB methods were 

shorter than those of BCa method. For large 

sample sizes ( 100),n   the average lengths of 

all bootstrap methods were not significantly 

different by testing with the Kruskal-Wallis test 

(25) (H = 0.237, p-value = 0.888). 

 

Figure 2 The relationship between the value of 

  and variance. 

5. Numerical Examples 

We used three real-world examples to 

demonstrate the applicability of the bootstrap 

methods for estimating the confidence interval 

for the IOD of the ZTPS distribution. 

5.1 The Unrest Events Example 

The number of unrest events occurring 

in the southern border area of Thailand from July 

2020 to October 2022 collected by the Southern 

Border Area News Summarises was used for this 

example (the total sample size is 28). The 

number of unrest events per month during this 

time period in the five southern provinces of 

Pattani, Yala, Narathiwat, Songkhla, and Satun 

is reported in Table 2. For the Chi-squared 

goodness-of-fit test (26), the Chi-squared 

statistic was 3.9112 and the p-value was 0.3113. 

Thus, a ZTPS distribution with ˆ 0.3058 =  is 

suitable for this dataset. The estimator of the 

index of dispersion was 3.9311. Table 3 reported 

the 95% confidence intervals for the index of 

dispersion of the ZTPS distribution. The 

estimated parameter ̂  is near to 0.5. The results 

correspond with the simulation results for 

30n =  because the average lengths of the PB 

and SB methods were shorter than those of the 

BCa method.  
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Table 2 The number of unrest events in the southern border area of Thailand. 

Number of  

Unrest Events 
0 1 2 3 4 5 6 7  8 

Observed 

Frequency 
0 3 1 3 2 3 3 3 8 

Expected 

Frequency 
- 1.778 2.415 2.817 2.968 2.908 2.699 2.401 10.014 

Table 3 The 95% confidence intervals and corresponding widths using all intervals for the index of 

dispersion in the unrest events example. 

Methods Confidence Intervals Widths 

PB (3.0907, 4.7974) 1.7067 

SB (3.0430, 4.7706) 1.7276 

BCa (3.0870, 4.8198) 1.7328 

5.2 Demographic Example 

Table 4 shows the demographic data 

on the number of fertile mothers who have 

experienced at least one child death (27). The 

total sample size is 135. For Chi-squared 

goodness-of-fit test, the Chi-squared statistic 

was 3.1070 and the p-value was 0.2115. Thus, 

the ZTPS distribution with ̂ = 1.9538 is 

suitable for this dataset. The point estimator of 

the index of dispersion is 0.5943. The 95% 

confidence intervals for the index of dispersion 

of the ZTPS distribution are reported in Table 

5. The results correspond with the simulation 

results for  = 0.5784 and n = 100 because the 

average lengths of the PB and SB methods 

were shorter than those of the BCa method.

Table 4 The number of fertile mothers who have experienced at least one child death. 

Number of Child Deaths 0 1 2 3  4 

Observed Frequency 0 89 25 11 10 

Expected Frequency - 83.7792 32.0125 12.0731 7.1352 

Table 5 The 95% confidence intervals and corresponding widths using all intervals for the index of 

dispersion in the demographic example. 

Methods Confidence Intervals Widths 

PB (0.4322, 0.7626) 0.3187 

SB (0.4272, 0.7551) 0.3279 

BCa (0.4414, 0.7723) 0.3309 

5.3 Flower Heads Example 

The third dataset, shown in Table 6, 

is the number of flower heads per the number 

of fly eggs reported by (28); the total sample 

size is 88. For the Chi-squared goodness-of-fit 

test, the Chi-squared statistic was 3.3591 and 

the p-value was 0.4996. Thus, a ZTPS 

distribution with 0.7335̂ =  is suitable for 

this dataset. The point estimator of the index 

of dispersion is 1.7425. The 95% confidence 

intervals for the index of dispersion of the 

ZTPS distribution are reported in Table 7. The 

results correspond with the simulation results 

for  = 1.2667 and n = 100 because the 

average lengths of the PB and SB methods 

were shorter than those of the BCa method.

Table 6 The number of flower heads as per the number of fly eggs. 

Number of Fly Eggs 0 1 2 3 4 5  6 

Observed Frequency 0 22 18 18 11 9 10 

Expected Frequency - 26.2820 19.7959 14.0933 9.6723 6.4694 11.6870 
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Table 7 The 95% confidence intervals and corresponding widths using all intervals for the index of 

dispersion in the flower heads example. 

Methods Confidence Intervals Widths 

PB (1.4867, 2.0077) 0.5210 

SB (1.4832, 2.0072) 0.5240 

BCa (1.4903, 2.0176) 0.5273 

6. Conclusions and Discussion 

Three bootstrap confidence 

intervals, namely PB, SB, and BCa methods, 

of the IOD of the ZTPS distribution have been 

introduced in this study. Based on the 

simulation study, when the sample sizes were 

10, 30, and 50, the coverage probabilities of all 

three were substantially lower than 0.95. When 

the sample size was large enough (i.e., 

100),n   the coverage probabilities and 

average lengths using three bootstrap methods 

were not markedly different. According to our 

findings, the PB and SB methods provided the 

shortest average length for small sample sizes 

and parameter settings tested in the simulation 

study. The usefulness of the bootstrap 

confidence intervals was illustrated 

empirically using three applications to the 

number of unrest events in the southern border 

area of Thailand, the number of fertile mothers 

who have experienced at least one child death, 

and the number of flower heads as per the 

number of fly eggs. Therefore, the PB and SB 

methods are recommended to estimate the 

confidence interval for the IOD of the ZTPS 

distribution.  

The limitation of the current study is 

that none of the bootstrap confidence intervals 

were exact. However, they would be 

consistent, meaning that the coverage 

probability approaches the nominal 

confidence level as the sample sizes get large. 

In addition, three bootstrap confidence 

intervals are computer intensive and not easy 

to compute. However, there are numerous 

available packages in R for computing the 

bootstrap confidence intervals, such as boot 

package (29), bootstrap package (30), semEff 

package (31), and BootES package (33). Since 

R is open-source, users are free to download 

these packages. Future research could focus on 

hypothesis testing for the IOD and the other 

confidence intervals to compare with the 

proposed bootstrap methods. 
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