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Abstract

The zero-truncated Poisson-Shanker distribution (ZTPS) has been introduced for count data,
which is of primary interest in several fields. However, the construction of bootstrap confidence
intervals for its index of dispersion (IOD) has not yet been studied. The bootstrap confidence intervals
using the percentile, simple, biased-corrected, and accelerated bootstrap methods were proposed in this
paper. A Monte Carlo simulation study was conducted to evaluate the performance of three bootstrap
confidence intervals based on the coverage probability and average length of the bootstrap confidence
intervals. The results indicate that attaining the nominal confidence level using the bootstrap methods
was impossible for small sample sizes regardless of the other settings.

Moreover, when the sample size was large, the performances of all methods were not
substantially different. The percentile bootstrap and the simple bootstrap methods perform well
regarding coverage probability and average length for large sample sizes. However, calculating the
percentile bootstrap method is easier than calculating the simple bootstrap method. In the end, real data
sets from different fields were analyzed to verify the usefulness of the bootstrap confidence intervals.
It is manifested that the results match those from the simulation study.

Keywords: Interval Estimation, Count Data, Shanker Distribution, Bootstrap Interval

1. Introduction Py L
)= x=0,12,.., 1>0,
A discrete distribution is a probability p(x;A)= o (1.1)

distribution that depicts the occurrence of
discrete (countable) outcomes (1). One of the

discrete distributions is the Poisson distribution
which measures the probability of an event
happening a certain number of times within a
given interval of time or space (2-3). Data such
as the number of orders a firm will receive
tomorrow, the number of defects in a finished
product, the number of customers arriving at a
checkout counter in a supermarket from 4 to 6
pm, etc. (4), follow a Poisson distribution.

The probability mass function (pmf) of
a Poisson distribution is defined as

where e is a constant approximately equal to

2.71828 and 4 is the mean number of events
within a given interval of time or space.

This probability model can analyze
data containing zeros and positive values with
low occurrence probabilities within a predefined
time or area range (5). However, probability
models can become truncated when a range of
possible variable values is disregarded or
impossible to observe. Indeed, zero truncation is
often enforced when one wants to analyze the
count data without =zeros. Reference (6)
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developed the zero-truncated (ZT) Poisson
(ZTP) distribution, which has been applied to
datasets of the length of stay in the hospital, the
number of fertile mothers who have experienced
at least one child death, the number of children
ever born to a sample of mothers over 40 years
old, and the number of passengers in cars (7). Let
be a ZT distribution, and then the pmf can be
derived as

Do(x;0)

L x=1,23,..., (12)
1= py(0;0)

p(x;0) =

where p(x;60) and p,(0;0) are the pmf of the
un-truncated distribution for any value of x and
x =0, respectively. Reference (8) defined the

pmf of the Poisson-Shanker (PS) distribution
having as

@ x+(0°+0+1)
1 O+
x=0,1,2,..,0>0. (1.3)

;0)=
po(x ) 0

The mathematical and statistical
properties of the PS distribution for modeling
count data were established by (8). The PS
distribution arises from the Poisson distribution
when parameter A follows the Shanker
distribution proposed by (9) with probability
density function (pdf)

2
f(4:;0)= %(6+i)e“”“, A>0,0>0.
+

1.4)

Reference (9) showed that the pdf in Eq. (1.4) is
a better model than the exponential and Lindley
(10) distributions for modeling lifetime data.
Several distributions have been introduced as an
alternative to the ZTP distribution for handling
over-dispersion in data, such as ZT Poisson-
Lindley (ZTPL) (11), ZT Poisson-Amarendra
(ZTPA) (12), ZT Poisson-Akash (13) and ZT
Poisson-Ishita (14) distributions.

Reference (8) proposed the ZTPS
distribution and its properties, such as the
moment, coefficient of variation, skewness,
kurtosis, and the index of dispersion (IOD). The
method of moments and the maximum
likelihood have also been derived for estimating
its parameter. Furthermore, when the ZTPS

distribution was applied to real data set, it was
more suitable than the ZTP and ZTPL
distributions.

The IOD, like the coefficient of
variation, is a normalized measure of the
dispersion of a probability distribution. It is a
measure used to quantify whether a set of
observed occurrences are clustered or dispersed
compared to a standard statistical model. It is

defined as the ratio of the population variance

o’ to the population mean z; o/ . This

index should typically only be used for data
measured on a ratio scale. It is sometimes used
for count data. Therefore, this measure can be
used to assess whether observed count data can
be modeled using a Poisson distribution. When
the IOD is less than one, a dataset is said to be
under-dispersed. On the other hand, if the IOD is
larger than one, a dataset is said to be over-
dispersed (15). Some distributions, most notably
the Poisson distribution, have IOD = 1. The
geometric and negative binomial distributions
have 10D > 1, while the binomial distribution
has IOD < 1, and the constant random variable
has IOD =0 (15).

To the best of our knowledge, no
research has been conducted on estimating the
confidence interval for the IOD of the ZTPS
distribution. Bootstrap methods for estimating
the confidence interval provide a way of
quantifying the uncertainties in statistical
inferences based on a sample of data. The
concept is to run a simulation study based on the
actual data to estimate the likely extent of
sampling error (16). Therefore, the objective of
the current study is to assess the efficiencies of
three bootstrap methods, namely the percentile
bootstrap (PB), the simple bootstrap (SB), and
the bias-corrected and accelerated bootstrap
(BCa), to estimate the confidence interval for the
10D of the ZTPS distribution. Because a
theoretical comparison is impossible, we
conducted a simulation study to compare their
performance. We used the results to determine
the Dbest-performing method based on the
coverage probability and the average length.

2. Theoretical Background

Compounding probability distributions
is a sound and innovative technique to obtain
new probability distributions to fit data sets not
adequately fit by common parametric distributions.
Reference (8) proposed a new compounding
distribution by compounding the Poisson
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distribution with the Shanker distribution, as a
more flexible model for analyzing statistical data
is needed. The pmf of the PS distribution is given
in Eq. (1.3).

Let X be a random variable which
follow the ZTPS distribution with parameter 6,
it is denoted as X ~ ZTPS(#). Using Egs. (1.2)

and (1.3), the pmf of the ZTPS distribution can
be obtained as

&’ x+(0*+0+1)
107 +20+1 (6+1)
x=12,3,..,6>0.

p(x;0) = g

s

The plots of the pmf of the ZTPS distribution
with some specified parameter values 6 are
shown in Figure 1.

8=0.5 6=1
=
g -
S S
89‘ e
5 o Z o
2 | “M\m o “\l
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Figure 1 The plots of the pmf of the ZTPS
distribution with 8 =0.5, 1, 1.5 and 2.

The expected value, variance of X
and the 10D are as follows:

O+1)(0°+0°+20+2)

EX)=pu= —

08 +6* +20+1)

6° +20° +60* +96°

O+1) )

var(X) = o = +106° +86+2
(6 +6* +20+1)

and

o 0°+260° + 60" +96° +100° + 80 +2
0(6° +20°+50' +76° + 76" +60+2)
@.1)

The point estimator of € is obtained
by maximizing the log-likelihood function
logL(x,;0) or the logarithm of joint pmf of
X,,...,X,. Therefore, the maximum likelihood

(ML) estimator for € of the ZTPS distribution
is derived by the following processes:

(ewm)
log| — 2
" oy 12011

) o &
 logL(x:0) = | = x log(6 +1
og08L(:0) =~ le og(6+1)

+Zn:10g[x, +(*+0+ l)]
L = i

o n(36°+20+2) %
0 (93+92+29+1) 0+1
2 20 +1

Y —
x+(0*+6+1)

Solving the equation %log L(x;;60)=0 for 6,

we have the non-linear equation

wm n(30°+20+2) %
0 (63+02+20+1) 0+1
2 20 +1

Dy —————=0,
x +(0°+6+1)

where x :Zx,. /n denotes the sample mean.
i=1

Since the ML estimator for ¢ does not provide
the closed-form solution, the non-linear equation
can be solved by the numerical iteration methods
such as Newton-Raphson, bisection, and Ragula-
Falsi methods. In this research, we use maxLik
package (18) with Newton-Raphson method for
ML estimation in the statistical software R.

The point estimator of the IOD can be
estimated by replacing the parameter 6 with the
ML estimator for 6 shown in Eq. (2.1).

Therefore, the point estimator of the IOD (K ) is
given by

0° +26° + 60" +96° +106° +80 + 2
é(é" +20°+50° +76° +70° + 6é+2)7

K=

where @ is the ML estimator for 6.
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3. Bootstrap Methods

In this paper, we focus on the three
bootstrap methods for estimating the confidence
interval for the IOD of the ZTPS distribution. In
practice, the popular bootstrap methods are the
percentile, the simple and the bias-corrected and
accelerated bootstrap methods. See the details of
some bootstrap methods in (19-20).

3.1 Percentile Bootstrap (PB) Method

The percentile bootstrap confidence
interval is the interval between the («/2)x100
and (1-(a/2))x100 percentiles of the
distribution of x estimates obtained from
resampling or the distribution of £&°, where x
represents a parameter of interest and « is the
level of significance (e.g., a = 0.05 for 95%
confidence intervals) (19, 21). A percentile
bootstrap confidence interval for x can be
obtained as follows:

1) B random bootstrap samples are
generated,

2) aparameter estimate & is calculated
from each bootstrap sample,

3) all B bootstrap parameter estimates
are ordered from the lowest to highest, and

4) the (1—)100% percentile bootstrap
confidence interval is given by

Cl, =&, %, . 3.1

where i%(t) represents the »" quantile of the set
of ordered quantiles from lowest to highest, 12(* 9

represents the s™ quantile of the same set,
r=[(@/2)B], s=[(1-(a/2)B],

[x1 is the ceiling function of x, and « is the

where

significance level. This study use B = 1,000 and
a = 0.05; the quantile corresponding to the
lower limit of confidence interval was

1%(*,,) :12(*25) (the 25th quantile) and that

corresponding to the upper limit was

Ki,) =Ko, (the 1975th quantile).

3.2 Simple Bootstrap (SB) Method
The simple bootstrap method is
sometimes called the basic bootstrap method and

is a method as easy to apply as the percentile
bootstrap method. Suppose that the quantity of
interest is x and that the estimator of x is K.
The simple bootstrap method assumes that the
distributions of K-x and K —K& are
approximately the same (22). The (1—)100%
simple bootstrap confidence interval for x is

Cly, =[ 2k~ K, 20 - £, (32)

where the quantiles 13(1) and 19:5) are the same

percentile of empirical distribution of bootstrap
estimates £ used in Eq. (3.1) for the percentile
bootstrap method.

3.3 Bias-Corrected and Accelerated Bootstrap
(BCa) Method

To overcome the over coverage issues
in percentile bootstrap confidence intervals, the
BCa bootstrap method corrects for both bias and
skewness of the bootstrap parameter estimates
by incorporating a bias-correction factor and an
acceleration factor (19, 21). The bias-correction
factor Z, is estimated as the proportion of the
bootstrap estimates less than the original
estimate value &, £, =@ (#{&" <&}/ B),
where @' is the inverse function of a standard
normal cumulative distribution function (e.g.,
®7(0.975)~1.96) and #1&" <K} represent

the number of times that £ is less than £ in
each replication. The acceleration factor d is
estimated through jackknife resampling (i.e.,
“leave one out” resampling), which involves
generating n replicates of the original sample,
where n is the number of observations in the
sample. The first jackknife replicate is obtained
by leaving out the first case (i=1) of the
original sample, the second by leaving out the
second case (i =2), and so on, until n samples

of size n—1 are obtained. For each of the

jackknife resamples, &_, is obtained. The

n
average of these estimates is & =Z/€H)/n.
i=1

Then, the acceleration factor @ is calculated as
follow,
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The values of Z, and 4, the values ¢, and «,

are calculated,

20t Zan

l—a(zo+za/2)} and
N Zo+z,_
a, =Dz, + A()A 1-a/2 ,
l—a(zo+zlfa,2)

where z,, is the o quantile of the standard

a :d){fo +

normal distribution (e.g. z, s, ® —1.96). Then,

the (1-a)100% BCa bootstrap confidence
interval for x is as follows

Ak A

Clye, =| KoK |» 3.3)

where j=[ B and k=[a,B].

4. Simulation Study

The confidence interval for the IOD of
a ZTPS distribution estimated via various
bootstrap methods was considered in this study.
Because a theoretical comparison is not possible,
a Monte Carlo simulation study was designed
using R version 4.2.2 (23) to cover cases with
different sample sizes (n = 10, 30, 50, 100 and
500). To cover over-dispersion and under-
dispersion cases, the true parameter (¢) was set
as 0.25, 0.5, 1, 1.5 and 2, then the index of
dispersion (x) were 4.7105, 2.5146, 1.2667,

0.8072 and 0.5784, respectively. B =1000
bootstrap samples of size n were generated from
the original sample and each simulation was
repeated 1,000 times. This paper used the
acceptance-rejection method (24) to generate
random variate with PA distribution. Without
loss of generality, the nominal confidence level
(1—«a) was set at 0.95. The performances of the

bootstrap methods were compared in terms of
their coverage probabilities and average lengths.
The one with a coverage probability greater than
or close to the nominal confidence level means
that it contains the true value and can be used to
precisely estimate the confidence interval for the
index of dispersion.

Table 1 Coverage probability and average length of the 95% confidence intervals for the IOD of the

ZTPS distribution.
" P « Coverage probability Average length
PB SB BCa PB SB BCa

10 0.25 4.7105 0.868 0.860 0.880 3.6878 3.6845 3.8709
0.5 2.5146 0.885 0.891 0.899 2.2686 2.2678 2.3697

1 1.2667 0.866 0.839 0.893 1.4459 1.4462 1.5207

1.5 0.8072 0.861 0.831 0.901 1.1167 1.1191 1.2086

2 0.5784 0.881 0.861 0.928 0.9119 0.9127 1.0152

30 0.25 4.7105 0.927 0.926 0.925 2.2936 2.2884 2.3485
0.5 2.5146 0.922 0.923 0.929 1.3644 1.3646 1.3943

1 1.2667 0.935 0.926 0.940 0.9188 0.9200 0.9421

1.5 0.8072 0.908 0.899 0.933 0.7185 0.7202 0.7462

2 0.5784 0.924 0.909 0.939 0.5962 0.5963 0.6255

50 0.25 4.7105 0.939 0.932 0.934 1.7956 1.7948 1.8229
0.5 2.5146 0.934 0.930 0.943 1.0749 1.0767 1.0920

1 1.2667 0.938 0.934 0.936 0.7232 0.7238 0.7351

1.5 0.8072 0.928 0911 0.935 0.5733 0.5728 0.5857

2 0.5784 0.920 0.903 0.940 0.4777 0.4770 0.4919

100 0.25 4.7105 0.945 0.941 0.941 1.2954 1.3005 1.3104
0.5 2.5146 0.948 0.948 0.944 0.7731 0.7721 0.7785

1 1.2667 0.935 0.937 0.940 0.5148 0.5153 0.5198

1.5 0.8072 0.941 0.937 0.941 0.4143 0.4147 0.4198

2 0.5784 0.944 0.923 0.947 0.3451 0.3443 0.3504
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" 0 « Coverage probability Average length
PB SB BCa PB SB BCa
500 0.25 4.7105 0.937 0.932 0.935 0.5795 0.5786 0.5790
0.5 2.5146 0.948 0.951 0.951 0.3489 0.3489 0.3499
1 1.2667 0.954 0.953 0.957 0.2325 0.2323 0.2329
1.5 0.8072 0.939 0.940 0.942 0.1856 0.1853 0.1859
2 0.5784 0.937 0.932 0.939 0.1555 0.1559 0.1562

The results of the study are reported in
Table 1. For n = 10, 30 and 50, the coverage
probabilities of the three methods tended to be
less than 0.95 and so did not reach the nominal
confidence level. All bootstrap methods had
coverage probabilities close to the nominal
confidence levels for large sample sizes
(n2>100). Additionally, the coverage probabilities

of all bootstrap methods were not significantly
different for these situations by testing with the
Kruskal-Wallis test (25) (H = 1.559, p-value =
0.459). Thus, as the sample size was increased,
the coverage probabilities of the methods tended
to increase and approach 0.95.

Moreover, the average length of the
methods decreased when the value of X was
decreased because of the relationship between
the variance and x (see Figure 2). As the sample
size was increased, the average lengths
decreased. For small sample sizes (n<50), the

average lengths of the PB and SB methods were
shorter than those of BCa method. For large
sample sizes (n>100), the average lengths of
all bootstrap methods were not significantly
different by testing with the Kruskal-Wallis test
(25) (H=0.237, p-value = 0.888).

30
1

10
o

Figure 2 The relationship between the value of
x and variance.

5. Numerical Examples

We used three real-world examples to
demonstrate the applicability of the bootstrap
methods for estimating the confidence interval
for the 10D of the ZTPS distribution.

5.1 The Unrest Events Example

The number of unrest events occurring
in the southern border area of Thailand from July
2020 to October 2022 collected by the Southern
Border Area News Summarises was used for this
example (the total sample size is 28). The
number of unrest events per month during this
time period in the five southern provinces of
Pattani, Yala, Narathiwat, Songkhla, and Satun
is reported in Table 2. For the Chi-squared
goodness-of-fit test (26), the Chi-squared
statistic was 3.9112 and the p-value was 0.3113.
Thus, a ZTPS distribution with §=0.3058 is
suitable for this dataset. The estimator of the
index of dispersion was 3.9311. Table 3 reported
the 95% confidence intervals for the index of
dispersion of the ZTPS distribution. The
estimated parameter 0 isnearto0.5. The results
correspond with the simulation results for
n =30 because the average lengths of the PB
and SB methods were shorter than those of the
BCa method.
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Table 2 The number of unrest events in the southern border area of Thailand.

Number of
Unrest Events 0 1 2 4 5 6 7 >8
Observed 0 3 | 5 3 5 ; ;
Frequency
Expected - 1778 2415 2968 2908 2699 2401 10.014
Frequency

Table 3 The 95% confidence intervals and corresponding widths using all intervals for the index of

dispersion in the unrest events example.

Methods Confidence Intervals Widths
PB (3.0907, 4.7974) 1.7067
SB (3.0430, 4.7706) 1.7276

BCa (3.0870, 4.8198) 1.7328

5.2 Demographic Example

Table 4 shows the demographic data
on the number of fertile mothers who have
experienced at least one child death (27). The
total sample size is 135. For Chi-squared
goodness-of-fit test, the Chi-squared statistic
was 3.1070 and the p-value was 0.2115. Thus,

the ZTPS distribution with 8= 1.9538 is

suitable for this dataset. The point estimator of
the index of dispersion is 0.5943. The 95%
confidence intervals for the index of dispersion
of the ZTPS distribution are reported in Table
5. The results correspond with the simulation
results for x=0.5784 and n = 100 because the
average lengths of the PB and SB methods
were shorter than those of the BCa method.

Table 4 The number of fertile mothers who have experienced at least one child death.

Number of Child Deaths 0 1 2 3 >4
Observed Frequency 0 89 25 11 10
Expected Frequency - 83.7792 32.0125 12.0731 7.1352

Table 5 The 95% confidence intervals and corresponding widths using all intervals for the index of

dispersion in the demographic example.

Methods Confidence Intervals Widths
PB (0.4322, 0.7626) 0.3187
SB (0.4272, 0.7551) 0.3279

BCa (0.4414, 0.7723) 0.3309

5.3 Flower Heads Example

The third dataset, shown in Table 6,
is the number of flower heads per the number
of fly eggs reported by (28); the total sample
size is 88. For the Chi-squared goodness-of-fit
test, the Chi-squared statistic was 3.3591 and
the p-value was 0.4996. Thus, a ZTPS

distribution with =0.7335 is suitable for

this dataset. The point estimator of the index
of dispersion is 1.7425. The 95% confidence
intervals for the index of dispersion of the
ZTPS distribution are reported in Table 7. The
results correspond with the simulation results
for k= 1.2667 and n = 100 because the
average lengths of the PB and SB methods
were shorter than those of the BCa method.

Table 6 The number of flower heads as per the number of fly eggs.

Number of Fly Eggs 0 1 3 4 5 >6
Observed Frequency 0 22 18 11 9 10
Expected Frequency - 26.2820 14.0933 9.6723  6.4694 11.6870
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Table 7 The 95% confidence intervals and corresponding widths using all intervals for the index of

dispersion in the flower heads example.

Methods Confidence Intervals Widths
PB (1.4867,2.0077) 0.5210
SB (1.4832,2.0072) 0.5240
BCa (1.4903, 2.0176) 0.5273
6. Conclusions and Discussion Acknowledgements
Three bootstrap confidence The author is thankful to the referees and the

intervals, namely PB, SB, and BCa methods,
of the IOD of the ZTPS distribution have been
introduced in this study. Based on the
simulation study, when the sample sizes were
10, 30, and 50, the coverage probabilities of all
three were substantially lower than 0.95. When
the sample size was large enough (i.c.,
n>100), the coverage probabilities and
average lengths using three bootstrap methods
were not markedly different. According to our
findings, the PB and SB methods provided the
shortest average length for small sample sizes
and parameter settings tested in the simulation
study. The wusefulness of the bootstrap
confidence  intervals  was illustrated
empirically using three applications to the
number of unrest events in the southern border
area of Thailand, the number of fertile mothers
who have experienced at least one child death,
and the number of flower heads as per the
number of fly eggs. Therefore, the PB and SB
methods are recommended to estimate the
confidence interval for the IOD of the ZTPS
distribution.

The limitation of the current study is
that none of the bootstrap confidence intervals
were exact. However, they would be
consistent, meaning that the coverage
probability ~ approaches  the  nominal
confidence level as the sample sizes get large.
In addition, three bootstrap confidence
intervals are computer intensive and not easy
to compute. However, there are numerous
available packages in R for computing the
bootstrap confidence intervals, such as boot
package (29), bootstrap package (30), semEff
package (31), and BootES package (33). Since
R is open-source, users are free to download
these packages. Future research could focus on
hypothesis testing for the IOD and the other
confidence intervals to compare with the
proposed bootstrap methods.

editor-in-chief for providing the useful
comments which improved the earlier draft of
the paper.

Declaration of conflicting interests

The authors declared that they have no
conflicts of interest in the research, authorship,
and this article's publication.

References

1. Zhang Z, Shafer D. Introductory
statistics: Flatworld Knowledge; 2014.

2. Kissell R, Poserina J. Optimal sports
math, statistics, and fantasy: Academic
Press; 2017.

3. Andrew FS, Michael, RW. Practical
business statistics: Academic Press;
2022.

4. Siegel AF. Practical business statistics:
Academic Press; 2016.

5. Sangnawakij P. Confidence interval for
the parameter of the zero-truncated
Poisson distribution. J Appl Sci. 2021;
20(2):13-22.

6. David F, Johnson N. The truncated
Poisson. Biometrics. 1952;8(4):275-85.

7. Hussain T. A zero truncated discrete
distribution: Theory and applications to
count data. Pak J Stat Oper Res.
2020;16(1):167-90.

8. Shanker R. The discrete Poisson-Shanker
distribution. Jacobs J Biostat. 2016;1(1):
1-7.

9. Shanker R. Shanker distribution and its
applications. Int J Stat Appl. 2015;5(6):
338-48;

10. Lindley DV. Fiducial distributions and
Bayes’ theorem. J R Stat Soc Ser B.
1958;20(1):102-7.

11. Ghitany ME, Al-Mutairi DK, Nadarajah
S.  Zero-truncated  Poisson-Lindley
distribution and its application. Math
Comput Simul. 2008;79(3):279-87.

Prog Appl Sci Tech

© 2023 Faculty of Science and Technology, RMUTT


https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech.2023; 13(2):17-25

25

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Shanker R. A zero-truncated Poisson-
Amarendra  distribution and  its
application. Int J Prob Stat. 2017a;
6(4):82-92.

Shanker R. Zero-truncated Poisson-
Akash distribution and its applications.
Am J Math Stat. 2017b;7(6):227-36.
Shukla KK, Shanker R, Tiwari MK.
Zero-truncated Poisson-Ishita
distribution and its application. J Sci Res.
2020;64(2):287-94.
Wikiwand, Index of
Available
https://www.wikiwand.com/en/
Index of dispersion (Accessed on 10
June 2023).

Wood M. Statistical inference using
bootstrap confidence intervals.
Significance. 2004;1(4):180-2.

Shanker R. A zero-truncated Poisson-
Shanker distribution and its applications.
Int J Stat Appl. 2017¢;7(3):159-69.
Henningsen A, Toomet O. maxLik: A
package for maximum likelihood
estimation in R. Comput Stat. 2011;
26(3):443-58.

DiCiccio TJ, Efron B. Bootstrap
confidence intervals. Stat Sci. 1996;
11(3):189-212.

Manoharan T, Arasan J, Midi H, Adam
MB. Bootstrap intervals in the presence
of left-truncation, censoring and
covariates with a parametric distribution.
Sains Malaysiana. 2017;46(12):2529-39.
Efron B, Tibshirani RJ. An introduction
to the bootstrap. New York: Chapman
and Hall; 1993.

Efron B. Better bootstrap confidence
intervals. J Am Stat Assoc. 1987,
82(397):171-85.

dispersion.
from:

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Meeker WQ, Hahn GJ, Escobar LA.
Statistical intervals: a guide for
practitioners and researchers. New York:
John Wiley and Sons; 2017.

Ihaka R, Gentleman R. R: a language for
data analysis and graphics. J Comput
Graph Stat. 1996;5(3):299-314.

Robert CP, Casella G. Monte Carlo
statistical methods, New York: Springer;
2004.

Kruskal WH, Wallis WA. Use of ranks in
one-criterion variance analysis. J Am Stat
Assoc. 1952;47(260):583-621.

Turhan NS. Karl Pearson’s chi-square
tests. Educ Res Rev. 2020;15(9):575-80.
Shanker R. Hagos F, Selvaraj, S. Yemane
A. On zero-truncation of Poisson and
Poisson-Lindley distributions and their
application. Biom Biostat Int J. 2015;

2(6):168-81.
Finney DJ, Varley GC. An example of the
truncated Poisson distribution,

Biometrics. 1955;11(3):387-94.

Canty A, Ripley B. boot: bootstrap R (S-
Plus) functions. R package version 1.3-
28.1,2022.

Kostyshak S. bootstrap: functions for the
book “An introduction to the bootstrap”.
R package version, 2019.6, 2022.
Murphy MV. semEff: automatic
calculation of effects for piecewise
structural equation models. R package
version 0.6.1, 2022.

Kirby KN, Gerlanc, D. BootES: an R
package for bootstrap confidence
intervals on effect sizes. Behav Res
Methods. 2013;45(4):905-27.

© 2023 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech.


https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

