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Abstract 
In this paper, we establish a new Q -matrix for Padovan numbers and the multiplies between 

the Q -matrix and the A -matrix. Moreover, we investigate the 
thn of 2Q , the 

thn  of 1Q  multiply the 

A -matrix, and the 
thn  of 2Q  multiply the A -matrix. Finally, we use these matrices to obtain 

elementary identities for Padovan, Perrin, and relations between numbers. 
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1. Introduction  

The Fibonacci  nF  and Lucas 

sequences  nL  are well–known sequences. 

For 2n  , the Fibonacci and Lucas sequences 

are defined respectively by 1 2n n nF F F− −= +  

and 1 2n n nL L L− −= + , with an initial value 

0 0F = , 1 1F = , 0 2L = , and 1 1L = . The 

Padovan  nP  and Perrin sequences  nR  are 

the favorable third-order sequences. For 3n  , 

the Padovan and Perrin sequences are defined 

respectively by 2 3n n nP P P− −= +  and 

2 3n n nR R R− −= + , with an initial value 

0 1 2 1P P P= = = , 0 3R = , 1 0R = , and 

2 2R = . The first few values of nP  and nR  are 

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16,… and 3, 0, 2, 3, 

2, 5, 5, 7, 10, 12, 17, 22, …., respectively (see 

(6)). 

In 1963, S. L. Basin and Verner E. 

Hoggatt, Jr. (1) studied the Fibonacci Q -matrix 

FQ , which is defined as 
1 1

1 0
FQ

 
=  
 

. After 

that, they showed that 
1

1

n nn

F

n n

F F
Q

F F

+

−

 
=  
 

, for 

all 1n  . Moreover, they obtained some 

identities of Fibonacci numbers. 

In 2013, Kritsana Sokhuma (3) studied 

the Padovan Q -matrix 1Q , defined as  

1

0 1 0

0 0 1

1 1 0

Q

 
 

=  
 
 

, (1.1) 

such that the 
thn  of Q -matrix is defined by 

5 3 4

1 4 2 3

3 1 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

− − −

− − −

− − −

 
 

=  
 
 

, for all 1n  . (1.2) 

Prog Appl Sci Tech. 2024; 14(1):82-86 

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index
https://doi.org/10.60101/past.2024.252531
https://dx.doi.org/10.14456/x0xx00000x


Prog Appl Sci Tech. 2024; 14(1):82-86 83 

© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech. 

Also, he obtained some identities of Padovan 

numbers (see (2, 4, 5)). 

The direction of this research and 

development inspired this study. We present the 

Padovan Q -matrix, along with finding these 

identities. Now, we define Padovan and Perrin 

numbers for negative subscripts as follows: 

3 2n n nP P P− −= −   and  3 2n n nR R R− −= − , (1.3) 

for all 3n  . 

2. Main results  

In this section, we first give them the 

new Padovan Q -matrix, which corresponds to 

the following definition: 

Definition 2.1 The Padovan Q -matrix 2Q  can 

be written as 

2

0 0 1

1 1 0

0 1 1

Q

 
 

=  
 
 

. (2.1) 

Next, we define the 3 3  matrix of  

A -matrix, which the component of the matrix 

consists of 0R , 1R , 2R , 3R , and 4R , as 

follows: 

Definition 2.2 The A -matrix can be written as 

3 2 0

0 3 2

2 2 3

A

 
 

=  
 
 

. (2.2) 

Now, we find the 
thn  of 2Q , which corresponds 

to the following theorem.  

Theorem 2.3 Let nP  be the Padovan sequences. 

For 1n  , we have  

2 5 2 3 2 4

2 2 4 2 2 2 3

2 3 2 1 2 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

− − −

− − −

− − −

 
 

=  
 
 

. (2.3)

 

Proof. We will be shown by mathematical 

induction that 

2 5 2 3 2 4

2 2 4 2 2 2 3

2 3 2 1 2 2

n n n

n

n n n

n n n

P P P

Q P P P

P P P

− − −

− − −

− − −

 
 

=  
 
 

for 

1n  . Since 
2

0 0 1

1 1 0

0 1 1

Q

 
 

=  
 
 

, it follows that 

1n =  is true. Assume that the result is true for 

the positive integer n k= . Then 

2 5 2 3 2 4

2 2 4 2 2 2 3

2 3 2 1 2 2

k k k

k

k k k

k k k

P P P

Q P P P

P P P

− − −

− − −

− − −

 
 

=  
 
 

. Now, we need 

to show that (2.3) also holds for 1n k= +  as 

follows: 
1

2

kQ +

2 2

kQ Q=  

2 5 2 3 2 4

2 4 2 2 2 3

2 3 2 1 2 2

0 0 1

1 1 0

0 1 1

k k k

k k k

k k k

P P P

P P P

P P P

− − −

− − −

− − −

  
  

=   
  
  

 

2 3 2 3 2 4 2 5 2 4

2 2 2 2 2 3 2 4 2 3

2 1 2 1 2 2 2 3 2 2

k k k k k

k k k k k

k k k k k

P P P P P

P P P P P

P P P P P

− − − − −

− − − − −

− − − − −

+ + 
 

= + + 
 + + 

 

2 3 2 1 2 2

2 2 2 2 1

2 1 2 1 2

k k k

k k k

k k k

P P P

P P P

P P P

− − −

− −

− +

 
 

=  
 
 

. 

Also, we find the 
thn  of 1Q  and 2Q , 

which multiplies the A -matrix, as shown in the 

following theorem.  

Theorem 2.4 Let nR  be the Perrin sequences. 

For 1n  , we have  

2 1

1 1 1 3 2

2 4 3

n n n

n n

n n n

n n n

R R R

AQ Q A R R R

R R R

+ +

+ + +

+ + +

 
 

= =  
 
 

, (2.4)

 

and 

2 2 2 2 1

2 2 2 1 2 3 2 2

2 2 2 4 2 3

n n n

n n

n n n

n n n

R R R

AQ Q A R R R

R R R

+ +

+ + +

+ + +

 
 

= =  
 
 

 (2.4) 
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Proof. We will be shown by mathematical 

induction that 

2 1

1 1 3 2

2 4 3

n n n

n

n n n

n n n

R R R

AQ R R R

R R R

+ +

+ + +

+ + +

 
 

=  
 
 

for 1n  . Since 
1

0 3 2

2 2 3

3 5 2

AQ

 
 

=  
 
 

, it follows 

that 1n =  is true. Assume that the result is true 

for the positive integer n k= . Then 

2 1

1 1 3 2

2 4 3

k k k

k

k k k

k k k

R R R

AQ R R R

R R R

+ +

+ + +

+ + +

 
 

=  
 
 

. Now, we need 

to show that (2.3) also holds for 1n k= +  as 

follows: 
1

1 1 1

k kAQ AQ Q+ =  

2 1

1 3 2

2 4 3

0 1 0

0 0 1

1 1 0

k k k

k k k

k k k

R R R

R R R

R R R

+ +

+ + +

+ + +

  
  

=   
  
  

 

1 1 2

2 1 2 3

3 2 3 4

k k k k

k k k k

k k k k

R R R R

R R R R

R R R R

+ + +

+ + + +

+ + + +

+ 
 

= + 
 + 

 

1 3 2

2 4 3

3 5 4

k k k

k k k

k k k

R R R

R R R

R R R

+ + +

+ + +

+ + +

 
 

=  
 
 

. 

The proof of 

2 1

1 1 3 2

2 4 3

n n n

n

n n n

n n n

R R R

Q A R R R

R R R

+ +

+ + +

+ + +

 
 

=  
 
 

 is 

similar to the above. Thus,  

2 1

1 1 1 3 2

2 4 3

n n n

n n

n n n

n n n

R R R

AQ Q A R R R

R R R

+ +

+ + +

+ + +

 
 

= =  
 
 

. 

The proof of (2.5) is similar to (2.4). The proof 

is complete. 

Finally, we find some identities of nP  

and nR . We also find some identities of the 

relations between nP  and nR , as shown in the 

following theorem. 

Theorem 2.5 For , 1n r  , Then 

(i)   ( )1det 1nQ = ,  

(ii)  3 2 2

3 5 2 4 1n n n n nP P P P P− − − − −+ +  

( )3 4 2 5 12 1n n n n nP P P P P− − − − −− + = , 

(iii)  4 4 5 2 4 3 3n r n r n r n rP P P P P P P+ − − − − − − −= + + , 

(iv) ( )2

4 2 3 4 2n r n r r rP P P P P− − − − − −= −

( )3 4 1 3 2n r r r rP P P P P− − − − −+ −  

( )2

4 2 3 1n r r rP P P P− − − −+ − . 

Proof. (i) Since ( )1det 1Q = , we have  

( ) ( ) ( )1 1det det 1 1
n nnQ Q= = = . (2.6) 

(ii) Since (1.2), we get  

( )1det nQ  

3 2 2

3 5 2 4 1n n n n nP P P P P− − − − −+ +=
 

( )3 4 2 5 12n n n n nP P P P P− − − − −− + . (2.7) 

By using (2.6) and (2.7), we get 
3 2 2

3 5 2 4 1n n n n nP P P P P− − − − −+ +  

 ( )3 4 2 5 12 1n n n n nP P P P P− − − − −− + = . 

(iii) Since 
1 1 1

n r n rQ Q Q+ = , we have 

5 3 4

4 2 3

3 1 2

n r n r n r

n r n r n r

n r n r n r

P P P

P P P

P P P

+ − + − + −

+ − + − + −

+ − + − + −

 
 
 
 
   

5 3 4 5 3 4

4 2 3 4 2 3

3 1 2 3 1 2

n n n r r r

n n n r r r

n n n r r r

P P P P P P

P P P P P P

P P P P P P

− − − − − −

− − − − − −

− − − − − −

  
  

=   
  
   . 

 (2.8) 

By using Matrix multiplication in (2.8), we get 

4 4 5 2 4 3 3n r n r n r n rP P P P P P P+ − − − − − − −= + + . 

(iv) Since ( )
1

1 1 1

n r n rQ Q Q
−

− = , we have  
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5 3 4

4 2 3

3 1 2

n r n r n r

n r n r n r

n r n r n r

P P P

P P P

P P P

− − − − − −

− − − − − −

− − − − − −

 
 
 
 
   

( )

5 3 4

4 2 3

1
3 1 2

1

det

n n n

n n nr

n n n

P P P

P P P
Q

P P P

− − −

− − −

− − −

 
 

=  
 
   

2 2

2 3 1 4 1 3 2 3 4 2

2 2

3 4 2 5 2 4 3 4 5 3

2

4 1 3 2 3 5 1 5 2 4 3

.

r r r r r r r r r r

r r r r r r r r r r

r r r r r r r r r r r

P P P P P P P P P P

P P P P P P P P P P

P P P P P P P P P P P

− − − − − − − − − −

− − − − − − − − − −

− − − − − − − − − − −

 
 
 
 

−

 − 

− −

− − −

− −

 

 (2.9) 

By using Matrix multiplication in (2.9), we get 

( )2

4 2 3 4 2n r n r r rP P P P P− − − − − −= −

( ) ( )2

3 4 1 3 2 4 2 3 1 .n r r r r n r r rP P P P P P P P P− − − − − − − − −+ − + −  

Thus, the identities of (i), (ii), (iii), and (iv) are 

easily seen. 

Corollary 2.6 For , 1n r  , Then  

(i)   ( )2det 1nQ = ,  

(ii)  3 2 2

2 3 2 5 2 2 2 4 2 1n n n n nP P P P P− − − − −+ +  

( )2 3 2 4 2 2 2 5 2 12 1n n n n nP P P P P− − − − −− + = , 

(iii)  2 2 4 2 2 2 4n r n rP P P+ − − −=  

2 4 2 5 2 3 2 3n r n rP P P P− − − −+ + , 

(iv)  ( )2

2 2 4 2 2 2 3 2 4 2 2n r n r r rP P P P P− − − − − −= −  

( )2 3 2 4 2 1 2 3 2 2n r r r rP P P P P− − − − −+ −  

( )2

2 4 2 2 2 3 2 1n r r rP P P P− − − −+ − . 

Proof. By using Theorem 2.3 and the property of 

a determinant ( ) ( )2 2det det
n

nQ Q= , then we 

obtained (i) and (ii). Similarly, by using 

Theorem 2.3 and the properties of the power 

matrix  
2 2 2

n r n rQ Q Q+ =  and the power matrix 

( )
1

2 2 2

n r n rQ Q Q
−

− = , then we obtained (iii) and (iv). 

Corollary 2.7 For , 1n r  , Then 

(i)  ( )1det 23nAQ = ,  

(ii) 1n rR + +  

( ) ( )4 3 5 2 1 43 2 3 2n n r n n rP P P P P P− − − − − −+ + +=  

( )3 2 33 2n n rP P P− − −+ + , 

(iii) 123 n rR − +  

2

4 2 3 3 23 3n r n r rP P P P P− − − − −= −
 

( )2 2

3 2 1 3 4 22 2n r n r r rP P P P P P− − − − − −+ + −  

1 3 13 4 4 3 3 13 3 2rn r r n n rr rP P P P P P P P P− − − −− − −− −+ − −
 

( ( ))2

2 3 3 2 4 2 13 2 3 2 .n r r r r r rP P P P P P P− − − − − − −+ − + − +  

Proof. By using Theorem 2.4 and the property of 

a determinant ( ) ( ) ( )1 1det det det
n

nAQ A Q= , 

then we obtained (i). Similarly, by using 

Theorem 2.4 and the properties of the power 

matrix 
1 1 1

n r n rAQ AQ Q+ =  and the power matrix 

( )
1

1 1 1

n r n rAQ AQ Q
−

− = , then we obtained (ii) 

and (iii). 

Corollary 2.8 For , 1n r  , Then 

(i)  ( )2det 23nAQ = ,  

(ii) 2 2 1n rR + +  

( ) ( )2 2 2 1 2 4 2 4 2 3 2 53 2 3 2n n r n n rP P P P P P− − − − − −+ + +=

( )2 3 2 2 2 33 2n n rP P P− − −+ + , 

(iii) 2 2 123 n rR − +  

2 2 2 3 2 2

2

2 4 2 33 3 rn r rnP P P P P− −−−−= −  

2

2 2

22 3 1 2 3 22 2 242 2 ( )n n r r rrP P P P P P− − − −− −+ + −  

2 3 2 1 2 3 2 1 2 3 2 3 2 12 4 2 43 3 2n r rr n r n r rP P P P P P P P P− − − − − − −− −+ − −  

2 2 2 3 2 3 2 2 2 21

2

2 4 2(3 2 (2 3 )).n r rr rrrP P P P P P P− − − − − − −+ − + −  

Proof. By using Theorem 2.4 and the property of 

a determinant ( ) ( ) ( )2 2det det det
n

nAQ A Q= , 

then we obtained (i). Similarly, by using 

Theorem 2.4 and the properties of the power 

matrix 
2 2 2

n r n rAQ AQ Q+ =  and the power matrix 

( )
1

2 2 2

n r n rAQ AQ Q
−

− = , then we obtained (ii) 

and (iii). 

Theorem 2.9 For , 1n r  , Then 

(i) 35 4 24 4 3n r nn r n r rr rP PP PP P P−− − −− −− −− −= ++ , 

(ii) 2 4nP −  

22 22 5 3 2 2 432 2 4 2 2 ,rn r rrr n rnP PP P PP − −− − − − −− −+= +  
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(iii) 1nR +  

( )5 4 33 2n r r rP P P− − − −+=  

( ) ( )3 3 2 4 2 13 2 3 2 ,n r r r n r r rP P P P P P− − − − − − − −+ + + +   

(iv) 2 1nR +  

( )2 2 5 2 4 2 33 2n r r rP P P− − − −= +  

( ) ( )2 2 3 2 3 2 2 2 2 4 2 2 2 13 2 3 2 .n r r r n r r rP P P P P P− − − − − − − −+ + + +  

Proof. Since 
1 1 1

n r n rQ Q Q −= , we have 

5 3 4

4 2 3

3 1 2

n n n

n n n

n n n

P P P

P P P

P P P

− − −

− − −

− − −

 
 
 
 
 

 

5 3 4 5 3 4

4 2 3 4 2 3

3 1 2 3 1 2

.

r r r n r n r n r

r r r n r n r n r

r r r n r n r n r

P P P P P P

P P P P P P

P P P P P P

− − − − − − − − −

− − − − − − − − −

− − − − − − − − −

  
  

=   
  
  

 

Thus, 

35 4 24 4 3n r nn r n r rr rP PP PP P P−− − −− −− −− −= ++ . 

The proof of (ii), (iii), and (iv) are similar to (i). 

Therefore, the identities of (i), (ii), (iii), and (iv) 

are easily seen. 

Corollary 2.10 For 1n  , Then 

(i)  2 4 2 11 2 72n n nP P P− − −+= , 

(ii) 41 82 5n n nR P P− −+ = + , 

(iii) 2 11 21 9 2 102 10 127 n nn nP P PR − −+ −= + + . 

Proof. Taking 3r =  in Theorem 2.9 (ii), (iii), 

and (iv), then we have (i), (ii), and (iii). 

Therefore, the identities of (i), (ii), and (iii) are 

easily seen. 

3. Conclusions  

In this paper, we establish the Q -

matrix and the multiplies between the Q -matrix 

and the A -matrix, which consist of Padovan and 

Perrin numbers. After that, we prove that the 
thn

of 2Q , the 
thn  of 1Q  multiply the A -matrix, 

and the 
thn  of 2Q  multiply the A -matrix to 

help find the elementary identities of the 

Padovan, Perrin, and the relations between 

numbers. Also, we get a particular case of some 

identities. 
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