
© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech

Research Article

Received: March 01, 2024

Revised: June 12, 2024

Accepted: Augst 26, 2024

DOI: 10.60101/past.2024.252733

Video Analytic for Human Management and

Security and FPGA Accelerated High Concurrency

Boonchom Sudjit1*, Somrak Petchartee2 and Maneesha Perera3
1 Faculty of Engineering and Architecture, Rajamangala University of

Technology Tawan-ok, Bangkok 10330, Thailand.
2 Digital Innovation Center Brownien Laboratory,

NT Telecom Public Company Limited 10210, Thailand
3 Research Assistance, Brownien Laboratory,

NT Telecom Public Company Limited 10210, Thailand

*E-mail: boonchom_su@rmutto.ac.th

Abstract

This paper explores the use of video analytics by leveraging accelerated FPGA technology in

combination with high-performance computing, specifically utilizing two Xilinx Alveo U50Lv cards

and one U55C card. While many applications exist for motion analysis and detection in videos, the use

of FPGAs in this context remains relatively scarce. FPGAs offer significant advantages in terms of

energy efficiency and throughput. We present results demonstrating the parallelism capabilities in terms

of the number of threads within a single Docker container that shares stack memory, as well as across

multiple Docker containers. When operating within a single Docker process, the application shares the

same memory space and resources, making it ideal for tasks that require efficient communication or

data sharing. In contrast, running in multiple containers isolates processes, each with its own

environment, and can significantly increase the number of threads. Our findings show that the

combination of these techniques offers optimal performance for video analytics.

Keywords: Video Analytic, FPGA Accelerated High Concurrency, Deep Neural Network

1. Introduction

Video Analytics is a concept that has

been gaining interest in both the academic and

industrial sectors. Continuous improvements in

video analytic have being used as key features in

integrated systems. The main goal of video

analytic is to automatically detect temporal

events in a video. Usually, video analytic is

perform on real-time videos where the main

focus is on the movement of objects in a specific

area.

Video analytic is used in many

industries such as healthcare, transportation, re-

tail, and security. This study mainly focuses on

video analytic for Human Management and

Security. Video Analytic for Human

Management and Security is a system for

evaluating and analyzing images captured by IP

surveillance cameras. According to the defined

functions, the system will send an alert as soon

as an occurrence is identified. This will be a

mechanism that will assist in the facilitation

process. and improve surveillance efficiency

Investigate numerous occurrences, which will

not only improve surveillance efficiency but will

also reduce the cost of managing the security

system in the long term. The defined functions

for this study will be introduced under the

features of AI of this paper.

Deep Neural Network (DNN) which is

a subsection of Artificial Intelligence (AI) is

used to train video analyzing systems and make

it possible for these systems to identify objects

and track their movements. Due to the

Prog Appl Sci Tech. 2024; 14(2):44-54

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index
https://doi.org/10.60101/past.2024.252733

Prog Appl Sci Tech. 2024; 14(2):44-54 45

© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech.

complexity of computations and logic in neural

networks, a Field-programmable gate array

(FPGA) chip-based system was used in this

study. The implementation and the speed-up

process of FPGAs will be discussed in detail in

the latter part of this paper.

FPGAs are comprised of

programmable logic elements systematically

arranged in a two-dimensional grid architecture.

These configurable regions encompass look-up

tables (LUTs), which are capable of realizing

specified truth tables. Recently, FPGAs have

been augmented with various hard intellectual

property (IP) modules, such as Intelligent

Processing Units (IPUs),

Deep Processing Units (DPUs),

DDR/HBM controllers, and additional platform-

specific IPs interspersed among the

programmable logic domains.

2. Application: Internal use in Company with

100 Cameras

Proposed system was implemented at

NT Telecom Head Office that includes 3 main

buildings namely, Auditorium building, Office

building, and Vehicle Park Building with 100

CCTV cameras. Since the number of CCTV

cameras are relatively high, using and managing

them to their maximum potential is challenging.

There-fore, it is necessary to install a high-

performance CCTV system. Here, we have

implemented a CCTV system of Pelco brand.

Control room of the CCTV cameras

are located at the Car Park building. We directed

the live video stream from Car Park building to

the Brownien Lab Research and Development

Center via fiber optics (Figure 1).

Figure 1 Network Configuration

We implemented the system in Python

and integrated it with a Xilinx Deep Processing

Unit (DPU) on a server equipped with two Xilinx

Alveo U50Lv cards and one U55C card. This

setup is capable of achieving a maximum design

frequency of 1,000 images per second. The

server is powered by a 128-core AMD EPYC

7V13 CPU operating at 2.45GHz.

3. Features of AI

3.1 Tripwire

Tripwire is nothing but a virtual line

which is used in areas that are needed to be

guarded and alert the user of any trespassers. In

order to detect trespassers accurately using AI,

first we trained the body’s data and created the

virtual line that prevents trespassing. Whenever

a person crosses this virtual line, there will be an

alert.

3.2 Enter and Exit

Enter and Exit is much similar to

Tripwire technique. According to the direction

the body moves, we can detect entering exiting.

This feature also uses a virtual line to detect and

alerts when a person enters or exits a forbidden

area (i.e. Fire exit door) as in Figures 2-3.

Figure 2 Alert when a person is crossing the

virtual line

Figure 3 A person entering a restricted area

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

46 Prog Appl Sci Tech. 2024; 14(2):44-54

Prog Appl Sci Tech © 2024 Faculty of Science and Technology, RMUTT

3.3 Body Detection

AI virtually detects a person walking

in the place of interest and sends the body value

to the API system. API system interprets the

detection that was captured by each camera. This

result conveys the number of people in a

particular area as in Figure 4.

Figure 4 Count of human bodies in

a monitored area

3.4 Head Detection

The head detection feature counts the

number of heads that pass a certain area.

Counting the number of heads will reveal the

number of people in that particular area (i.e., an

elevator). Obtaining the headcount is done by

cropping a person’s head virtually as in Figure 5.

However, there are few possibilities that AI

confuses anything black to be a head because

head cropping starts with black hair. To resolve

this issue, the crop-ping will be done from head

to the neck.

Figure 5 Count of human bodies in

a monitored area

3.5 Man down Detection

This feature helps to detect people

who need assistant in case of emergencies. From

this study, we realized in order to detect man

down situations, it is required to crop the image

of the person’s body, buttocks, or both knees,

landing on the ground as in Figure 6. Whenever

a man down situation occurs, the security

personnel will be notified and will assist the

person according to the emergency (i.e., contact

emergency vehicle, provide CPR).

Figure 6 Detection of a person who has fallen

3.6 Loitering

Loitering is a feature that is used to

detect suspicious activities. Loitering hap-pens

when a person stays within the area of interest

for a longer time. This will trigger the alarm and

security personals will take actions with using

the surveillance video as in Figure 7. In this

study we identified 12 loitering patterns.

However, due to the different intensities of the

sunlight, the detection was not up to the

standards. To resolve this problem, the training

was done in diverse lighting conditions.

Figure 7 Detection of a suspicious movement

of a person

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54 47

© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech.

The movement of the person is

measured from the centroid point to each point

along X and Y axis. Different algorithms were

used to calculate the movement in degrees

according to the walking pattern as shown in

Figure 8.

Figure 8 The x y graph shows the use of

centroid points to measure degrees.

3.7 Fire and Smoke Detection

Fire and smoke detection is one of the

commonly used features in video analytic. In

case of a fire, captured footage will be processed

using AI and AI will detect the smoke and flame

which triggers the fire alarm. To be able to

correctly detect the smoke and flame, it is

required to train the model with an image file and

a text file that does not contain any label data

(Figure 9).

Figure 9 Detection of fire

3.8 Unattended Object Detection

Unattended objects can be an act of

terrorism or an act of forgetfulness. This feature

will detect an object that has been left in a certain

area for a long time unattended and the body data

of the person who left the object as in Figures 10-

11. Security personal will be notified and actions

will be taken according to the situation.

Figure 10 A person entering and leaving an

object

Figure 11 Detection of an unattended object

4. Architecture

Concurrency occurs when multiple

tasks are progressing at the same time.

Generally, concurrency is achieved by

interconnecting two or more processors. High

concurrency is aimed at enhancing the

performance of tasks (i.e., video analyzing and

detection) to obtain fast and accurate results.

This is known as High-Performance Computing

(HPC) (1). HPC has many benefits compared to

the traditional computing. HPC often integrated

with AI and as a result of this integration,

capabilities of researches are widening

exponentially. High concurrent AI computing

includes training and testing AI algorithms and

optimizing their performances using different

architectures. Training AI models is a multi-

staged and iterative task. Based on its local data

collection, each iterative step calculates

parameters. This iterative parameter update

process continues until the target model

accuracy is reached (2). The main benefit of

concurrency is that many tasks cab be progressed

at the same time which leads to fast obtaining of

the updated parameters. Computed nodes

communicate with each other and synchronizes

to complete a given task. Therefore,

communication and synchronizations are key

factors that should be included when using

concurrency. Novel contributions of HPC and AI

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

48 Prog Appl Sci Tech. 2024; 14(2):44-54

Prog Appl Sci Tech © 2024 Faculty of Science and Technology, RMUTT

integration have generated many promising

results. These studies prove the efficiency of the

integration. Daeyong Jung et al. (3) developed a

management approach for data synchronization

and heterogeneous cluster computing with

multiple compute nodes. Various Windows Sub-

system for Linux were used in the memology

(WSL) package. For Son of Grid Engine, the

cluster scheduler engine was employed (SGE).

The manager synchronizes with the Linux

daemon under specified conditions and the

Manager supervises the jobs that synchronize the

data in SGE. Sangdo Lee et al. (4) investigated

previous cyber-attack incidents and hacking

efforts that targeted nuclear power plants. They

recommended a security measure based on the

study to protect against previous attack

incidences and the mechanism of large data

exploding in the attacks. Yin et al. (5) addressed

the issue of increased operating speed and

regular engines in finite-state automata-based

deep packet inspection systems in order to

reduce memory usage. The authors looked at the

limitations of using finite automata as well as its

key feature. They enhanced the non-

deterministic finite automata (NFA) based on the

analysis to reduce memory use by lowering the

conversion edge. Hwang et al. (6) presented the

importance of AI for the Internet of things (IoT)

in preserving huge data in a variety of domains,

including smart transportation, health- care,

large-scale deployments, infrastructure

management, and smart homes manufacturing,

home automation and etc. They proposed a

network clock paradigm for time awareness in

IoT and cloud integration AI. The suggested

system was put to the test using a MICAz-

compatible test platform. Sensor nodes, and the

results of the experimental assessment revealed

that the any AI application can use IoT devices

to supply and maintain a standard timestamp.

Above mentioned studies successfully

performed the relevant task and obtained

efficient results which proves the consistency of

HPC in AI. However, there are several

drawbacks in HPC and AI clusters due to the

network. Network plays a major role in

distributed compute and storage architecture.

Due to their iterative, intensive, frequent, and

synchronous communication, distributed AI and

HPC systems will aggravate network

infrastructure necessity. The performance of

distributed systems is heavily influenced by

network infrastructure bandwidth, latency,

congestion management, dependability, and a

variety of other factors (7). Some of these factors

will be discussed briefly.

Network latency. Network latency is

the time that it takes data or requests to transmit

from the source to the destination. There are two

types: Static Latency and Dynamic Latency.

Static latency is associated with switch

forwarding latency and optical /electrical

transmission latency while Dynamic latency is

associated with queuing delay, flow completion

time, tail latency, packet drop, burst and

microbursts. Incast and Bursts. The frequent

incast traffic patterns created by AI and HPC

distributed systems place strain on network

infrastructure, producing congestion and

substantial latency spikes. As for the bursts, they

occur due to the communication between AI

layers in order to obtain the task completion.

These bursts fill the free space in net-work node

queues and increases the queuing time which

leads to the communication latency. Flow

Completion Time (FCT) and Tail Latency. Since

bursts increases the queue time, the time that task

to be completed will also increase. Some tasks

depend on the results of previous tasks and since

the completion of the previous tasks are delayed,

tail latency will be created. Tail latency is the

latency of the fraction of the flows that take the

longest to complete. In a nutshell, HPC and AI

are systems that require a lot of compute and

storage. While concurrency allows these

algorithms to reach their full potential, it also

puts a lot of strain on network operations. In

order to meet the needs of HPC and AI clusters,

network infrastructure must expand beyond

traditional architecture.

4. Methodology

The extensive utilization of various

artificial intelligence (AI) applications,

particularly deep neural networks (DNNs),

underscores the necessity for specialized

hardware solutions. Conventional computer

systems face significant challenges in terms of

data processing speed and scalability. Domain-

specific designs provide superior energy

efficiency and performance improvements

compared to general-purpose processors, with

the general aim of improving throughput and

energy efficiency.

Consequently, leading players in the

data center market are progressively

incorporating FPGA System-on-Chip (SoC) into

their infrastructure to address sophisticated AI

applications. Notable companies such as

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54 49

© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech.

Microsoft, Amazon Web Services, and Baidu are

expanding their AI and high-performance

application capabilities across hundreds of

thousands of Intel and Xilinx FPGA devices (8, 9).

5. Result: FPGA Speeding up Processing

As implementations of AI grows

larger, the complexity of computations grows

too. As a result, the necessity to speed up

microprocessors has become prominent.

Compared to the traditional GPU, FPGA has an

advantage in speeding up the process in

computing. FPGAs have achieved large

speedups for a wide variety of application. This

section aims to discuss the contribution of

FPGAs. This study uses a HPC system which

allows multiple microprocessors and multiple

FPGAs to be embedded to the system to enhance

the overall performance. FPGA accommodates a

variety of parallel computer applications and can

be implemented in a single clock cycle (10).

Moreover, re- programmable FPGAs provide

on-chip capability for a variety of applications.

The memory access bandwidth of co-processor

logic is not limited by the number of I/O pins

available in the devices due to the presence of

on-chip memory (11 – 19).

Tobias (20) introduced a methodology

for partitioning Convolutional Neural Networks

(CNNs) and Deep Neural Networks (DNNs)

across multiple FPGAs; however, this approach

lacks generalizability across diverse workloads.

Alternative methodologies, such as those

discussed in (21), exploit latency insensitivity to

facilitate the partitioning of designs across

multiple FPGAs. These approaches, however,

necessitate that the user manually define

module-to-FPGA mappings at the Register-

Transfer Level (RTL) and conduct simulation-

based evaluations. The integration of High-

Level Synthesis (HLS) frontends with

automatically partitioned designs could

significantly broaden FPGA adoption among

users with diverse technical backgrounds.

An example of utilizing the Yolo

model within the Xilinx toolkit can be observed

through the segmentation of the model's

operations across different hardware

components. The first segment, responsible for

accessing images, operates on the processor. The

second segment, which handles image

processing, runs on the Program Logic (PL). The

third segment operates in the Deep Learning

Processor Unit (DPU), which is also developed

on the PL, as illustrated in Figure 12.

Figure 12 Yolov8 Implementation on FPGA

5.1 FPGA vs. GPU

When implementing FPGA and GPU

in Binary Convolutional Neural Network

separately, we can witness FPGA outperforming

GPU in every aspect. In terms of Through-

put/FPS (Figure 13) shows that FPGAs offer

more promising results than GPU across the

board. Furthermore, in terms of Energy

Efficiency/W, FPGAs achieve more compelling

results compared to GPU.

Figure 13 FPGA vs. GPU

Throughput and energy efficiency comparison

with GPU and FPGA implementations

(Binary Convolution) (22)

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

50 Prog Appl Sci Tech. 2024; 14(2):44-54

Prog Appl Sci Tech © 2024 Faculty of Science and Technology, RMUTT

5.2 Speed-up Process

Customized, application specific

accelerator cores are common in FPGA designs.

Compared to the regular cores, Accelerator cores

are largely synchronous circuits with a strict

clock period timing limitation. They are, on the

other hand, nearly often built by a system

designer for a specific application and are

utilized to set the system apart from other

systems. A designer should be able to swiftly and

simply develop high-performance custom cores,

conduct a design space exploration of viable

designs, and integrate them into their systems in

a short amount of time.The foundational

implementation facilitates the exchange of

messages between the global memory of

interconnected FPGAs arranged in a ring

topology via PCIe. Additionally, it utilizes the

Xilinx SDK to read from and write to a memory

buffer that represents the message, thereby

enabling communication between the FPGA and

the host system.

We implemented the system in Python

and integrated it with a Xilinx Deep Processing

Unit (DPU) on a server equipped with two Xilinx

Alveo U50Lv cards and one U55C card. This

setup is capable of achieving a maximum design

frequency of 1,000 images per second. The

server is powered by a 128-core AMD EPYC

7V13 CPU operating at 2.45GHz.

6. Speed Verify and Improve

Indeed, executing a quantized model

on an FPGA (Field-Programmable Gate Array)

can lead to significant performance

improvements, especially for applications

requiring low latency and high throughput.

FPGAs are particularly well-suited for running

quantized models due to their reconfigurable

nature and efficient handling of parallel tasks.

FPGAs can be configured to perform specific

operations in an optimized manner. For

quantized models, this means that the

computations can be executed very efficiently,

often outperforming general-purpose CPUs and

always even GPUs. Quantized models use lower

precision arithmetic (like INT8), which FPGAs

can handle more efficiently than floating-point

operations. This leads to faster computations and

reduced power consumption as in Figure 14.

Figure 14 Inference Rate Test

Table 1 Under 250, 500 and 1,000 Test Image

VS Number of Thread, With 1,000 Class Model

Thread Count Second FPS

1 1000 7.7 129.9

2 500 7.9 126.6

3 250 5.6 131.6

3 1000 8.3 120.5

Table 1 presents the results of AI

inference speed tests, highlighting variations in

performance across different configurations. The

tests were conducted with varying numbers of

threads and test images, measuring the time

taken (in seconds) and the resulting frames per

second (FPS) for inference. Thread 1: With

1,000 test images, the inference time was 7.7

seconds, resulting in an FPS of 129.9. Thread 2:

For 500 test images, the inference time was 7.9

seconds, achieving an FPS of 126.6. Thread 3:

When processing 250 test images, the inference

time increased to 5.6 seconds, with an FPS of

131.6. Additionally, when the number of test

images was raised to 1,000, the inference time

was 8.3 seconds, resulting in an FPS of 120.5.

These results indicate how the number of threads

and test images impact the inference speed and

efficiency of the AI system. Notably, increasing

the number of test images does not linearly affect

the inference time and FPS, suggesting complex

interactions between the system's workload and

its performance capabilities.

FPGAs excel in parallel processing,

allowing them to execute multiple operations of

a quantized model simultaneously. This is

particularly advantageous for the parallel nature

of neural network computations. In Figure 15, A

speed testing a model with 1,000 classes on

1,000 images using one terminal. When using a

CPU to manage the execution of tasks on an

FPGA and to retrieve results, the orchestration

typically involves a certain number of software

threads. These threads are responsible for

handling the communication between the CPU

and FPGA, including sending data to the FPGA

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54 51

© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech.

for processing, initiating the execution of the

model on the FPGA, and receiving the processed

results back. Managing these threads effectively

is crucial for optimal performance, particularly

for inference tasks in deep learning. The number

of threads can impact the efficiency of the

system. Too few threads might underutilize the

FPGA's capabilities, while too many threads can

lead to overhead and contention, potentially

slowing down the system.

Figure 15 Simplified diagram of the system architecture

Table 2 Under 1,000 Test Image VS Number of

docker container, With 1,000 Class Model

Terminal Terminal FPS/terminal FPS

1 7.6 131.5789474 131.6

2 8.1 123.4567901 246.9

3 8.3 120.4819277 361.4

Table 2, a speed test on a model with

1,000 classes, using 1, 2, and 3 terminals to test

250 images per terminal. The number of threads

can impact the efficiency of the system. Too few

threads might underutilize the FPGA's

capabilities, while too many threads can lead to

overhead and contention, potentially slowing

down the system.

7. AI Model Theory and Contribution

Figure 16, there was an issue or error

encountered during the process of quantization

that affected the computational graph of the

model. Quantization is the process of reducing

the precision of the weights and activations of a

neural network, typically from floating-point to

lower-bandwidth integers, for example, from 32-

bit floating-point to 8-bit integers. This process

is crucial for deploying models on resource-

constrained devices like mobile phones or

embedded systems, as it reduces the model size

and increases inference speed while aiming to

maintain accuracy.

Figure 16 Broke Graph during Quantization

Graphs in the context of deep learning

models refer to a structured representation of the

model itself, or to the use of graph-based data

structures in deep learning algorithms as in

Figure 17.

Figure 17 The inherently possesses a network

structure

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

52 Prog Appl Sci Tech. 2024; 14(2):44-54

Prog Appl Sci Tech © 2024 Faculty of Science and Technology, RMUTT

We encountered a situation where the

computational graph of a deep learning model

broke during quantization, possibly due to the

absence of a library or specific functionality

needed to handle the quantization process

correctly. This issue can occur when the

quantization library or the method used does not

fully support all the operations or layers in your

model. Carefully review the model to identify

which specific operations or layers are not

supported by the quantization library.

Figure 18 FPGA and CPU execution with Data

Transfer and Synchronization.

If a small part of the model is causing

issues, consider partially quantizing the model.

Quantize only the layers that are supported as in

Figure 18, leaving the problematic layers in their

original precision. This approach can still offer

some benefits in terms of model size and

performance, albeit less than full quantization.

Using a fallback to partial quantization and

processing unsupported operations on the CPU

is a practical approach when dealing with a

model where not all components can be

quantized. This strategy allows you to leverage

the benefits of quantization for the parts of the

model that are compatible while still maintaining

the overall functionality by executing the

unsupported operations on the CPU. Profile the

model to identify bottlenecks. In some cases, the

CPU-bound operations might become the

bottleneck, and further optimization might be

necessary, such as parallelizing certain

computations or optimizing the CPU-bound

code.

Figure 19 FPGA and CPU execution with Data

Transfer and Synchronization.

In Figure 19, implement efficient data

transfer mechanisms between the CPU and

FPGA. This step is crucial to minimize the

performance hit due to data transfer between

different processing units. Ensure proper

synchronization between the operations running

on different hardware. The output from one part

of the model should seamlessly feed into the

next, maintaining the integrity and flow of the

computation. The effective-ness of this approach

can depend on the specific hardware capabilities

and the nature of the model. Some devices might

have powerful CPUs that can handle the non-

quantized operations without significantly

impacting overall performance. Create a hybrid

execution plan where the quantized and non-

quantized parts of the model are handled

differently. The quantized parts can run on

specialized hardware (like a FPGA or TPU),

optimized for low-precision computations, while

the non-quantized parts run on the CPU.

Running multiple Docker containers to

parallelize the execution of the same quantized

model on an FPGA can indeed increase

throughput and efficiency, especially under a

Linux environment. This approach leverages

containerization to isolate and manage multiple

instances of the model running concurrently.

Here are some key points to consider when

implementing this strategy: Each Docker

container acts as an isolated environment,

running its own instance of the application (in

this case, the inference model). This isolation

helps in managing dependencies and ensuring

that each instance runs in a consistent

environment. By running multiple containers,

you can effectively parallelize the workload.

Each container can handle separate inference

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54 53

© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech.

requests, thereby increasing the overall

throughput of the system. The degree of

parallelization will depend on the FPGA's

capabilities and how well it handles concurrent

execution. It's important to manage the resources

(like memory and compute time) allocated to

each container to ensure efficient operation. The

FPGA must be capable of handling the combined

load from all containers. Overloading the FPGA

could lead to reduced performance or system

instability. Some FPGAs support virtualization,

allowing them to be shared among multiple

applications or containers. This can be a complex

process but is beneficial for maximizing

resource utilization. Ensure that your FPGA and

its driver support such virtualization. In

summary, using Docker containers to parallelize

the execution of a quantized model on an FPGA

can significantly enhance throughput and

efficiency. However, it requires careful planning

in terms of resource allocation, load balancing,

container management, and ensuring that the

FPGA can handle the concur-rent execution

load. This approach is particularly useful in

scenarios where high scalability and isolation

between different inference tasks are required.

Finally, the results from improving the AI model

in the experiment inspired researchers to realize

the effort and capability required to completely

convert a model trained on a 32-bit GPU to work

on an 8-bit FPGA. In cases where certain layers

of the model cannot be converted, it will be

necessary for those layers to be processed on the

CPU instead. This presents a significant

challenge.

Acknowledgements

This research was made possible with the

support of the Research and Development

Department at Brownien Laboratory, and we

extend our gratitude for their invaluable

contributions. We also acknowledge the use of

resources provided by NT Tele-com PCL, which

were instrumental in the completion of this

study. Additionally, this project was supported

by FPGA hardware (U55C) provided by Xilinx,

whose technological assistance was crucial to

our research endeavors.

Declaration of Conflicting Interests

The authors declared that they have no conflicts

of interest in the research, authorship, and this

article's publication.

References

1. Yi G, Loia V. High-performance

computing systems and applications for AI.

2019.

2. Ferro M, Kloh VP, de Paula FB, Schulze B.

Artificial Intelligence and High

Performance Computing Convergence.

2019.

3. Jung D, Lee D, Kim M, Kim J. Efficient

data synchronization method on integrated

computing environment. 2018

4. Lee S, Huh JH. An effective security

measures for nuclear power plant using big

data analysis approach. 2018.

5. Yin C, Wang H, Yin X, Sun R, Wang J.

Improved deep packet inspection in data

stream detection. 2018.

6. Hwang S. A network clock model for time

awareness in the Internet of things and

artificial intelligence applications. 2019.

7. Hu S, Zhu Y, Cheng P, Guo C, Tan K,

Padhye J, et al. Deadlocks in Datacenter

Networks: Why Do They Form, and How to

Avoid Them. Microsoft, Hong Kong

University of Science and Technology.

8. Alveo U55C High Performance Compute

Card. Available from:

https://www.xilinx.com/products/boards-

and-kits/alveo/u55c.html#specifications.

9. Keller AM, Wirthlin MJ. Impact of Soft

Errors on Large-Scale FPGA Cloud

Computing. In: ACM/SIGDA International

Symposium on Field-Programmable Gate

Arrays (FPGA). New York, NY, USA:

Association for Computing Machinery;

2019. p. 272–81. Available from:

https://doi.org/10.1145/3289602.3293911.

10. Buell D, El-Ghazawi T, Gaj K, Kindratenko

V. High-Performance reconfigurable

computing. IEEE Computer Society. 2007

Mar.

11. Altera Cooperation White Paper.

Accelerating high performance computing

with FPGAs. 2007 Oct.

12. Kumbhar DD, Je Y, Hong S, Lee D, Kim H,

Kwon MJ, et al. Molecularly

Reconfigurable Neuroplasticity of Layered

Artificial Synapse Electronics. Adv Funct

Mater. 2024;2311994.

13. Liu X, Wang R, Shi C, Zou C, Zhu W.

Computing Acceleration to Genome-Wide

Association Study Based on CPU/FPGA

Heterogeneous System. ACM SIGAPP

Appl Comput Rev. 2024;23(4):16-26.

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

54 Prog Appl Sci Tech. 2024; 14(2):44-54

Prog Appl Sci Tech © 2024 Faculty of Science and Technology, RMUTT

14. Li Y, Han D, Cui M, Yuan F, Zhou Y.

RESNETCNN: An abnormal network

traffic flows detection model. Comput Sci

Inf Syst. 2023;(00):4-4.

15. Hussen N, Elghamrawy SM, Salem M, El-

Desouky AI. A Fully Streaming Big Data

Framework for Cyber Security based on

Optimized Deep Learning Algorithm. IEEE

Access. 2023.

16. Sultan MT, El Sayed H. QoE-aware

analysis and management of multimedia

services in 5G and beyond heterogeneous

networks. IEEE Access. 2023.

17. Zhang L, Yang J, Wang T, Sun Z, Sun K,

Zeng J. Event Building Algorithm in a

Distributed Stream Processing Data

Acquisition Platform: D-Matrix. IEEE

Trans Nucl Sci. 2023;70(2):105-12.

18. Jayashankara M, Shah P, Sharma A,

Chanak P, Singh SK. A Novel Approach for

Short-Term Energy Forecasting in Smart

Buildings. IEEE Sens J. 2023;23(5):5307-

14.

19. Potnurwar AV, Bongirwar VK, Ajani S,

Shelke N, Dhone M, Parati N. Deep

Learning-Based Rule-Based Feature

Selection for Intrusion Detection in

Industrial Internet of Things Networks. Int

J Intell Syst Appl Eng. 2023;11(10s):23-35.

20. Alonso T, Petrica L, Ruiz M, Petri-Koenig

J, Umuroglu Y, Stamelos I, et al. Elastic-

DF: Scaling Performance of DNN

Inference in FPGA Clouds through

Automatic Partitioning. ACM Trans

Reconfigurable Technol Syst. 2021

Dec;15(2).

21. Agiakatsikas D, Foutris N, Sari A, et al.

Evaluation of Xilinx Deep Learning

Processing Unit under Neutron Irradiation.

In: 21st European Conference on Radiation

and Its Effects on Components and Systems

(RADECS); 2021 Sep 13-17.

22. Li Y, Liu Z, Xu K, Yu H, Ren F. A GPU-

outperforming FPGA accelerator

architecture for binary convolutional neural

networks. ACM J Emerg Technol Comput

Syst. 2018;14(2):1-16.

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

