
© 2024 Faculty of Science and Technology, RMUTT Prog Appl Sci Tech 

  

Research Article 

Received: March 01, 2024 

Revised: June 12, 2024 

Accepted: Augst 26, 2024 

  

DOI: 10.60101/past.2024.252733 

  

Video Analytic for Human Management and 

Security and FPGA Accelerated High Concurrency 

Boonchom Sudjit1*, Somrak Petchartee2 and Maneesha Perera3 
1 Faculty of Engineering and Architecture, Rajamangala University of  

Technology Tawan-ok, Bangkok 10330, Thailand. 
2 Digital Innovation Center Brownien Laboratory, 

NT Telecom Public Company Limited 10210, Thailand 
3 Research Assistance, Brownien Laboratory,  

NT Telecom Public Company Limited 10210, Thailand 

*E-mail: boonchom_su@rmutto.ac.th 

Abstract 

This paper explores the use of video analytics by leveraging accelerated FPGA technology in 

combination with high-performance computing, specifically utilizing two Xilinx Alveo U50Lv cards 

and one U55C card. While many applications exist for motion analysis and detection in videos, the use 

of FPGAs in this context remains relatively scarce. FPGAs offer significant advantages in terms of 

energy efficiency and throughput. We present results demonstrating the parallelism capabilities in terms 

of the number of threads within a single Docker container that shares stack memory, as well as across 

multiple Docker containers. When operating within a single Docker process, the application shares the 

same memory space and resources, making it ideal for tasks that require efficient communication or 

data sharing. In contrast, running in multiple containers isolates processes, each with its own 

environment, and can significantly increase the number of threads. Our findings show that the 

combination of these techniques offers optimal performance for video analytics. 
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1. Introduction 

Video Analytics is a concept that has 

been gaining interest in both the academic and 

industrial sectors. Continuous improvements in 

video analytic have being used as key features in 

integrated systems. The main goal of video 

analytic is to automatically detect temporal 

events in a video. Usually, video analytic is 

perform on real-time videos where the main 

focus is on the movement of objects in a specific 

area. 

Video analytic is used in many 

industries such as healthcare, transportation, re-

tail, and security. This study mainly focuses on 

video analytic for Human Management and 

Security. Video Analytic for Human 

Management and Security is a system for 

evaluating and analyzing images captured by IP 

surveillance cameras. According to the defined 

functions, the system will send an alert as soon 

as an occurrence is identified. This will be a 

mechanism that will assist in the facilitation 

process. and improve surveillance efficiency 

Investigate numerous occurrences, which will 

not only improve surveillance efficiency but will 

also reduce the cost of managing the security 

system in the long term. The defined functions 

for this study will be introduced under the 

features of AI of this paper. 

Deep Neural Network (DNN) which is 

a subsection of Artificial Intelligence (AI) is 

used to train video analyzing systems and make 

it possible for these systems to identify objects 

and track their movements. Due to the 
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complexity of computations and logic in neural 

networks, a Field-programmable gate array 

(FPGA) chip-based system was used in this 

study. The implementation and the speed-up 

process of FPGAs will be discussed in detail in 

the latter part of this paper. 

FPGAs are comprised of 

programmable logic elements systematically 

arranged in a two-dimensional grid architecture. 

These configurable regions encompass look-up 

tables (LUTs), which are capable of realizing 

specified truth tables. Recently, FPGAs have 

been augmented with various hard intellectual 

property (IP) modules, such as Intelligent 

Processing Units (IPUs),  

Deep Processing Units (DPUs), 

DDR/HBM controllers, and additional platform-

specific IPs interspersed among the 

programmable logic domains. 

2. Application: Internal use in Company with 

100 Cameras 

Proposed system was implemented at 

NT Telecom Head Office that includes 3 main 

buildings namely, Auditorium building, Office 

building, and Vehicle Park Building with 100 

CCTV cameras. Since the number of CCTV 

cameras are relatively high, using and managing 

them to their maximum potential is challenging. 

There-fore, it is necessary to install a high-

performance CCTV system. Here, we have 

implemented a CCTV system of Pelco brand. 

Control room of the CCTV cameras 

are located at the Car Park building. We directed 

the live video stream from Car Park building to 

the Brownien Lab Research and Development 

Center via fiber optics (Figure 1). 

 

Figure 1 Network Configuration 

We implemented the system in Python 

and integrated it with a Xilinx Deep Processing 

Unit (DPU) on a server equipped with two Xilinx 

Alveo U50Lv cards and one U55C card. This 

setup is capable of achieving a maximum design 

frequency of 1,000 images per second. The 

server is powered by a 128-core AMD EPYC 

7V13 CPU operating at 2.45GHz. 

3. Features of AI 

3.1 Tripwire 

Tripwire is nothing but a virtual line 

which is used in areas that are needed to be 

guarded and alert the user of any trespassers. In 

order to detect trespassers accurately using AI, 

first we trained the body’s data and created the 

virtual line that prevents trespassing. Whenever 

a person crosses this virtual line, there will be an 

alert.  

3.2 Enter and Exit 

Enter and Exit is much similar to 

Tripwire technique. According to the direction 

the body moves, we can detect entering exiting. 

This feature also uses a virtual line to detect and 

alerts when a person enters or exits a forbidden 

area (i.e. Fire exit door) as in Figures 2-3. 

 

Figure 2 Alert when a person is crossing the 

virtual line 

 

Figure 3 A person entering a restricted area 
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3.3 Body Detection 

AI virtually detects a person walking 

in the place of interest and sends the body value 

to the API system. API system interprets the 

detection that was captured by each camera. This 

result conveys the number of people in a 

particular area as in Figure 4.  

 

Figure 4 Count of human bodies in  

a monitored area 

3.4 Head Detection 

The head detection feature counts the 

number of heads that pass a certain area. 

Counting the number of heads will reveal the 

number of people in that particular area (i.e., an 

elevator). Obtaining the headcount is done by 

cropping a person’s head virtually as in Figure 5. 

However, there are few possibilities that AI 

confuses anything black to be a head because 

head cropping starts with black hair. To resolve 

this issue, the crop-ping will be done from head 

to the neck. 

 

Figure 5 Count of human bodies in  

a monitored area 

3.5 Man down Detection 

This feature helps to detect people 

who need assistant in case of emergencies. From 

this study, we realized in order to detect man 

down situations, it is required to crop the image 

of the person’s body, buttocks, or both knees, 

landing on the ground as in Figure 6. Whenever 

a man down situation occurs, the security 

personnel will be notified and will assist the 

person according to the emergency (i.e., contact 

emergency vehicle, provide CPR). 

 

Figure 6 Detection of a person who has fallen 

3.6 Loitering 

Loitering is a feature that is used to 

detect suspicious activities. Loitering hap-pens 

when a person stays within the area of interest 

for a longer time. This will trigger the alarm and 

security personals will take actions with using 

the surveillance video as in Figure 7. In this 

study we identified 12 loitering patterns. 

However, due to the different intensities of the 

sunlight, the detection was not up to the 

standards. To resolve this problem, the training 

was done in diverse lighting conditions. 

 

Figure 7 Detection of a suspicious movement 

of a person 
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The movement of the person is 

measured from the centroid point to each point 

along X and Y axis. Different algorithms were 

used to calculate the movement in degrees 

according to the walking pattern as shown in 

Figure 8. 

 

Figure 8 The x y graph shows the use of 

centroid points to measure degrees. 

3.7 Fire and Smoke Detection 

Fire and smoke detection is one of the 

commonly used features in video analytic. In 

case of a fire, captured footage will be processed 

using AI and AI will detect the smoke and flame 

which triggers the fire alarm. To be able to 

correctly detect the smoke and flame, it is 

required to train the model with an image file and 

a text file that does not contain any label data 

(Figure 9). 

 

Figure 9 Detection of fire 

3.8 Unattended Object Detection 

Unattended objects can be an act of 

terrorism or an act of forgetfulness. This feature 

will detect an object that has been left in a certain 

area for a long time unattended and the body data 

of the person who left the object as in Figures 10-

11. Security personal will be notified and actions 

will be taken according to the situation. 

 
Figure 10 A person entering and leaving an 

object 

 
Figure 11 Detection of an unattended object 

4. Architecture 

Concurrency occurs when multiple 

tasks are progressing at the same time. 

Generally, concurrency is achieved by 

interconnecting two or more processors. High 

concurrency is aimed at enhancing the 

performance of tasks (i.e., video analyzing and 

detection) to obtain fast and accurate results. 

This is known as High-Performance Computing 

(HPC) (1). HPC has many benefits compared to 

the traditional computing. HPC often integrated 

with AI and as a result of this integration, 

capabilities of researches are widening 

exponentially. High concurrent AI computing 

includes training and testing AI algorithms and 

optimizing their performances using different 

architectures. Training AI models is a multi-

staged and iterative task. Based on its local data 

collection, each iterative step calculates 

parameters. This iterative parameter update 

process continues until the target model 

accuracy is reached (2). The main benefit of 

concurrency is that many tasks cab be progressed 

at the same time which leads to fast obtaining of 

the updated parameters. Computed nodes 

communicate with each other and synchronizes 

to complete a given task. Therefore, 

communication and synchronizations are key 

factors that should be included when using 

concurrency. Novel contributions of HPC and AI 
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integration have generated many promising 

results. These studies prove the efficiency of the 

integration. Daeyong Jung et al. (3) developed a 

management approach for data synchronization 

and heterogeneous cluster computing with 

multiple compute nodes. Various Windows Sub-

system for Linux were used in the memology 

(WSL) package. For Son of Grid Engine, the 

cluster scheduler engine was employed (SGE). 

The manager synchronizes with the Linux 

daemon under specified conditions and the 

Manager supervises the jobs that synchronize the 

data in SGE. Sangdo Lee et al. (4) investigated 

previous cyber-attack incidents and hacking 

efforts that targeted nuclear power plants. They 

recommended a security measure based on the 

study to protect against previous attack 

incidences and the mechanism of large data 

exploding in the attacks. Yin et al. (5) addressed 

the issue of increased operating speed and 

regular engines in finite-state automata-based 

deep packet inspection systems in order to 

reduce memory usage. The authors looked at the 

limitations of using finite automata as well as its 

key feature. They enhanced the non-

deterministic finite automata (NFA) based on the 

analysis to reduce memory use by lowering the 

conversion edge. Hwang et al. (6) presented the 

importance of AI for the Internet of things (IoT) 

in preserving huge data in a variety of domains, 

including smart transportation, health- care, 

large-scale deployments, infrastructure 

management, and smart homes manufacturing, 

home automation and etc. They proposed a 

network clock paradigm for time awareness in 

IoT and cloud integration AI. The suggested 

system was put to the test using a MICAz-

compatible test platform. Sensor nodes, and the 

results of the experimental assessment revealed 

that the any AI application can use IoT devices 

to supply and maintain a standard timestamp. 

Above mentioned studies successfully 

performed the relevant task and obtained 

efficient results which proves the consistency of 

HPC in AI. However, there are several 

drawbacks in HPC and AI clusters due to the 

network. Network plays a major role in 

distributed compute and storage architecture. 

Due to their iterative, intensive, frequent, and 

synchronous communication, distributed AI and 

HPC systems will aggravate network 

infrastructure necessity. The performance of 

distributed systems is heavily influenced by 

network infrastructure bandwidth, latency, 

congestion management, dependability, and a 

variety of other factors (7). Some of these factors 

will be discussed briefly. 

Network latency. Network latency is 

the time that it takes data or requests to transmit 

from the source to the destination. There are two 

types: Static Latency and Dynamic Latency. 

Static latency is associated with switch 

forwarding latency and optical /electrical 

transmission latency while Dynamic latency is 

associated with queuing delay, flow completion 

time, tail latency, packet drop, burst and 

microbursts. Incast and Bursts. The frequent 

incast traffic patterns created by AI and HPC 

distributed systems place strain on network 

infrastructure, producing congestion and 

substantial latency spikes. As for the bursts, they 

occur due to the communication between AI 

layers in order to obtain the task completion. 

These bursts fill the free space in net-work node 

queues and increases the queuing time which 

leads to the communication latency. Flow 

Completion Time (FCT) and Tail Latency. Since 

bursts increases the queue time, the time that task 

to be completed will also increase. Some tasks 

depend on the results of previous tasks and since 

the completion of the previous tasks are delayed, 

tail latency will be created. Tail latency is the 

latency of the fraction of the flows that take the 

longest to complete. In a nutshell, HPC and AI 

are systems that require a lot of compute and 

storage. While concurrency allows these 

algorithms to reach their full potential, it also 

puts a lot of strain on network operations. In 

order to meet the needs of HPC and AI clusters, 

network infrastructure must expand beyond 

traditional architecture. 

4. Methodology 

The extensive utilization of various 

artificial intelligence (AI) applications, 

particularly deep neural networks (DNNs), 

underscores the necessity for specialized 

hardware solutions. Conventional computer 

systems face significant challenges in terms of 

data processing speed and scalability. Domain-

specific designs provide superior energy 

efficiency and performance improvements 

compared to general-purpose processors, with 

the general aim of improving throughput and 

energy efficiency. 

Consequently, leading players in the 

data center market are progressively 

incorporating FPGA System-on-Chip (SoC) into 

their infrastructure to address sophisticated AI 

applications. Notable companies such as 
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Microsoft, Amazon Web Services, and Baidu are 

expanding their AI and high-performance 

application capabilities across hundreds of 

thousands of Intel and Xilinx FPGA devices (8, 9). 

5. Result: FPGA Speeding up Processing 

As implementations of AI grows 

larger, the complexity of computations grows 

too. As a result, the necessity to speed up 

microprocessors has become prominent. 

Compared to the traditional GPU, FPGA has an 

advantage in speeding up the process in 

computing. FPGAs have achieved large 

speedups for a wide variety of application. This 

section aims to discuss the contribution of 

FPGAs. This study uses a HPC system which 

allows multiple microprocessors and multiple 

FPGAs to be embedded to the system to enhance 

the overall performance. FPGA accommodates a 

variety of parallel computer applications and can 

be implemented in a single clock cycle (10). 

Moreover, re- programmable FPGAs provide 

on-chip capability for a variety of applications. 

The memory access bandwidth of co-processor 

logic is not limited by the number of I/O pins 

available in the devices due to the presence of 

on-chip memory (11 – 19). 

Tobias (20) introduced a methodology 

for partitioning Convolutional Neural Networks 

(CNNs) and Deep Neural Networks (DNNs) 

across multiple FPGAs; however, this approach 

lacks generalizability across diverse workloads. 

Alternative methodologies, such as those 

discussed in (21), exploit latency insensitivity to 

facilitate the partitioning of designs across 

multiple FPGAs. These approaches, however, 

necessitate that the user manually define 

module-to-FPGA mappings at the Register-

Transfer Level (RTL) and conduct simulation-

based evaluations. The integration of High-

Level Synthesis (HLS) frontends with 

automatically partitioned designs could 

significantly broaden FPGA adoption among 

users with diverse technical backgrounds. 

An example of utilizing the Yolo 

model within the Xilinx toolkit can be observed 

through the segmentation of the model's 

operations across different hardware 

components. The first segment, responsible for 

accessing images, operates on the processor. The 

second segment, which handles image 

processing, runs on the Program Logic (PL). The 

third segment operates in the Deep Learning 

Processor Unit (DPU), which is also developed 

on the PL, as illustrated in Figure 12. 

 

Figure 12 Yolov8 Implementation on FPGA  

5.1 FPGA vs. GPU 

When implementing FPGA and GPU 

in Binary Convolutional Neural Network 

separately, we can witness FPGA outperforming 

GPU in every aspect. In terms of Through- 

put/FPS (Figure 13) shows that FPGAs offer 

more promising results than GPU across the 

board. Furthermore, in terms of Energy 

Efficiency/W, FPGAs achieve more compelling 

results compared to GPU. 

 

Figure 13 FPGA vs. GPU  

Throughput and energy efficiency comparison 

with GPU and FPGA implementations  

(Binary Convolution) (22) 
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5.2 Speed-up Process 

Customized, application specific 

accelerator cores are common in FPGA designs. 

Compared to the regular cores, Accelerator cores 

are largely synchronous circuits with a strict 

clock period timing limitation. They are, on the 

other hand, nearly often built by a system 

designer for a specific application and are 

utilized to set the system apart from other 

systems. A designer should be able to swiftly and 

simply develop high-performance custom cores, 

conduct a design space exploration of viable 

designs, and integrate them into their systems in 

a short amount of time.The foundational 

implementation facilitates the exchange of 

messages between the global memory of 

interconnected FPGAs arranged in a ring 

topology via PCIe. Additionally, it utilizes the 

Xilinx SDK to read from and write to a memory 

buffer that represents the message, thereby 

enabling communication between the FPGA and 

the host system. 

We implemented the system in Python 

and integrated it with a Xilinx Deep Processing 

Unit (DPU) on a server equipped with two Xilinx 

Alveo U50Lv cards and one U55C card. This 

setup is capable of achieving a maximum design 

frequency of 1,000 images per second. The 

server is powered by a 128-core AMD EPYC 

7V13 CPU operating at 2.45GHz. 

6. Speed Verify and Improve 

Indeed, executing a quantized model 

on an FPGA (Field-Programmable Gate Array) 

can lead to significant performance 

improvements, especially for applications 

requiring low latency and high throughput. 

FPGAs are particularly well-suited for running 

quantized models due to their reconfigurable 

nature and efficient handling of parallel tasks. 

FPGAs can be configured to perform specific 

operations in an optimized manner. For 

quantized models, this means that the 

computations can be executed very efficiently, 

often outperforming general-purpose CPUs and 

always even GPUs. Quantized models use lower 

precision arithmetic (like INT8), which FPGAs 

can handle more efficiently than floating-point 

operations. This leads to faster computations and 

reduced power consumption as in Figure 14. 

 

Figure 14 Inference Rate Test 

Table 1 Under 250, 500 and 1,000 Test Image 

VS Number of Thread, With 1,000 Class Model 

Thread Count Second FPS 

1 1000 7.7 129.9 

2 500 7.9 126.6 

3 250 5.6 131.6 

3 1000 8.3 120.5 

Table 1 presents the results of AI 

inference speed tests, highlighting variations in 

performance across different configurations. The 

tests were conducted with varying numbers of 

threads and test images, measuring the time 

taken (in seconds) and the resulting frames per 

second (FPS) for inference. Thread 1: With 

1,000 test images, the inference time was 7.7 

seconds, resulting in an FPS of 129.9. Thread 2: 

For 500 test images, the inference time was 7.9 

seconds, achieving an FPS of 126.6. Thread 3: 

When processing 250 test images, the inference 

time increased to 5.6 seconds, with an FPS of 

131.6. Additionally, when the number of test 

images was raised to 1,000, the inference time 

was 8.3 seconds, resulting in an FPS of 120.5. 

These results indicate how the number of threads 

and test images impact the inference speed and 

efficiency of the AI system. Notably, increasing 

the number of test images does not linearly affect 

the inference time and FPS, suggesting complex 

interactions between the system's workload and 

its performance capabilities. 

FPGAs excel in parallel processing, 

allowing them to execute multiple operations of 

a quantized model simultaneously. This is 

particularly advantageous for the parallel nature 

of neural network computations. In Figure 15, A 

speed testing a model with 1,000 classes on 

1,000 images using one terminal. When using a 

CPU to manage the execution of tasks on an 

FPGA and to retrieve results, the orchestration 

typically involves a certain number of software 

threads. These threads are responsible for 

handling the communication between the CPU 

and FPGA, including sending data to the FPGA 
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for processing, initiating the execution of the 

model on the FPGA, and receiving the processed 

results back. Managing these threads effectively 

is crucial for optimal performance, particularly 

for inference tasks in deep learning. The number 

of threads can impact the efficiency of the 

system. Too few threads might underutilize the 

FPGA's capabilities, while too many threads can 

lead to overhead and contention, potentially 

slowing down the system. 

 

Figure 15 Simplified diagram of the system architecture 

Table 2 Under 1,000 Test Image VS Number of 

docker container, With 1,000 Class Model 

Terminal Terminal FPS/terminal FPS 

1 7.6 131.5789474 131.6 

2 8.1 123.4567901 246.9 

3 8.3 120.4819277 361.4 

Table 2, a speed test on a model with 

1,000 classes, using 1, 2, and 3 terminals to test 

250 images per terminal. The number of threads 

can impact the efficiency of the system. Too few 

threads might underutilize the FPGA's 

capabilities, while too many threads can lead to 

overhead and contention, potentially slowing 

down the system. 

7. AI Model Theory and Contribution 

Figure 16, there was an issue or error 

encountered during the process of quantization 

that affected the computational graph of the 

model. Quantization is the process of reducing 

the precision of the weights and activations of a 

neural network, typically from floating-point to 

lower-bandwidth integers, for example, from 32-

bit floating-point to 8-bit integers. This process 

is crucial for deploying models on resource-

constrained devices like mobile phones or 

embedded systems, as it reduces the model size 

and increases inference speed while aiming to 

maintain accuracy. 

 

Figure 16 Broke Graph during Quantization 

Graphs in the context of deep learning 

models refer to a structured representation of the 

model itself, or to the use of graph-based data 

structures in deep learning algorithms as in 

Figure 17.  

 

Figure 17 The inherently possesses a network 

structure 
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We encountered a situation where the 

computational graph of a deep learning model 

broke during quantization, possibly due to the 

absence of a library or specific functionality 

needed to handle the quantization process 

correctly. This issue can occur when the 

quantization library or the method used does not 

fully support all the operations or layers in your 

model. Carefully review the model to identify 

which specific operations or layers are not 

supported by the quantization library. 

 

Figure 18 FPGA and CPU execution with Data 

Transfer and Synchronization. 

If a small part of the model is causing 

issues, consider partially quantizing the model. 

Quantize only the layers that are supported as in 

Figure 18, leaving the problematic layers in their 

original precision. This approach can still offer 

some benefits in terms of model size and 

performance, albeit less than full quantization. 

Using a fallback to partial quantization and 

processing unsupported operations on the CPU 

is a practical approach when dealing with a 

model where not all components can be 

quantized. This strategy allows you to leverage 

the benefits of quantization for the parts of the 

model that are compatible while still maintaining 

the overall functionality by executing the 

unsupported operations on the CPU. Profile the 

model to identify bottlenecks. In some cases, the 

CPU-bound operations might become the 

bottleneck, and further optimization might be 

necessary, such as parallelizing certain 

computations or optimizing the CPU-bound 

code. 

 

Figure 19 FPGA and CPU execution with Data 

Transfer and Synchronization. 

In Figure 19, implement efficient data 

transfer mechanisms between the CPU and 

FPGA. This step is crucial to minimize the 

performance hit due to data transfer between 

different processing units. Ensure proper 

synchronization between the operations running 

on different hardware. The output from one part 

of the model should seamlessly feed into the 

next, maintaining the integrity and flow of the 

computation. The effective-ness of this approach 

can depend on the specific hardware capabilities 

and the nature of the model. Some devices might 

have powerful CPUs that can handle the non-

quantized operations without significantly 

impacting overall performance. Create a hybrid 

execution plan where the quantized and non-

quantized parts of the model are handled 

differently. The quantized parts can run on 

specialized hardware (like a FPGA or TPU), 

optimized for low-precision computations, while 

the non-quantized parts run on the CPU. 

Running multiple Docker containers to 

parallelize the execution of the same quantized 

model on an FPGA can indeed increase 

throughput and efficiency, especially under a 

Linux environment. This approach leverages 

containerization to isolate and manage multiple 

instances of the model running concurrently. 

Here are some key points to consider when 

implementing this strategy: Each Docker 

container acts as an isolated environment, 

running its own instance of the application (in 

this case, the inference model). This isolation 

helps in managing dependencies and ensuring 

that each instance runs in a consistent 

environment. By running multiple containers, 

you can effectively parallelize the workload. 

Each container can handle separate inference 
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requests, thereby increasing the overall 

throughput of the system. The degree of 

parallelization will depend on the FPGA's 

capabilities and how well it handles concurrent 

execution. It's important to manage the resources 

(like memory and compute time) allocated to 

each container to ensure efficient operation. The 

FPGA must be capable of handling the combined 

load from all containers. Overloading the FPGA 

could lead to reduced performance or system 

instability. Some FPGAs support virtualization, 

allowing them to be shared among multiple 

applications or containers. This can be a complex 

process but is beneficial for maximizing 

resource utilization. Ensure that your FPGA and 

its driver support such virtualization. In 

summary, using Docker containers to parallelize 

the execution of a quantized model on an FPGA 

can significantly enhance throughput and 

efficiency. However, it requires careful planning 

in terms of resource allocation, load balancing, 

container management, and ensuring that the 

FPGA can handle the concur-rent execution 

load. This approach is particularly useful in 

scenarios where high scalability and isolation 

between different inference tasks are required. 

Finally, the results from improving the AI model 

in the experiment inspired researchers to realize 

the effort and capability required to completely 

convert a model trained on a 32-bit GPU to work 

on an 8-bit FPGA. In cases where certain layers 

of the model cannot be converted, it will be 

necessary for those layers to be processed on the 

CPU instead. This presents a significant 

challenge. 
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