PROGRESS IN APPLIED
SCIENCE AND TECHNOLOGY

Faculty of Science and Technology
Rajamangala University of Technology Thanyaburi

Research Article

Received: March 01, 2024
Revised: June 12, 2024
Accepted: Augst 26, 2024

Prog Appl Sci Tech. 2024; 14(2):44-54

ISSN (Print): 2730-3012
ISSN (Online): 2730-3020

https://ph02.tci-thaijo.org/index. php/past

Video Analytic for Human Management and
Security and FPGA Accelerated High Concurrency

Boonchom Sudjit'*, Somrak Petchartee? and Maneesha Perera®

! Faculty of Engineering and Architecture, Rajamangala University of

Technology Tawan-ok, Bangkok 10330, Thailand.
2Digital Innovation Center Brownien Laboratory,

NT Telecom Public Company Limited 10210, Thailand
3Research Assistance, Brownien Laboratory,

NT Telecom Public Company Limited 10210, Thailand
*E-mail: boonchom_su@rmutto.ac.th

DOI: 10.60101/past.2024.252733

Abstract

This paper explores the use of video analytics by leveraging accelerated FPGA technology in
combination with high-performance computing, specifically utilizing two Xilinx Alveo U50Lv cards
and one U55C card. While many applications exist for motion analysis and detection in videos, the use
of FPGAs in this context remains relatively scarce. FPGAs offer significant advantages in terms of
energy efficiency and throughput. We present results demonstrating the parallelism capabilities in terms
of the number of threads within a single Docker container that shares stack memory, as well as across
multiple Docker containers. When operating within a single Docker process, the application shares the
same memory space and resources, making it ideal for tasks that require efficient communication or
data sharing. In contrast, running in multiple containers isolates processes, each with its own
environment, and can significantly increase the number of threads. Our findings show that the

combination of these techniques offers optimal performance for video analytics.

Keywords: Video Analytic, FPGA Accelerated High Concurrency, Deep Neural Network

1. Introduction

Video Analytics is a concept that has
been gaining interest in both the academic and
industrial sectors. Continuous improvements in
video analytic have being used as key features in
integrated systems. The main goal of video
analytic is to automatically detect temporal
events in a video. Usually, video analytic is
perform on real-time videos where the main
focus is on the movement of objects in a specific
area.

Video analytic is used in many
industries such as healthcare, transportation, re-
tail, and security. This study mainly focuses on
video analytic for Human Management and
Security. Video Analytic for Human
Management and Security is a system for

evaluating and analyzing images captured by IP
surveillance cameras. According to the defined
functions, the system will send an alert as soon
as an occurrence is identified. This will be a
mechanism that will assist in the facilitation
process. and improve surveillance efficiency
Investigate numerous occurrences, which will
not only improve surveillance efficiency but will
also reduce the cost of managing the security
system in the long term. The defined functions
for this study will be introduced under the
features of Al of this paper.

Deep Neural Network (DNN) which is
a subsection of Artificial Intelligence (Al) is
used to train video analyzing systems and make
it possible for these systems to identify objects
and track their movements. Due to the

© 2024 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index
https://doi.org/10.60101/past.2024.252733

Prog Appl Sci Tech. 2024; 14(2):44-54

45

complexity of computations and logic in neural
networks, a Field-programmable gate array
(FPGA) chip-based system was used in this
study. The implementation and the speed-up
process of FPGAs will be discussed in detail in
the latter part of this paper.

FPGAs are comprised of
programmable logic elements systematically
arranged in a two-dimensional grid architecture.
These configurable regions encompass look-up
tables (LUTSs), which are capable of realizing
specified truth tables. Recently, FPGAs have
been augmented with various hard intellectual
property (IP) modules, such as Intelligent
Processing Units (IPUs),

Deep Processing Units (DPUs),
DDR/HBM controllers, and additional platform-
specific IPs interspersed among the
programmable logic domains.

2. Application: Internal use in Company with
100 Cameras

Proposed system was implemented at
NT Telecom Head Office that includes 3 main
buildings namely, Auditorium building, Office
building, and Vehicle Park Building with 100
CCTV cameras. Since the number of CCTV
cameras are relatively high, using and managing
them to their maximum potential is challenging.
There-fore, it is necessary to install a high-
performance CCTV system. Here, we have
implemented a CCTV system of Pelco brand.

Control room of the CCTV cameras
are located at the Car Park building. We directed
the live video stream from Car Park building to
the Brownien Lab Research and Development
Center via fiber optics (Figure 1).

Peica Storage

Car Pask g

CETV cameras Stat Server Apglication Server

Figure 1 Network Configuration

We implemented the system in Python
and integrated it with a Xilinx Deep Processing
Unit (DPU) on a server equipped with two Xilinx
Alveo U50Lv cards and one U55C card. This

setup is capable of achieving a maximum design
frequency of 1,000 images per second. The
server is powered by a 128-core AMD EPYC
7V13 CPU operating at 2.45GHz.

3. Features of Al
3.1 Tripwire

Tripwire is nothing but a virtual line
which is used in areas that are needed to be
guarded and alert the user of any trespassers. In
order to detect trespassers accurately using Al,
first we trained the body’s data and created the
virtual line that prevents trespassing. Whenever
a person crosses this virtual line, there will be an
alert.

3.2 Enter and Exit

Enter and Exit is much similar to
Tripwire technique. According to the direction
the body moves, we can detect entering exiting.
This feature also uses a virtual line to detect and
alerts when a person enters or exits a forbidden
area (i.e. Fire exit door) as in Figures 2-3.

Figure 2 Alert when a person is crossing the
virtual line

Figure 3 A person entering a restricted area

© 2024 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech.

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

46

Prog Appl Sci Tech. 2024; 14(2):44-54

3.3 Body Detection

Al virtually detects a person walking
in the place of interest and sends the body value
to the API system. APl system interprets the
detection that was captured by each camera. This
result conveys the number of people in a
particular area as in Figure 4.

" im0 - [m] X

Figure 4 Count of human bodies in
a monitored area

3.4 Head Detection

The head detection feature counts the
number of heads that pass a certain area.
Counting the number of heads will reveal the
number of people in that particular area (i.e., an
elevator). Obtaining the headcount is done by
cropping a person’s head virtually as in Figure 5.
However, there are few possibilities that Al
confuses anything black to be a head because
head cropping starts with black hair. To resolve
this issue, the crop-ping will be done from head
to the neck.

3.5 Man down Detection

This feature helps to detect people
who need assistant in case of emergencies. From
this study, we realized in order to detect man
down situations, it is required to crop the image
of the person’s body, buttocks, or both knees,
landing on the ground as in Figure 6. Whenever
a man down situation occurs, the security
personnel will be notified and will assist the
person according to the emergency (i.e., contact
emergency vehicle, provide CPR).

Figure 6 Detection of a person who has fallen

3.6 Loitering

Loitering is a feature that is used to
detect suspicious activities. Loitering hap-pens
when a person stays within the area of interest
for a longer time. This will trigger the alarm and
security personals will take actions with using
the surveillance video as in Figure 7. In this
study we identified 12 loitering patterns.
However, due to the different intensities of the
sunlight, the detection was not up to the
standards. To resolve this problem, the training
was done in diverse lighting conditions.

Figure 5 Count of human bodies in
a monitored area

Figure 7 Detection of a suspicious movement
of a person

Prog Appl Sci Tech

© 2024 Faculty of Science and Technology, RMUTT

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54

47

The movement of the person is
measured from the centroid point to each point
along X and Y axis. Different algorithms were
used to calculate the movement in degrees
according to the walking pattern as shown in
Figure 8.

0 50 100 150 200 250

Figure 8 The x y graph shows the use of
centroid points to measure degrees.

3.7 Fire and Smoke Detection

Fire and smoke detection is one of the
commonly used features in video analytic. In
case of a fire, captured footage will be processed
using Al and Al will detect the smoke and flame
which triggers the fire alarm. To be able to
correctly detect the smoke and flame, it is
required to train the model with an image file and
a text file that does not contain any label data
(Figure 9).

Figure 9 Detection of fire

3.8 Unattended Object Detection

Unattended objects can be an act of
terrorism or an act of forgetfulness. This feature
will detect an object that has been left in a certain
area for a long time unattended and the body data
of the person who left the object as in Figures 10-

11. Security personal will be notified and actions
be taken according to the situation.

' . *' o @M

r liiiiél

will

-

Figure 10 A person entering and leaving an
object

Figure 11 Detection of an unattended object

4. Architecture

Concurrency occurs when multiple
tasks are progressing at the same time.
Generally, concurrency is achieved by
interconnecting two or more processors. High
concurrency is aimed at enhancing the
performance of tasks (i.e., video analyzing and
detection) to obtain fast and accurate results.
This is known as High-Performance Computing
(HPC) (1). HPC has many benefits compared to
the traditional computing. HPC often integrated
with Al and as a result of this integration,
capabilities of researches are widening
exponentially. High concurrent Al computing
includes training and testing Al algorithms and
optimizing their performances using different
architectures. Training Al models is a multi-
staged and iterative task. Based on its local data
collection, each iterative step calculates
parameters. This iterative parameter update
process continues until the target model
accuracy is reached (2). The main benefit of
concurrency is that many tasks cab be progressed
at the same time which leads to fast obtaining of
the updated parameters. Computed nodes
communicate with each other and synchronizes
to complete a given task. Therefore,
communication and synchronizations are key
factors that should be included when using
concurrency. Novel contributions of HPC and Al

© 2024 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech.

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

48

Prog Appl Sci Tech. 2024; 14(2):44-54

integration have generated many promising
results. These studies prove the efficiency of the
integration. Daeyong Jung et al. (3) developed a
management approach for data synchronization
and heterogeneous cluster computing with
multiple compute nodes. Various Windows Sub-
system for Linux were used in the memology
(WSL) package. For Son of Grid Engine, the
cluster scheduler engine was employed (SGE).
The manager synchronizes with the Linux
daemon under specified conditions and the
Manager supervises the jobs that synchronize the
data in SGE. Sangdo Lee et al. (4) investigated
previous cyber-attack incidents and hacking
efforts that targeted nuclear power plants. They
recommended a security measure based on the
study to protect against previous attack
incidences and the mechanism of large data
exploding in the attacks. Yin et al. (5) addressed
the issue of increased operating speed and
regular engines in finite-state automata-based
deep packet inspection systems in order to
reduce memory usage. The authors looked at the
limitations of using finite automata as well as its
key feature. They enhanced the non-
deterministic finite automata (NFA) based on the
analysis to reduce memory use by lowering the
conversion edge. Hwang et al. (6) presented the
importance of Al for the Internet of things (loT)
in preserving huge data in a variety of domains,
including smart transportation, health- care,
large-scale deployments, infrastructure
management, and smart homes manufacturing,
home automation and etc. They proposed a
network clock paradigm for time awareness in
10T and cloud integration Al. The suggested
system was put to the test using a MICAz-
compatible test platform. Sensor nodes, and the
results of the experimental assessment revealed
that the any Al application can use 10T devices
to supply and maintain a standard timestamp.
Above mentioned studies successfully
performed the relevant task and obtained
efficient results which proves the consistency of
HPC in Al. However, there are several
drawbacks in HPC and Al clusters due to the
network. Network plays a major role in
distributed compute and storage architecture.
Due to their iterative, intensive, frequent, and
synchronous communication, distributed Al and
HPC systems will aggravate network
infrastructure necessity. The performance of
distributed systems is heavily influenced by
network infrastructure bandwidth, latency,
congestion management, dependability, and a

variety of other factors (7). Some of these factors
will be discussed briefly.

Network latency. Network latency is
the time that it takes data or requests to transmit
from the source to the destination. There are two
types: Static Latency and Dynamic Latency.
Static latency is associated with switch
forwarding latency and optical /electrical
transmission latency while Dynamic latency is
associated with queuing delay, flow completion
time, tail latency, packet drop, burst and
microbursts. Incast and Bursts. The frequent
incast traffic patterns created by Al and HPC
distributed systems place strain on network
infrastructure, producing congestion and
substantial latency spikes. As for the bursts, they
occur due to the communication between Al
layers in order to obtain the task completion.
These bursts fill the free space in net-work node
queues and increases the queuing time which
leads to the communication latency. Flow
Completion Time (FCT) and Tail Latency. Since
bursts increases the queue time, the time that task
to be completed will also increase. Some tasks
depend on the results of previous tasks and since
the completion of the previous tasks are delayed,
tail latency will be created. Tail latency is the
latency of the fraction of the flows that take the
longest to complete. In a nutshell, HPC and Al
are systems that require a lot of compute and
storage. While concurrency allows these
algorithms to reach their full potential, it also
puts a lot of strain on network operations. In
order to meet the needs of HPC and Al clusters,
network infrastructure must expand beyond
traditional architecture.

4. Methodology

The extensive utilization of various
artificial intelligence (Al) applications,
particularly deep neural networks (DNNSs),
underscores the necessity for specialized
hardware solutions. Conventional computer
systems face significant challenges in terms of
data processing speed and scalability. Domain-
specific designs provide superior energy
efficiency and performance improvements
compared to general-purpose processors, with
the general aim of improving throughput and
energy efficiency.

Consequently, leading players in the
data center market are progressively
incorporating FPGA System-on-Chip (SoC) into
their infrastructure to address sophisticated Al
applications. Notable companies such as

Prog Appl Sci Tech

© 2024 Faculty of Science and Technology, RMUTT

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54

49

Microsoft, Amazon Web Services, and Baidu are
expanding their Al and high-performance
application capabilities across hundreds of
thousands of Intel and Xilinx FPGA devices (8, 9).

5. Result: FPGA Speeding up Processing

As implementations of Al grows
larger, the complexity of computations grows
too. As a result, the necessity to speed up
microprocessors has become prominent.
Compared to the traditional GPU, FPGA has an
advantage in speeding up the process in
computing. FPGAs have achieved large
speedups for a wide variety of application. This
section aims to discuss the contribution of
FPGAs. This study uses a HPC system which
allows multiple microprocessors and multiple
FPGAs to be embedded to the system to enhance
the overall performance. FPGA accommodates a
variety of parallel computer applications and can
be implemented in a single clock cycle (10).
Moreover, re- programmable FPGAs provide
on-chip capability for a variety of applications.
The memory access bandwidth of co-processor
logic is not limited by the number of 1/0 pins
available in the devices due to the presence of
on-chip memory (11 — 19).

HLS Kernel on PL

480x360, BGR

2304x1296, UVYV 2304x1296, BGR
BGR frame

Camera

1929x1080, BGR

Vitis Al Library on DPU

KT volove

Tobias (20) introduced a methodology
for partitioning Convolutional Neural Networks
(CNNs) and Deep Neural Networks (DNNs)
across multiple FPGAs; however, this approach
lacks generalizability across diverse workloads.
Alternative methodologies, such as those
discussed in (21), exploit latency insensitivity to
facilitate the partitioning of designs across
multiple FPGAs. These approaches, however,
necessitate that the user manually define
module-to-FPGA mappings at the Register-
Transfer Level (RTL) and conduct simulation-
based evaluations. The integration of High-
Level Synthesis (HLS) frontends with
automatically partitioned designs could
significantly broaden FPGA adoption among
users with diverse technical backgrounds.

An example of utilizing the Yolo
model within the Xilinx toolkit can be observed
through the segmentation of the model's
operations across different hardware
components. The first segment, responsible for
accessing images, operates on the processor. The
second segment, which handles image
processing, runs on the Program Logic (PL). The
third segment operates in the Deep Learning
Processor Unit (DPU), which is also developed
on the PL, as illustrated in Figure 12.

- ARM processor
B s keme
- Vitis Al Library/DPU

Frame(@ 1080p

With bounding box
BBox i
Overlay Display

Figure 12 Yolov8 Implementation on FPGA

5.1 FPGA vs. GPU

When implementing FPGA and GPU
in Binary Convolutional Neural Network
separately, we can witness FPGA outperforming
GPU in every aspect. In terms of Through-
put/FPS (Figure 13) shows that FPGAs offer
more promising results than GPU across the
board. Furthermore, in terms of Energy
Efficiency/W, FPGAs achieve more compelling
results compared to GPU.

Figure 13 FPGA vs. GPU
Throughput and energy efficiency comparison
with GPU and FPGA implementations
(Binary Convolution) (22)

© 2024 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech.

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

50

Prog Appl Sci Tech. 2024; 14(2):44-54

5.2 Speed-up Process

Customized, application specific
accelerator cores are common in FPGA designs.
Compared to the regular cores, Accelerator cores
are largely synchronous circuits with a strict
clock period timing limitation. They are, on the
other hand, nearly often built by a system
designer for a specific application and are
utilized to set the system apart from other
systems. A designer should be able to swiftly and
simply develop high-performance custom cores,
conduct a design space exploration of viable
designs, and integrate them into their systems in
a short amount of time.The foundational
implementation facilitates the exchange of
messages between the global memory of
interconnected FPGAs arranged in a ring
topology via PCle. Additionally, it utilizes the
Xilinx SDK to read from and write to a memory
buffer that represents the message, thereby
enabling communication between the FPGA and
the host system.

We implemented the system in Python
and integrated it with a Xilinx Deep Processing
Unit (DPU) on a server equipped with two Xilinx
Alveo U50Lv cards and one U55C card. This
setup is capable of achieving a maximum design
frequency of 1,000 images per second. The
server is powered by a 128-core AMD EPYC
7V13 CPU operating at 2.45GHz.

6. Speed Verify and Improve

Indeed, executing a quantized model
on an FPGA (Field-Programmable Gate Array)
can lead to significant performance
improvements, especially for applications
requiring low latency and high throughput.
FPGAs are particularly well-suited for running
quantized models due to their reconfigurable
nature and efficient handling of parallel tasks.
FPGAs can be configured to perform specific
operations in an optimized manner. For
quantized models, this means that the
computations can be executed very efficiently,
often outperforming general-purpose CPUs and
always even GPUs. Quantized models use lower
precision arithmetic (like INT8), which FPGAs
can handle more efficiently than floating-point
operations. This leads to faster computations and
reduced power consumption as in Figure 14.

Figure 14 Inference Rate Test

Table 1 Under 250, 500 and 1,000 Test Image
V'S Number of Thread, With 1,000 Class Model

Thread Count Second FPS
1 1000 7.7 129.9
2 500 7.9 126.6
3 250 5.6 131.6
3 1000 8.3 120.5

Table 1 presents the results of Al
inference speed tests, highlighting variations in
performance across different configurations. The
tests were conducted with varying numbers of
threads and test images, measuring the time
taken (in seconds) and the resulting frames per
second (FPS) for inference. Thread 1: With
1,000 test images, the inference time was 7.7
seconds, resulting in an FPS of 129.9. Thread 2:
For 500 test images, the inference time was 7.9
seconds, achieving an FPS of 126.6. Thread 3:
When processing 250 test images, the inference
time increased to 5.6 seconds, with an FPS of
131.6. Additionally, when the number of test
images was raised to 1,000, the inference time
was 8.3 seconds, resulting in an FPS of 120.5.
These results indicate how the number of threads
and test images impact the inference speed and
efficiency of the Al system. Notably, increasing
the number of test images does not linearly affect
the inference time and FPS, suggesting complex
interactions between the system's workload and
its performance capabilities.

FPGAs excel in parallel processing,
allowing them to execute multiple operations of
a quantized model simultaneously. This is
particularly advantageous for the parallel nature
of neural network computations. In Figure 15, A
speed testing a model with 1,000 classes on
1,000 images using one terminal. When using a
CPU to manage the execution of tasks on an
FPGA and to retrieve results, the orchestration
typically involves a certain number of software
threads. These threads are responsible for
handling the communication between the CPU
and FPGA, including sending data to the FPGA

Prog Appl Sci Tech

© 2024 Faculty of Science and Technology, RMUTT

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54

51

for processing, initiating the execution of the
model on the FPGA, and receiving the processed
results back. Managing these threads effectively
is crucial for optimal performance, particularly
for inference tasks in deep learning. The number

Xilinx USOLv

directional

Send

A
Exchange
channel

Recv

Xilinx U55C

of threads can impact the efficiency of the
system. Too few threads might underutilize the
FPGA's capabilities, while too many threads can
lead to overhead and contention, potentially
slowing down the system.

Xilinx USOLv

directional
channel

Exchange

channel channel

128-core AMD EPYC 7V13 CPU ‘

Figure 15 Simplified diagram of the system architecture

Table 2 Under 1,000 Test Image VS Number of
docker container, With 1,000 Class Model

Terminal Terminal FPS/terminal FPS
1 7.6 131.5789474 131.6
2 8.1 123.4567901 246.9
3 8.3 120.4819277 361.4

Table 2, a speed test on a model with
1,000 classes, using 1, 2, and 3 terminals to test
250 images per terminal. The number of threads
can impact the efficiency of the system. Too few
threads might underutilize the FPGA's
capabilities, while too many threads can lead to
overhead and contention, potentially slowing
down the system.

7. Al Model Theory and Contribution

Figure 16, there was an issue or error
encountered during the process of quantization
that affected the computational graph of the
model. Quantization is the process of reducing
the precision of the weights and activations of a
neural network, typically from floating-point to
lower-bandwidth integers, for example, from 32-
bit floating-point to 8-bit integers. This process
is crucial for deploying models on resource-
constrained devices like mobile phones or
embedded systems, as it reduces the model size
and increases inference speed while aiming to
maintain accuracy.

Figure 16 Broke Graph during Quantization

Graphs in the context of deep learning
models refer to a structured representation of the
model itself, or to the use of graph-based data
structures in deep learning algorithms as in
Figure 17.

S E= =
= = =
= =
== :t- ,

Figure 17 The inherently possesses a network
structure

© 2024 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech.

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

52

Prog Appl Sci Tech. 2024; 14(2):44-54

We encountered a situation where the
computational graph of a deep learning model
broke during quantization, possibly due to the
absence of a library or specific functionality
needed to handle the quantization process
correctly. This issue can occur when the
quantization library or the method used does not
fully support all the operations or layers in your
model. Carefully review the model to identify
which specific operations or layers are not
supported by the quantization library.

.‘ DPU 1_-
*
| DPUL , tnodal
x (1) LY
& .. .0 O o
s\ C /23
| £ .
’ axpaoling

Figure 18 FPGA and CPU execution with Data
Transfer and Synchronization.

If a small part of the model is causing
issues, consider partially quantizing the model.
Quantize only the layers that are supported as in
Figure 18, leaving the problematic layers in their
original precision. This approach can still offer
some benefits in terms of model size and
performance, albeit less than full quantization.
Using a fallback to partial quantization and
processing unsupported operations on the CPU
is a practical approach when dealing with a
model where not all components can be
quantized. This strategy allows you to leverage
the benefits of quantization for the parts of the
model that are compatible while still maintaining
the overall functionality by executing the
unsupported operations on the CPU. Profile the
model to identify bottlenecks. In some cases, the
CPU-bound operations might become the
bottleneck, and further optimization might be
necessary, such as parallelizing certain
computations or optimizing the CPU-bound
code.

1. preprocess_image = Resize 512x512
ineachonis, .1 = preprocess.ismpet isape, wode L ireut_shave) |

2.rwn inference run subgraph 1
run CPU gragh
rup subgraph L

5)
3.decode (nparray o result T e S

result decoder
pndl&\oh

Figure 19 FPGA and CPU execution with Data
Transfer and Synchronization.

In Figure 19, implement efficient data
transfer mechanisms between the CPU and
FPGA. This step is crucial to minimize the
performance hit due to data transfer between
different processing units. Ensure proper
synchronization between the operations running
on different hardware. The output from one part
of the model should seamlessly feed into the
next, maintaining the integrity and flow of the
computation. The effective-ness of this approach
can depend on the specific hardware capabilities
and the nature of the model. Some devices might
have powerful CPUs that can handle the non-
quantized operations without significantly
impacting overall performance. Create a hybrid
execution plan where the quantized and non-
quantized parts of the model are handled
differently. The quantized parts can run on
specialized hardware (like a FPGA or TPU),
optimized for low-precision computations, while
the non-quantized parts run on the CPU.
Running multiple Docker containers to
parallelize the execution of the same quantized
model on an FPGA can indeed increase
throughput and efficiency, especially under a
Linux environment. This approach leverages
containerization to isolate and manage multiple
instances of the model running concurrently.
Here are some key points to consider when
implementing this strategy: Each Docker
container acts as an isolated environment,
running its own instance of the application (in
this case, the inference model). This isolation
helps in managing dependencies and ensuring
that each instance runs in a consistent
environment. By running multiple containers,
you can effectively parallelize the workload.
Each container can handle separate inference

Prog Appl Sci Tech

© 2024 Faculty of Science and Technology, RMUTT

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

Prog Appl Sci Tech. 2024; 14(2):44-54

53

requests, thereby increasing the overall
throughput of the system. The degree of
parallelization will depend on the FPGA's
capabilities and how well it handles concurrent
execution. It's important to manage the resources
(like memory and compute time) allocated to
each container to ensure efficient operation. The
FPGA must be capable of handling the combined
load from all containers. Overloading the FPGA
could lead to reduced performance or system
instability. Some FPGASs support virtualization,
allowing them to be shared among multiple
applications or containers. This can be a complex
process but is beneficial for maximizing
resource utilization. Ensure that your FPGA and
its driver support such virtualization. In
summary, using Docker containers to parallelize
the execution of a quantized model on an FPGA
can significantly enhance throughput and
efficiency. However, it requires careful planning
in terms of resource allocation, load balancing,
container management, and ensuring that the
FPGA can handle the concur-rent execution
load. This approach is particularly useful in
scenarios where high scalability and isolation
between different inference tasks are required.
Finally, the results from improving the Al model
in the experiment inspired researchers to realize
the effort and capability required to completely
convert a model trained on a 32-bit GPU to work
on an 8-bit FPGA. In cases where certain layers
of the model cannot be converted, it will be
necessary for those layers to be processed on the
CPU instead. This presents a significant
challenge.

Acknowledgements

This research was made possible with the
support of the Research and Development
Department at Brownien Laboratory, and we
extend our gratitude for their invaluable
contributions. We also acknowledge the use of
resources provided by NT Tele-com PCL, which
were instrumental in the completion of this
study. Additionally, this project was supported
by FPGA hardware (U55C) provided by Xilinx,
whose technological assistance was crucial to
our research endeavors.

Declaration of Conflicting Interests

The authors declared that they have no conflicts
of interest in the research, authorship, and this
article's publication.

References

1.

10.

11.

12.

13.

Yi G, Loia V. High-performance
computing systems and applications for Al.
2019.

Ferro M, Kloh VP, de Paula FB, Schulze B.
Artificial Intelligence and High
Performance Computing Convergence.
2019.

Jung D, Lee D, Kim M, Kim J. Efficient
data synchronization method on integrated
computing environment. 2018

Lee S, Huh JH. An effective security
measures for nuclear power plant using big
data analysis approach. 2018.

Yin C, Wang H, Yin X, Sun R, Wang J.
Improved deep packet inspection in data
stream detection. 2018.

Hwang S. A network clock model for time
awareness in the Internet of things and
artificial intelligence applications. 2019.
Hu S, Zhu Y, Cheng P, Guo C, Tan K,
Padhye J, et al. Deadlocks in Datacenter
Networks: Why Do They Form, and How to
Avoid Them. Microsoft, Hong Kong
University of Science and Technology.
Alveo U55C High Performance Compute
Card. Available from:
https://www.xilinx.com/products/boards-
and-kits/alveo/u55c.html#specifications.
Keller AM, Wirthlin MJ. Impact of Soft
Errors on Large-Scale FPGA Cloud
Computing. In: ACM/SIGDA International
Symposium on Field-Programmable Gate
Arrays (FPGA). New York, NY, USA:
Association for Computing Machinery;
2019. p. 272-81. Available from:
https://doi.org/10.1145/3289602.3293911.
Buell D, EI-Ghazawi T, Gaj K, Kindratenko
V. High-Performance reconfigurable
computing. IEEE Computer Society. 2007
Mar.

Altera Cooperation ~ White Paper.
Accelerating high performance computing
with FPGAs. 2007 Oct.

Kumbhar DD, Je Y, Hong S, Lee D, Kim H,
Kwon MJ, et al. Molecularly
Reconfigurable Neuroplasticity of Layered
Artificial Synapse Electronics. Adv Funct
Mater. 2024;2311994.

Liu X, Wang R, Shi C, Zou C, Zhu W.
Computing Acceleration to Genome-Wide
Association Study Based on CPU/FPGA
Heterogeneous System. ACM SIGAPP
Appl Comput Rev. 2024;23(4):16-26.

© 2024 Faculty of Science and Technology, RMUTT

Prog Appl Sci Tech.

https://www.sci.rmutt.ac.th/
https://ph02.tci-thaijo.org/index.php/past/index

54

Prog Appl Sci Tech. 2024; 14(2):44-54

14.

15.

16.

17.

18.

19.

20.

21.

22.

Li Y, Han D, Cui M, Yuan F, Zhou Y.
RESNETCNN: An abnormal network
traffic flows detection model. Comput Sci
Inf Syst. 2023;(00):4-4.

Hussen N, Elghamrawy SM, Salem M, ElI-
Desouky Al. A Fully Streaming Big Data
Framework for Cyber Security based on
Optimized Deep Learning Algorithm. IEEE
Access. 2023.

Sultan MT, El Sayed H. QoE-aware
analysis and management of multimedia
services in 5G and beyond heterogeneous
networks. IEEE Access. 2023.

Zhang L, Yang J, Wang T, Sun Z, Sun K,
Zeng J. Event Building Algorithm in a
Distributed Stream Processing Data
Acquisition Platform: D-Matrix. IEEE
Trans Nucl Sci. 2023;70(2):105-12.
Jayashankara M, Shah P, Sharma A,
Chanak P, Singh SK. A Novel Approach for
Short-Term Energy Forecasting in Smart
Buildings. IEEE Sens J. 2023;23(5):5307-
14.

Potnurwar AV, Bongirwar VK, Ajani S,
Shelke N, Dhone M, Parati N. Deep
Learning-Based Rule-Based Feature
Selection for Intrusion Detection in
Industrial Internet of Things Networks. Int
J Intell Syst Appl Eng. 2023;11(10s):23-35.
Alonso T, Petrica L, Ruiz M, Petri-Koenig
J, Umuroglu Y, Stamelos I, et al. Elastic-
DF: Scaling Performance of DNN
Inference in FPGA Clouds through
Automatic Partitioning. ACM Trans
Reconfigurable Technol Syst. 2021
Dec;15(2).

Agiakatsikas D, Foutris N, Sari A, et al.
Evaluation of Xilinx Deep Learning
Processing Unit under Neutron Irradiation.
In: 21st European Conference on Radiation
and Its Effects on Components and Systems
(RADECS); 2021 Sep 13-17.

Li Y, Liu Z, Xu K, Yu H, Ren F. A GPU-
outperforming FPGA accelerator
architecture for binary convolutional neural
networks. ACM J Emerg Technol Comput
Syst. 2018;14(2):1-16.

Prog Appl Sci Tech

© 2024 Faculty of Science and Technology, RMUTT

https://ph02.tci-thaijo.org/index.php/past/index
https://www.sci.rmutt.ac.th/

