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Abstract
Let Zy,s denote the residue class ring where p is a prime number and s is a positive integer.
Forn = 1, a free submodule of the Z,s-module ng that has a basis is called a subspace of ng. In this
paper, we present some properties of subspaces regarding their dimensions and the joins of subspaces

n
of ZLops.
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1. Introduction

Let p be a prime number and s a
positive integer. The ring Z,,s of integers modulo
pSis known as the residue class ring. In
particular, when s = 1, Z,, forms a finite field.
Residue class rings play a crucial role in various
mathematical areas, including coding theory,
computer science, and algebraic graph theory.
Numerous works have explored codes over
residue class rings (1-4). Additionally, several
types of graphs focus exclusively on residue
class rings, such as Grassmann graphs (5,6),
bilinear form graphs (7-9), and symplectic
graphs (10,11). Moreover, Z,s plays an
important role in algebraic structure since it is a
Galois ring, a finite chain ring, a principal ideal
ring, and a commutative local ring (12-15).
The ideals of Z,s are in the chain

{0} = pSZps c ps_lzps c.-c prs [ Zps.
It is clear that pZ,s is the unique maximal ideal

of Zys, which is denoted by J,s. Note that /s =
{0} if and only if s = 1. Also, u is a unit in Zps

if and only if u & J,,s. Moreover, |p'Zs| = p>~
foralli=0,1,...,s.

Let n be a positive integer. Consider
the Z,s-module Zs. The zero vector in Zys is
denoted by 0. A set {#;, s, ..., ¥} Of vectors in
Zys is said to be linearly independent if for any
Ay, 0, ey @y N Lps, a1y + apiy + o +
amim =0 implies a; =a, = - =a, = 0.
The dimension of a submodule X of ng, denoted
by dim(X), is the number of vectors in a linearly
independent subset of X with maximum
cardinality. For vectors Xy, Xy, ..., X, In ng, one
can show that the set {a;%; +a,%, + -+
QX | @; € Lys} is @ submodule of Zjs which
is denoted by (X;,%5,..,%m). If X=
(%1, %5, ., Xy ) is the submodule of ng of
dimension m generated by a linearly
independent set {¥;, X,, ..., X, }, then X is called
an m-subspace or subspace of Z;‘s, and the set
{%,, %5, ..., X%} is called a basis of X. The 0-
subspace is defined to be {0} with a basis @.
In addition, subspaces of ng are also referred to
as free submodules and free linear codes. It is
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worth noting that when s = 1, the subspaces of
the Zps-module Zps coincide with the usual
subspaces of a vector space Zj; over the field Z,,.
Note that the module Z;‘s possesses a standard
basis {&,, €,, ..., €,} Where &; = (e, €j2, ---, €in)
with e; = 1and e;; = 0 forall i # j. Therefore,
dim(Z;s) =n.

Next, Huang et al. (6) introduced the
concept of joins of two subspaces. Let X and Y
be subspaces of Z’;s. Ajoin of X and Y is defined
to be a subspace of Z;,s containing both X and Y.
A minimum join is a join with minimum
dimension. The set of minimum joins of X and
Y, denoted by X v Y. We write dim(X v Y) for
the dimension of a minimum join of X and Y. If
Z is the unique minimum join of X and Y, that is,
XvY={Z}, we write XVvY=Z for
convenience.

According to the various properties of
residue class rings, this paper aims to present
some fundamental properties of submodules,
subspaces and joins of two subspaces of Zjs. Our
findings contribute to deeper understanding of
these algebraic structures and their applications
in various mathematical areas.

2. Main Results

In this section, we first present some
properties of submodules and subspaces of Z;}s
regarding their dimensions. Next, we study some
properties of joins of two subspaces. Some
examples are also provided.
Proposition 2.1 If X is an m-subspace of Zys,

then |X| = p™.

Proof. Assume that X is an m-subspace of ng
with a basis {X;, X5, ..., Xn }. Let X € X. Suppose
that X = a;X; + ayX, + - + amXy, = byX; +

byXy + -+ + by X, fOr some a;, b; € Zys. It
follows that (a, — by)X; + (ay — by)X, + -+
(@m — by)%m = 0. Since (%, %y, .., X} is
linearly independent, we obtain that a; = b; for
all i =1,2,...,m. This implies that any X in X
can be uniquely expressed as X = a;¥; +
A%, + -+ amXm, Where a; € Zys. Hence,
any X in X depends on the unique choices of
{ai,ay, ..., an}. Since there are p* choices for
each a; where i =1,2,...,m, the number of
vectors in X is (p*)™ = ps™. O

Example 1 In Z2, X = {(1,2), (1,0)) = {(0,0),
(1,0), (2,0), (3,0), (0,2), (1,2),(2,2),(3,2)} is
a submodule of ZZ but it is not a subspace of Z2
since |X| = 22™ for any positive integer m, by

Proposition 2.1.

We see that a submodule of ng may
not be a subspace, although it has a dimension.
However, if X is a submodule (which may not be
a subspace) of Zps with dim(X) =m, then
X contains an m-subspace of ng. This is proved
in the following proposition.

Proposition 2.2 If X is a submodule of Zs with

dim(X) = m, then X contains an m-subspace of
Z7%.
14

Proof. Assume that X is a submodule of Z;s with
dim(X) = m. Let {¥;, %, ..., X} be a linearly
independent set in X with maximum cardinality.
Then Y = (¥, %5, ..., X,) is an m-subspace of
ng. Thus, X contains an m-subspace Y. O

Furthermore, we obtain the following
proposition.

Proposition 2.3 Let X and Y be submodules of
Zys such that X < Y. Then:

1. dim(X) < dim(Y).

2. If Y isasubspace and dim(X) = dim(Y), then
X =Y.

Proof. 1. Suppose that dim(X) = m. Then there
exists a linearly independent set S of X with
|S| = m. Since X €'Y, it follows that S is a
linearly independent subset of Y. Thus,
dim(Y) = |S| =m. Therefore, dim(X) <
dim(Y).

2. Assume that Y is a subspace and dim(X) =
dim(Y) = m. By Proposition 2.1, we obtain that
Y] = p"™. Since X is a submodule with
dim(X) = m, by Proposition 2.2, X contains an
m-subspace Z of Z,s. Again, by Proposition 2.1,
|Z| = p5™. Now, observe that Z < X Y, and
|Z] = p5™ = |Y|. Therefore, X = Y. O

Since dim(Zjys) = n, we immediatly
obtain the following corollary.
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Corollary 2.4 If X is a submodule of Z;}s, then
dim(X) < n.

Example 2 Consider a submodule X =
{(1,2), (1,0)) of Z2. Note that Example 1 shows
that X is not a subspace. However, its dimension
always exists. To find it, we note that dim(X) <
2 by Corollary 2.4. Suppose that dim(X) = 2.
Let {¥,7} be a linearly independent set in X.
Then Z = (%,y) is a 2-subspace of Z2. By
Proposition 2.1, |Z| =16. It follows that
16 =|Z| < |X| =8, a contradiction. Thus,
dim(X) < 2. Note that {(1,0)} is a linearly
independent set in X. Therefore, dim(X) = 1.

We next characterize submodules with
dimension 0. The following lemma is necessary
for this purpose.

Lemma2.5 (16) Let X = (x1, X, ..., Xp) € Zps.
Then {x} is a linearly independent set if and only
if x; & Jps forsome j € (1,2, ...,n}.

Theorem 2.6 Let X be a submodule of ng. Then
dim(X) = 0 if and only if X < s, where Js =
{(a1,az,...,an) | a; € Jps}.

Proof. Assume that dim(X) =0. Let ¥ =
(x4, %2, ..., xn) € X. Suppose x; & J,s for some
i €{1,2,...,n}. By Lemma 2.5, {X} is a linearly
independent set in X. Then dim(X) = 1, which
is a contradiction. Thus, x; € J,s for all i =
1,2,...,n. Hence, X € J,s. Therefore, X < J .
Conversely, assume that dim(X) > 0.
Then there exists a linearly independent vector
X = (x1,%p, .., %) in X. By Lemma 2.5, x; ¢
Jps for some j € {1,2,..,n}. Hence, X & Jys.
Thus, X & Jps. O

Proposition 2.7 Let X and Y be distinct
subspaces of Zys. If dim(X) = dim(Y) =m >
0,thendim(X NY) < m.

Proof. Assume that dim(X) = dim(Y) =m >
0. Since X nY is a submodule of X and Y, we
obtain  thatdim(X NnY) < dim(X) <m by
Proposition 2.3 (1). Suppose dim(X NY) = m.
According to Proposition 2.3 (2), we obtain that
X =X nNnY =Y,acontradiction. Thus, dim(X n
Y)<m. O

Next, we study some properties of
joins of subspaces. Recall that a join of two
subspaces X and Y is a subspace of Z;‘s
containing both X and Y. In general, a join is not
necessarily unique.

Example 3 Consider subspaces of Z3.

1. Let X=¢((0,0,1)) and Y =((0,2,1))be
subspaces in Z3. Then ((0,0,1),(0,1,0)) and
{((0,0,1),(2,1,0)) are the minimum joins of X
andY,i.e.,

X VY ={{0,0,1),(0,1,0)),((0,0,1), (2,1,0))}.
It follows that dim(X v Y) = 2.

2. 1f X = ((0,0,1)) and Y = ((1,2,0)), then X v
Y =((2,0,1),(1,2,0)), so that dim(X vVY) = 2.
3. If X =((0,0,1)) and Y = ((0,1,2), (1,0,0)),
thenX vY =73, so that dim(X vY) = 3.

Note that for submodules X and Y of
Zys, X+Y={{+y|X€Xandy€EY} is a
submodule of Zys. Moreover, it is the unique join
when s =1 as illustrated in the following
proposition.

Proposition 2.8 If X and Y are subspaces of Z7,
thenXvY =X+Y.

Proof. It is clear that X + Y is a subspace of Z3
containing X and Y. Then X +Y is a join of X
and Y. Also, if W is a minimum join of X and Y,
then X +Y = W. It implies that X +Y is the
unique minimum join. Asaresult, XvY =X +
Y. O

More properties on X v Y are studied
as follows.

Theorem 2.9 Let X and Y be subspaces of Zs.

Then dim(XVvY)=n if and only if XVvY =
Zns.
P

Proof. It is clear that, if X VY = Zjs, then
dim(X VY) = n. Assume that dim(X VY) = n.
Let W be a minimum join of X and Y. Then
dim(W) = n. Since W is an n-subspace of ZZS,
it follows from Proposition 2.3 (2) that W = ng.
Thus, X VY = ng. O
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Proposition 2.10 Let X and Y be subspaces of
Zys such that X < Y. Then:

1.Xvy=vY.

2. dim(X v Z) < dim(Y Vv Z) for all subspace Z
of Zys.

Proof. 1. Since X € Y, it is evident that Y is a
subspace containing both of X and Y with the
minimum dimension. That is, YeXV Y.
Therefore, dim(X vY) =dim(Y). Suppose
there is another minimum join, denoted as W, of
XandY. ThenY € W. As dim(Y) = dim(X v
Y) = dim(W), by Proposition 2.3 (2), Y = W.
Thus, Y is the unique maximum join of X and Y,
e, XvYy =Y.

2. Let Z be a subspace of ZZS. Assume that W €
Y Vv Z, ie., W isasubspace containing Y and Z,
and dim(W) =dim(Y v Z). Since X CY, it
implies that W is a join of X and Z. Then
dim(X v Z) < dim(W) = dim(Y v 2). O

Proposition 2.11 If X, X', Y and Y’ are subspaces
of ng such that X €X' and Y €Y', then

dim(X v Y) < dim(X’ v Y").

Proof. Assume X €X' and YCSVY' Let Z' €
X'vY'. Then XcX'cZ and YCVY' €7,
ie,Z'isajoinof Xand Y. Now, letZ e X vY.

Thus, dim(X VY) = dim(Z) < dim(Z") =
dim(X' v Y’). O

In conclusion, the study of subspaces
over residue class rings enhances our

understanding of linear algebra in modular
arithmetic. In addition, submodules and
subspaces are known as linear codes and free
linear codes in coding theory, respectively.
Therefore, this knowledge is crucial for
applications such as error-correcting codes and
cryptography. Future research could explore
more advanced properties of these subspaces and
their practical implications.
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