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Abstract 

Let ℤ𝑝𝑠  denote the residue class ring where 𝑝 is a prime number and 𝑠 is a positive integer. 

For 𝑛 ≥ 1, a free submodule of the ℤ𝑝𝑠-module ℤ𝑝𝑠
𝑛

 that has a basis is called a subspace of ℤ𝑝𝑠
𝑛

.  In this 

paper, we present some properties of subspaces regarding their dimensions and the joins of subspaces 

of ℤ𝑝𝑠
𝑛

. 
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1. Introduction  

Let 𝑝 be a prime number and 𝑠 a 

positive integer. The ring ℤ𝑝𝑠 of integers modulo 

𝑝𝑠 is known as the residue class ring. In 

particular, when 𝑠 = 1, ℤ𝑝 forms a finite field. 

Residue class rings play a crucial role in various 

mathematical areas, including coding theory, 

computer science, and algebraic graph theory. 

Numerous works have explored codes over 

residue class rings (1-4). Additionally, several 

types of graphs focus exclusively on residue 

class rings, such as Grassmann graphs (5,6), 

bilinear form graphs (7-9), and symplectic 

graphs (10,11). Moreover, ℤ𝑝𝑠  plays an 

important role in algebraic structure since it is a 

Galois ring, a finite chain ring, a principal ideal 

ring, and a commutative local ring (12-15).            

The ideals of ℤ𝑝𝑠 are in the chain 

{0} = 𝑝𝑠ℤ𝑝𝑠 ⊊ 𝑝𝑠−1ℤ𝑝𝑠 ⊊ ⋯ ⊊ 𝑝ℤ𝑝𝑠 ⊊ ℤ𝑝𝑠. 

It is clear that 𝑝ℤ𝑝𝑠 is the unique maximal ideal 

of ℤ𝑝𝑠, which is denoted by 𝐽𝑝𝑠. Note that 𝐽𝑝𝑠 =

{0} if and only if 𝑠 = 1. Also, 𝑢 is a unit in ℤ𝑝𝑠 

if and only if 𝑢 ∉ 𝐽𝑝𝑠. Moreover, |𝑝𝑖ℤ𝑝𝑠| = 𝑝𝑠−𝑖 

for all 𝑖 = 0,1,… , 𝑠. 

Let 𝑛 be a positive integer. Consider 

the ℤ𝑝𝑠-module ℤ𝑝𝑠
𝑛 . The zero vector in ℤ𝑝𝑠

𝑛
 is 

denoted by  0⃗ . A set {𝑥 1, 𝑥 2, … , 𝑥 𝑚} of vectors in 

ℤ𝑝𝑠
𝑛  is said to be linearly independent if for any 

𝑎1, 𝑎2, … , 𝑎𝑚 in ℤ𝑝𝑠, 𝑎1𝑥 1 + 𝑎2𝑥 2 + ⋯+

𝑎𝑚𝑥 𝑚 = 0⃗  implies 𝑎1 = 𝑎2 = ⋯ = 𝑎𝑚 = 0. 

The dimension of a submodule 𝑋 of ℤ𝑝𝑠
𝑛 , denoted 

by dim(𝑋), is the number of vectors in a linearly 

independent subset of 𝑋 with maximum 

cardinality. For vectors 𝑥 1, 𝑥 2, … , 𝑥 𝑚 in ℤ𝑝𝑠
𝑛 , one 

can show that the set {𝑎1𝑥 1 + 𝑎2𝑥 2 + ⋯+
𝑎𝑚𝑥 𝑚 | 𝑎𝑖 ∈ ℤ𝑝𝑠} is a submodule of ℤ𝑝𝑠

𝑛  which 

is denoted by ⟨𝑥 1, 𝑥 2, … , 𝑥 𝑚 ⟩.  If 𝑋 =
⟨𝑥 1, 𝑥 2, … , 𝑥 𝑚 ⟩ is the submodule of ℤ𝑝𝑠

𝑛  of 

dimension 𝑚 generated by a linearly 

independent set {𝑥 1, 𝑥 2, … , 𝑥 𝑚}, then 𝑋 is called 

an 𝑚-subspace or subspace of ℤ𝑝𝑠
𝑛 , and the set 

{𝑥 1, 𝑥 2, … , 𝑥 𝑚} is called a basis of 𝑋. The 0-

subspace is defined to be  {0⃗ } with a basis ∅.               

In addition, subspaces of ℤ𝑝𝑠
𝑛  are also referred to 

as free submodules and free linear codes. It is 
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worth noting that when 𝑠 = 1, the subspaces of 

the ℤ𝑝𝑠-module ℤ𝑝𝑠
𝑛  coincide with the usual 

subspaces of a vector space ℤ𝑝
𝑛 over the field ℤ𝑝.  

Note that the module ℤ𝑝𝑠
𝑛  possesses a standard 

basis {𝑒 1, 𝑒 2, … , 𝑒 𝑛} where 𝑒 𝑖 = (𝑒𝑖1, 𝑒𝑖2, … , 𝑒𝑖𝑛) 

with 𝑒𝑖𝑖 = 1 and 𝑒𝑖𝑗 = 0 for all 𝑖 ≠ 𝑗. Therefore, 

dim(ℤ𝑝𝑠
𝑛 ) = 𝑛. 

Next, Huang et al. (6) introduced the 

concept of joins of two subspaces. Let 𝑋 and 𝑌 

be subspaces of ℤ𝑝𝑠
𝑛 .  A join of 𝑋 and 𝑌 is defined 

to be a subspace of ℤ𝑝𝑠
𝑛  containing both 𝑋 and 𝑌. 

A minimum join is a join with minimum 

dimension. The set of minimum joins of 𝑋 and 

𝑌, denoted by 𝑋 ∨ 𝑌. We write dim(𝑋 ∨ 𝑌) for 

the dimension of a minimum join of 𝑋 and 𝑌. If 

𝑍 is the unique minimum join of 𝑋 and 𝑌, that is, 

𝑋 ∨ 𝑌 = {𝑍}, we write 𝑋 ∨ 𝑌 = 𝑍 for 

convenience.  

According to the various properties of 

residue class rings, this paper aims to present 

some fundamental properties of submodules, 

subspaces and joins of two subspaces of ℤ𝑝𝑠
𝑛 . Our 

findings contribute to deeper understanding of 

these algebraic structures and their applications 

in various mathematical areas. 

2. Main Results 

In this section, we first present some 

properties of submodules and subspaces of ℤ𝑝𝑠
𝑛  

regarding their dimensions. Next, we study some 

properties of joins of two subspaces. Some 

examples are also provided. 

Proposition 2.1 If 𝑋 is an 𝑚-subspace of ℤ𝑝𝑠
𝑛 , 

then |𝑋| = 𝑝𝑠𝑚. 

Proof. Assume that 𝑋 is an 𝑚-subspace of ℤ𝑝𝑠
𝑛  

with a basis {𝑥 1, 𝑥 2, … , 𝑥 𝑚}. Let  𝑥 ∈ 𝑋. Suppose 

that 𝑥 = 𝑎1𝑥 1 + 𝑎2𝑥 2 + ⋯+ 𝑎𝑚𝑥 𝑚 = 𝑏1𝑥 1 +
𝑏2𝑥 2 + ⋯+ 𝑏𝑚𝑥 𝑚 for some 𝑎𝑖 , 𝑏𝑖 ∈  ℤ𝑝𝑠. It 

follows that (𝑎1 − 𝑏1)𝑥 1 + (𝑎2 − 𝑏2)𝑥 2 + ⋯+

(𝑎𝑚 − 𝑏𝑚)𝑥 𝑚 = 0⃗ . Since {𝑥 1, 𝑥 2, … , 𝑥 𝑚} is 

linearly independent, we obtain that 𝑎𝑖 = 𝑏𝑖 for 

all 𝑖 = 1,2,… ,𝑚. This implies that any 𝑥  in 𝑋 

can be uniquely expressed as 𝑥 =  𝑎1𝑥 1 +
𝑎2𝑥 2 + ⋯+ 𝑎𝑚𝑥 𝑚, where 𝑎𝑖 ∈ ℤ𝑝𝑠. Hence, 

any  𝑥  in 𝑋 depends on the unique choices of 

{𝑎1, 𝑎2, … , 𝑎𝑚}. Since there are 𝑝𝑠 choices for 

each 𝑎𝑖 where 𝑖 = 1,2, … ,𝑚, the number of 

vectors in 𝑋 is (𝑝𝑠)𝑚 = 𝑝𝑠𝑚.                              

Example 1 In ℤ4
2, 𝑋 = ⟨(1,2), (1,0)⟩ = {(0,0), 

 (1,0), (2,0), (3,0), (0,2), (1,2), (2,2), (3,2)} is 

a submodule of ℤ4
2 but it is not a subspace of ℤ4

2 

since |𝑋| ≠ 22𝑚 for any positive integer 𝑚, by 

Proposition 2.1. 

We see that a submodule of ℤ𝑝𝑠
𝑛  may 

not be a subspace, although it has a dimension. 

However, if 𝑋 is a submodule (which may not be 

a subspace) of ℤ𝑝𝑠
𝑛  with dim(𝑋) = 𝑚, then 

𝑋 contains an 𝑚-subspace of ℤ𝑝𝑠
𝑛 . This is proved 

in the following proposition. 

Proposition 2.2 If 𝑋 is a submodule of ℤ𝑝𝑠
𝑛  with 

dim(𝑋) = 𝑚, then 𝑋 contains an 𝑚-subspace of 

ℤ𝑝𝑠
𝑛 . 

Proof. Assume that 𝑋 is a submodule of ℤ𝑝𝑠
𝑛  with 

dim(𝑋) = 𝑚. Let {𝑥 1, 𝑥 2, … , 𝑥 𝑚} be a linearly 

independent set in 𝑋 with maximum cardinality. 

Then 𝑌 = ⟨𝑥 1, 𝑥 2, … , 𝑥 𝑚⟩ is an 𝑚-subspace of 

ℤ𝑝𝑠
𝑛 . Thus, 𝑋 contains an 𝑚-subspace 𝑌.          

Furthermore, we obtain the following 

proposition. 

Proposition 2.3 Let 𝑋 and 𝑌 be submodules of 

ℤ𝑝𝑠
𝑛  such that 𝑋 ⊆  𝑌. Then: 

1. dim(𝑋) ≤ dim(𝑌). 

2. If 𝑌 is a subspace and dim(𝑋) = dim(𝑌), then 

𝑋 = 𝑌. 

Proof. 1. Suppose that dim(𝑋) = 𝑚. Then there 

exists a linearly independent set 𝑆 of 𝑋 with 

|𝑆| = 𝑚. Since 𝑋 ⊆ 𝑌, it follows that 𝑆 is a 

linearly independent subset of 𝑌. Thus, 

dim(𝑌) ≥ |𝑆| = 𝑚. Therefore, dim(𝑋) ≤
dim(𝑌).               

2. Assume that 𝑌 is a subspace and dim(𝑋) =
dim(𝑌) = 𝑚. By Proposition 2.1, we obtain that 

|𝑌|  =  𝑝𝑠𝑚. Since 𝑋 is a submodule with 

dim(𝑋) = 𝑚, by Proposition 2.2, 𝑋 contains an 

𝑚-subspace 𝑍 of ℤ𝑝𝑠
𝑛 . Again, by Proposition 2.1,  

|𝑍| = 𝑝𝑠𝑚. Now, observe that 𝑍 ⊆ 𝑋 ⊆ 𝑌, and 

|𝑍| = 𝑝𝑠𝑚 = |𝑌|. Therefore, 𝑋 =  𝑌.           

Since dim(ℤ𝑝𝑠
𝑛 ) = 𝑛, we immediatly 

obtain the following corollary.
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Corollary 2.4 If 𝑋 is a submodule of ℤ𝑝𝑠
𝑛 , then 

dim(𝑋) ≤ 𝑛. 

Example 2 Consider a submodule 𝑋 =
⟨(1,2), (1,0)⟩ of ℤ4

2. Note that Example 1 shows 

that 𝑋 is not a subspace. However, its dimension 

always exists. To find it, we note that dim(𝑋) ≤
2 by Corollary 2.4. Suppose that dim(𝑋) = 2. 

Let {𝑥 , 𝑦 } be a linearly independent set in 𝑋. 

Then 𝑍 = ⟨𝑥 , 𝑦 ⟩ is a 2-subspace of ℤ4
2. By 

Proposition 2.1, |𝑍| = 16. It follows that  

16 = |𝑍| ≤ |𝑋| = 8, a contradiction. Thus, 

dim(𝑋) ≤ 2. Note that {(1,0)} is a linearly 

independent set in 𝑋. Therefore, dim(𝑋) = 1. 

We next characterize submodules with 

dimension 0. The following lemma is necessary 

for this purpose. 

Lemma 2.5 (16) Let  𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈  ℤ𝑝𝑠
𝑛 . 

Then {𝑥 } is a linearly independent set if and only 

if 𝑥𝑗 ∉ 𝐽𝑝𝑠  for some 𝑗 ∈ {1,2,… , 𝑛}. 

Theorem 2.6 Let 𝑋 be a submodule of ℤ𝑝𝑠
𝑛 . Then  

dim(𝑋) = 0 if and only if 𝑋 ⊆ 𝐽𝑝𝑠
𝑛 , where 𝐽𝑝𝑠

𝑛 =

{(𝑎1, 𝑎2, … , 𝑎𝑛) ∣ 𝑎𝑖 ∈  𝐽𝑝𝑠}. 

Proof. Assume that dim(𝑋) = 0. Let 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋. Suppose 𝑥𝑖 ∉ 𝐽𝑝𝑠 for some 

𝑖 ∈ {1,2,… , 𝑛}. By Lemma 2.5, {𝑥 } is a linearly 

independent set in 𝑋. Then dim(𝑋) ≥ 1, which 

is a contradiction. Thus, 𝑥𝑖 ∈ 𝐽𝑝𝑠 for all 𝑖 =

 1,2,… , 𝑛. Hence,  𝑥 ∈ 𝐽𝑝𝑠
𝑛 . Therefore, 𝑋 ⊆ 𝐽𝑝𝑠

𝑛 .  

Conversely, assume that dim(𝑋) > 0. 

Then there exists a linearly independent vector 

𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) in 𝑋. By Lemma 2.5, 𝑥𝑗 ∉

𝐽𝑝𝑠 for some 𝑗 ∈ {1,2,… , 𝑛}. Hence,  𝑥 ∉ 𝐽𝑝𝑠
𝑛 . 

Thus, 𝑋 ⊈ 𝐽𝑝𝑠
𝑛 .                

Proposition 2.7 Let 𝑋 and 𝑌 be distinct 

subspaces of ℤ𝑝𝑠
𝑛 . If dim(𝑋) = dim(𝑌) = 𝑚 >

0, then dim(𝑋 ∩ 𝑌) < 𝑚. 

Proof. Assume that dim(𝑋) = dim(𝑌) = 𝑚 >
0. Since 𝑋 ∩ 𝑌 is a submodule of 𝑋 and 𝑌, we 

obtain that dim(𝑋 ∩ 𝑌) ≤ dim(𝑋) ≤ 𝑚 by 

Proposition 2.3 (1). Suppose dim(𝑋 ∩ 𝑌) = 𝑚. 

According to Proposition 2.3 (2), we obtain that 

𝑋 = 𝑋 ∩ 𝑌 = 𝑌, a contradiction. Thus, dim(𝑋 ∩
𝑌) < 𝑚.            

Next, we study some properties of 

joins of subspaces. Recall that a join of two 

subspaces 𝑋 and 𝑌 is a subspace of ℤ𝑝𝑠
𝑛  

containing both 𝑋 and 𝑌. In general, a join is not 

necessarily unique. 

Example 3 Consider subspaces of ℤ4
3. 

1. Let 𝑋 = ⟨(0,0,1)⟩ and 𝑌 = ⟨(0,2,1)⟩ be 

subspaces in ℤ4
3. Then ⟨(0,0,1), (0,1,0)⟩ and 

⟨(0,0,1), (2,1,0)⟩ are the minimum joins of 𝑋 

and 𝑌, i.e., 

𝑋 ∨ 𝑌 = {⟨(0,0,1), (0,1,0)⟩, ⟨(0,0,1), (2,1,0)⟩}. 
It follows that dim(𝑋 ∨ 𝑌) = 2. 

2. If 𝑋 = ⟨(0,0,1)⟩ and 𝑌 = ⟨(1,2,0)⟩, then 𝑋 ∨
𝑌 = ⟨(2,0,1), (1,2,0)⟩, so that  dim(𝑋 ∨ 𝑌) = 2. 

3. If 𝑋 = ⟨(0,0,1)⟩ and 𝑌 = ⟨(0,1,2), (1,0,0)⟩, 
then 𝑋 ∨ 𝑌 = ℤ4

3, so that dim(𝑋 ∨ 𝑌) = 3. 

Note that for submodules 𝑋 and 𝑌 of  

ℤ𝑝𝑠
𝑛 , 𝑋 + 𝑌 = {𝑥 + 𝑦  | 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌} is a 

submodule of ℤ𝑝𝑠
𝑛 . Moreover, it is the unique join 

when 𝑠 = 1 as illustrated in the following 

proposition. 

Proposition 2.8 If 𝑋 and 𝑌 are subspaces of ℤ𝑝
𝑛, 

then 𝑋 ∨ 𝑌 = 𝑋 + 𝑌. 

Proof. It is clear that 𝑋 + 𝑌 is a subspace of ℤ𝑝
𝑛 

containing 𝑋 and 𝑌. Then 𝑋 + 𝑌 is a join of 𝑋 

and 𝑌. Also, if 𝑊 is a minimum join of  𝑋 and 𝑌, 

then 𝑋 + 𝑌 = 𝑊. It implies that 𝑋 + 𝑌 is the 

unique minimum join. As a result, 𝑋 ∨ 𝑌 = 𝑋 +
𝑌.                

More properties on 𝑋 ∨ 𝑌 are studied 

as follows. 

Theorem 2.9 Let 𝑋 and 𝑌 be subspaces of ℤ𝑝𝑠
𝑛 . 

Then dim(𝑋 ∨ 𝑌) = 𝑛 if and only if 𝑋 ∨ 𝑌 =
 ℤ𝑝𝑠

𝑛 . 

Proof. It is clear that, if 𝑋 ∨ 𝑌 =  ℤ𝑝𝑠
𝑛 , then 

dim(𝑋 ∨ 𝑌) = 𝑛. Assume that dim(𝑋 ∨ 𝑌) = 𝑛. 

Let 𝑊 be a minimum join of 𝑋 and 𝑌. Then 

dim(𝑊) = 𝑛. Since 𝑊 is an 𝑛-subspace of ℤ𝑝𝑠
𝑛 , 

it follows from Proposition 2.3 (2) that 𝑊 = ℤ𝑝𝑠
𝑛 . 

Thus, 𝑋 ∨ 𝑌 = ℤ𝑝𝑠
𝑛 .            
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Proposition 2.10 Let 𝑋 and 𝑌 be subspaces of 

ℤ𝑝𝑠
𝑛  such that 𝑋 ⊆  𝑌. Then: 

1. 𝑋 ∨ 𝑌 = 𝑌. 

2. dim(𝑋 ∨ 𝑍) ≤ dim(𝑌 ∨ 𝑍) for all subspace 𝑍 

of ℤ𝑝𝑠
𝑛 . 

Proof. 1. Since 𝑋 ⊆ 𝑌, it is evident that 𝑌 is a 

subspace containing both of 𝑋 and 𝑌 with the 

minimum dimension. That is, 𝑌 ∈ 𝑋 ∨  𝑌. 

Therefore, dim(𝑋 ∨ 𝑌) = dim(𝑌). Suppose 

there is another minimum join, denoted as 𝑊, of 

𝑋 and 𝑌. Then 𝑌 ⊆ 𝑊. As dim(𝑌) = dim(𝑋 ∨
𝑌) = dim(𝑊), by Proposition 2.3 (2), 𝑌 =  𝑊. 

Thus, 𝑌 is the unique maximum join of 𝑋 and 𝑌, 

i.e., 𝑋 ∨ 𝑌 = 𝑌.              

2. Let 𝑍 be a subspace of ℤ𝑝𝑠
𝑛 . Assume that 𝑊 ∈

𝑌 ∨ 𝑍, i.e., 𝑊 is a subspace containing 𝑌 and 𝑍, 

and dim(𝑊) = dim(𝑌 ∨ 𝑍). Since 𝑋 ⊆ 𝑌, it 

implies that 𝑊 is a join of 𝑋 and 𝑍. Then 

dim(𝑋 ∨ 𝑍) ≤ dim(𝑊) = dim(𝑌 ∨ 𝑍).          

Proposition 2.11 If 𝑋,𝑋′, 𝑌 and 𝑌′ are subspaces 

of ℤ𝑝𝑠
𝑛  such that 𝑋 ⊆ 𝑋′ and 𝑌 ⊆ 𝑌′, then 

dim(𝑋 ∨ 𝑌) ≤ dim(𝑋′ ∨ 𝑌′). 

Proof. Assume 𝑋 ⊆ 𝑋′ and 𝑌 ⊆ 𝑌′. Let 𝑍′ ∈
 𝑋′ ∨ 𝑌′. Then 𝑋 ⊆ 𝑋′ ⊆ 𝑍′ and 𝑌 ⊆ 𝑌′ ⊆ 𝑍′, 
i.e., 𝑍′ is a join of 𝑋 and 𝑌. Now, let 𝑍 ∈ 𝑋 ∨ 𝑌. 

Thus, dim(𝑋 ∨ 𝑌) = dim(𝑍) ≤ dim(𝑍′) =
dim(𝑋′ ∨ 𝑌′).              

In conclusion, the study of subspaces 

over residue class rings enhances our 

understanding of linear algebra in modular 

arithmetic. In addition, submodules and 

subspaces are known as linear codes and free 

linear codes in coding theory, respectively. 

Therefore, this knowledge is crucial for 

applications such as error-correcting codes and 

cryptography. Future research could explore 

more advanced properties of these subspaces and 

their practical implications. 
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