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Abstract
In 2023, Wongsanurak and Duangdai found all positive integer solutions of the Diophantine

1 01 1 1
equation— + - + —
w x y z

u . . .
-= m,when w, x,y,z and u are positive integerswithw < x <y <z<9

and u < 9. In this work, by using an elementary approach, we solved the Diophantine equation for any
positive integer u and 5 < w < x <y < z. The results of the research found that the Diophantine
equation under the above conditions has twenty-seven positive integer solutions.

Keywords: Diophantine Equation, Positive Integer Solution

1. Introduction
In 2013, Sandor (1) found all positive

integer solutions of the Diophantine equation

1.1 1 1
-+ —+-==.1n 2021, Zhao, Lu and Wang
X y z 2

(2) discovered some conditions for the non-
existing of positive integer solutions for the

1,1, 1
Diophantine equation — + — + - = 2 , Where
x ¥y Zz 14

a is a positive integer and p is a prime number.

In 2021, Sandor and Atanassov (3) proved that
1,1 1

the Diophantine equation —+ — + - = =
x y z u+1

has forty-four positive integer solutions. In 2023,

Tadee and Poopra (4) studied and found that the
1,1, 1 1

Diophantine equation —+—+- == has
x y z 3

twenty-one positive integer solutions. In 2024,

Tadee (5) proved that the Diophantine equation
1,1 1 u . .

* + 5 + Py has eighty-seven positive
integer solutions. In 2024, by using elementary

methods, Yuan (6) gave the general solution

expressions for all positive integer solutions of
11,1 _ 4
the Diophantine equation— + — + - = —.
x y z n
Meanwhile, in 2018, Bai (7) provided

the positive integer solutions of the Diophantine
1,1 1 1 1

equation — + — + — +— = — . After that, in
w x y z 2

2022, Atri (8) showed some solutions of the
Diophantine equation L + 2 + & + 1=1 .In
w x y z 4
2023, Wongsanurak and Duangdai (9) gave all
positive integer solutions of the Diophantine
equation L + 1 + 1 + E_ , Where w, x,

w x ¥y z u+1
y,z and u are positive integers with w < x <
y<z<9andu <9.

From Wongsanurak and Duangdai’s
research study, it makes us interested in finding
the positive integer solutions to the Diophantine
equation 1 + 1 + 1 + 12 , Where w, x,

w x ¥y z u+1
y,z and u are positive integers with 5 <w <

x<y<z
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2. Main Results
In this research, we find all positive
integer solutions of the Diophantine equation

+otipo= 1)

1
w y 4 u+1

where w, x, y, z and u are positive integers with
5<sw<x<y<zThen

u
> —_
= 1 or(w—4)u < 4. (2.2)

Therefore w < 8. Since 5 < w, it implies that
5 < w < 8. We consider the following cases:

Case 1. w = 5. From (2.2), we have u < 4.
Case 1.1 u = 1. From (2.1), we get

Syipiz=2 23)
X y z

. . 3 3
Since x < y < z, we obtain that " = o and so
x < 10. Sincew < x, we have 5 < x. Therefore
5<x<10.

Case 1.1.1 x = 5. From (2.3), we get

+o==. 2.4)

. 2 1
Sincey < z, we have 5 = o and soy < 20.

1 1
From (2.4), it implies that 5 < o 11<y.

Substituting 11 <y <20 in (24) and to
consider the value z, which is a positive integer,
we obtain that the positive integer solutions
w,x,y,z,u) are (5,5,11,110, 1),
(5,5,12,60,1), (5,5,14,35,1),
(5,5,15,30,1) and (5,5,20,20,1).

Case 1.1.2 x = 6. From (2.3), we get

=2, 25)

+ 15

<L Im
N IR

. 2.2
Since y < z, we have 5 = P and soy < 15.

o 1 2
From (2.5), it implies that 5 < = 8<y.
Substituting 8 < y < 15 in (2.5) and to consider

the value z, which is a positive integer, we obtain
that the positive integer solutions

(w,x,y,z,u) are (5,6,8,120, 1),
(5,6,9,45,1), (5,6,10,30,1),

(5,6,12,20,1) and (5,6,15,15,1).

Case 1.1.3 x = 7. Since x <y, it implies that
7 < y. From (2.3), we get

11

1
+ 2= 70" (2.6)

1
y

. 2 11
Since y < z, we have 5 = o and soy < 12.

Substituting 7 < y < 12 in (2.6) and to consider
the value z, which is a positive integer, we obtain
that the positive integer solution (w, x,y, z, u)
is (5,7,7,70,1).

Case 1.1.4 x = 8. Since x <y, it implies that
8 < y. From (2.3), we get

7
=70 2.7)

+

LR
S

. 2.7
Sincey < z, we have 5 = 0 and soy < 11.

Substituting 8 <y < 11 in(2.7) and to consider
the value z, which is a positive integer, we obtain
that the positive integer solution (w, x,y, z,u) is
(5,8,8,20,1).

Case 1.1.5 x = 9. Since x <y, it implies that
9 < y. From (2.3), we get

17

5 (2.8)

1 1
4=
y  z

. 2 17
Since y < z, we have ; = % and soy < 10.

Substituting 9 < y < 10 in (2.8), we obtain that
the value z is not a positive integer. Thus, in this
case, there is no positive integer solution.

Case 1.1.6 x = 10. Since x < y, it implies that
10 < y. From (2.3), we get

+

N |

§ 2.9)

LR

. 2 1
Since y < z, we have 5 = S and so y < 10.

Substituting y = 10 in (2.9) and to consider the
value z, which is a positive integer, we obtain
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that the positive integer solution (w, x,y, z,u) is
(5,10,10,10,1).

Case 1.2 u = 2. From (2.1), we get

2yi4i=L (2.10)
x y z

. . 3 7
Since x <y < z, we obtain that o = s and so
x < 6. Since w < x, we have 5 < x. Therefore
5<x<6.

Case 1.2.1 x = 5. Since x <y, it implies that
5 < y. From (2.10), we get

=2 2.11)

+ 15

LR
N |-
|

. 2. 4
Since y < z, we have ;ZE and soy <7.

Substituting 5 < y < 7 in (2.11) and to consider
the value z, which is a positive integer, we obtain
that the positive integer solutions (w, x, y, z, u)
are (5,5,5,15,2) and (5,5, 6,10, 2).

Case 1.2.2 x = 6. Since x <y, it implies that
6 < y.From (2.10), we get

1
+o= (2.12)

. 2 3
Since y < z, we have ; = To and soy < 6.

Substituting y = 6 in (2.12), we obtain that the
value z is not a positive integer. Thus, in this
case, there is no positive integer solution.

Case 1.3 u = 3. From (2.1), we get

1,1, 1 _ 11
e s (2.13)
X y z 20

. . 311
Since x < y < z, we obtain that " > %0 and so

x < 5. Since w < x, it implies that 5 < x. Thus
x = 5.Since x < y,we have 5 < y. Substituting
x = 5in (2.13), we get

1
+o= (2.14)

. 2.7
Since y < z, we have 5 = % and so y < 5.

Substituting y = 5 in (2.14), we obtain that the
value z is not a positive integer. Thus, in this
case, there is no positive integer solution.

Case 1.4 u = 4. From (2.1), we get
1,1 ,1 3
;+;+;—E. (2.15)

. . 3.3
Since x < y < z, we obtain that " = — and so

w1

x < 5. Since w < x, itimplies that 5 < x. Thus
x = 5.Sincex < y,wehave 5 < y. Substituting
x = 5in (2.15), we get

+

N[ =

%- (2.16)

LR

2.2
Since y < z, we have;ZE and so y <5.
Substituting y = 5 in (2.16), we obtain that the
positive integer solution (w, x, v, z,u) is
(5,5,5,5,4).

Case 2. w = 6. From (2.2), we have u < 2.
Case 2.1 u = 1. From (2.1), we get

1,1 1 1
;+;+;—§. (2.17)
. . 3.1
Since x < y < z, we obtain that o = 3 and so
x < 9. Since w < x, it implies that 6 < x. Thus
6<x<09.
Case 2.1.1 x = 6. From (2.17), we get
1.1 1
-—+-=- (2.18)
y  z 6
. 2 1
Since y < z, we have ; = z and soy < 12.
1

Lo 1
From (2.18), it implies that 5 < zor 7<y.

Substituting 7 <y <12 in (2.18) and to
consider the value z, which is a positive integer,
we obtain that the positive integer solutions
(w,x,y,2z,u) are (6,6,7,42,1), (6,6,8,24,1),
(6,6,9,18,1), (6,6,10,15,1) and
(6,6,12,12,1).
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Case 2.1.2 x = 7. Since x <y, it implies that
7 < y. From (2.17), we get

=2 (2.19)

+ 21

Ik
N |

. 2. 4
Since y < z, we have 5 = o1 and so y < 10.

Substituting 7 <y <10 in (2.19) and to
consider the value z, which is a positive integer,
we obtain that the positive integer solution
w,x,y,z,u)is (6,7,7,21,1).

Case 2.1.3 x = 8. Since x <y, it implies that
8 < y. From (2.17), we get

1
+o=— (2.20)

. 2.5
Since y < z, we have 5 = 22 and soy <9.

Substituting 8 < y < 9 in (2.20) and to consider
the value z, which is a positive integer, we obtain
that the positive integer solution (w, x,y, z,u) is
(6,8,8,12,1).

Case 2.1.4 x = 9. Since x <y, it implies that
9 < y.From (2.17), we get

2
+-=3 (2.21)

<LIr
N IR

2.2
Since y < z, we have ;2 3 and soy <9.
Substituting y = 9 in (2.21), we obtain that the
positive integer solution (w, x, vy, z,u) is
(6,9,9,9,1).
Case 2.2 u = 2. From (2.1), we get
1,1, 1 1
;+;+;_E' (2.22)

. . 3.1
Since x < y < z, we obtain that o = — and so

N

x < 6. Since w < x, it implies that 6 < x. Thus
x=6. Since x <y, it implies that 6 <y.
Substituting x = 6 in (2.22), we get

+

N IR

1
5 (2.23)

LIk

. 2 1
Since y < z, we have 5 = 3 and so y<6.
Substituting y = 6 in (2.23), we obtain that the
positive integer solution (w, x, vy, z,u) is
(6,6,6,6,2).

Case 3. w = 7. From (2.2), we have u = 1.
From (2.1), we get

1 1 1 5
-—+-—-t+-=— (2.24)
x y z 14

. . 3 5
Since x < y < z, we obtain that o > " and so

x < 8. Since w < x, it implies that 7 < x. Thus
7<x<8.

Case3.1x = 7.Since x <y, itimpliesthat 7 <
y. From (2.24), we get

1
+o=—n (2.25)

. 2 3
Since y < z, we have;za and soy <9.

Substituting 7 < y < 9 in (2.25) and to consider
the value z, which is a positive integer, we obtain
that the positive integer solution (w, x,y, z,u) is
(7,7,7,14,1).

Case 3.2 x = 8. Since x < y, it implies that 8 <
y. From (2.24), we get

13

1
+o=— (2.26)

1
y
. 2 13

Since y < z, we have;Zg and so y < 8.

Substituting y = 8 in (2.26), we obtain that the
value z is not a positive integer. Thus, in this
case, there is no positive integer solution.

Case 4. w = 8. From (2.2), we have u = 1.
From (2.1), we get

44l (2.27)
x y z 8

©|w

. . 3
Since x < y < z, we obtain that p = — and so

x < 8. Since w < x, it implies that 8 < x. Then
x = 8.Since x < y, itimplies that 8 < y. From
(2.27), we get
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+

N |-

1
" (2.28)

Ik

. 2 1
Since y < z, we have ;ZZ and so y < 8.

Substituting y = 8 in (2.28), we obtain that the
positive integer solution (w, x, vy, z,u) is
(8,8,8,8,1).

3. Conclusions
In this paper, we give all positive
integer solutions of the Diophantine equation
1,1

1 + LRI - L, where w, x,y,z and u
w x y V4 u+1

are positive integers with 5 <w <x <y <z.
The research found that the positive integer
solutions (w, x, v, z, u) of this equation are
(5,5,11,110,1),(5,5,12,60, 1),
(5,5,14,35,1), (5,5,15,30,1),
(5,5,20,20,1), (5,6,8,120,1),

(5,6,9,45,1), (5,6,10,30,1),

(5,6,12,20,1), (5,6,15,15,1),

(5,7,7,70,1), (5,8,8,20,1),

(5,10,10,10,1), (5,5,5,15,2),

(5,5,6,10,2), (5,5,5,5,4),

(6,6,7,42,1), (6,6,8,24,1),

(6,6,9,18,1), (6,6,10,15,1),

6,6,12,12,1), (6,7,7,21,1),

(6,8,8,12,1), (6,9,9,9,1),
(6,6,6,6,2),(7,7,7,14,1) and (8,8, 8,8, 1).
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