

Research Article

Received: December 18, 2024

Revised: April 23, 2025

Accepted: April 25, 2025

DOI: 10.60101/past.2025.257129

On the Diophantine Equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$

Suton Tadee

*Department of Mathematics, Faculty of Science and Technology,
Thepsatri Rajabhat University, Lopburi 15000, Thailand*

E-mail: suton.t@lawasri.tru.ac.th

Abstract

In 2023, Wongsanurak and Duangdai found all positive integer solutions of the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$, when w, x, y, z and u are positive integers with $w \leq x \leq y \leq z \leq 9$ and $u \leq 9$. In this work, by using an elementary approach, we solved the Diophantine equation for any positive integer u and $5 \leq w \leq x \leq y \leq z$. The results of the research found that the Diophantine equation under the above conditions has twenty-seven positive integer solutions.

Keywords: Diophantine Equation, Positive Integer Solution

1. Introduction

In 2013, Sándor (1) found all positive integer solutions of the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}$. In 2021, Zhao, Lu and Wang (2) discovered some conditions for the non-existing of positive integer solutions for the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{a}{p}$, where a is a positive integer and p is a prime number. In 2021, Sándor and Atanassov (3) proved that the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$ has forty-four positive integer solutions. In 2023, Tadee and Poopra (4) studied and found that the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{3}$ has twenty-one positive integer solutions. In 2024, Tadee (5) proved that the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+2}$ has eighty-seven positive integer solutions. In 2024, by using elementary methods, Yuan (6) gave the general solution

expressions for all positive integer solutions of the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{4}{n}$.

Meanwhile, in 2018, Bai (7) provided the positive integer solutions of the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}$. After that, in 2022, Atri (8) showed some solutions of the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{4}$. In 2023, Wongsanurak and Duangdai (9) gave all positive integer solutions of the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$, where w, x, y, z and u are positive integers with $w \leq x \leq y \leq z \leq 9$ and $u \leq 9$.

From Wongsanurak and Duangdai's research study, it makes us interested in finding the positive integer solutions to the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$, where w, x, y, z and u are positive integers with $5 \leq w \leq x \leq y \leq z$.

2. Main Results

In this research, we find all positive integer solutions of the Diophantine equation

$$\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}, \quad (2.1)$$

where w, x, y, z and u are positive integers with $5 \leq w \leq x \leq y \leq z$. Then

$$\frac{4}{w} \geq \frac{u}{u+1} \text{ or } (w-4)u \leq 4. \quad (2.2)$$

Therefore $w \leq 8$. Since $5 \leq w$, it implies that $5 \leq w \leq 8$. We consider the following cases:

Case 1. $w = 5$. From (2.2), we have $u \leq 4$.

Case 1.1 $u = 1$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{10}. \quad (2.3)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{3}{10}$ and so $x \leq 10$. Since $w \leq x$, we have $5 \leq x$. Therefore $5 \leq x \leq 10$.

Case 1.1.1 $x = 5$. From (2.3), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{1}{10}. \quad (2.4)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{1}{10}$ and so $y \leq 20$.

From (2.4), it implies that $\frac{1}{y} < \frac{1}{10}$ or $11 \leq y$.

Substituting $11 \leq y \leq 20$ in (2.4) and to consider the value z , which is a positive integer, we obtain that the positive integer solutions (w, x, y, z, u) are $(5, 5, 11, 110, 1)$, $(5, 5, 12, 60, 1)$, $(5, 5, 14, 35, 1)$, $(5, 5, 15, 30, 1)$ and $(5, 5, 20, 20, 1)$.

Case 1.1.2 $x = 6$. From (2.3), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{2}{15}. \quad (2.5)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{2}{15}$ and so $y \leq 15$.

From (2.5), it implies that $\frac{1}{y} < \frac{2}{15}$ or $8 \leq y$.

Substituting $8 \leq y \leq 15$ in (2.5) and to consider

the value z , which is a positive integer, we obtain that the positive integer solutions (w, x, y, z, u) are $(5, 6, 8, 120, 1)$, $(5, 6, 9, 45, 1)$, $(5, 6, 10, 30, 1)$, $(5, 6, 12, 20, 1)$ and $(5, 6, 15, 15, 1)$.

Case 1.1.3 $x = 7$. Since $x \leq y$, it implies that $7 \leq y$. From (2.3), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{11}{70}. \quad (2.6)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{11}{70}$ and so $y \leq 12$.

Substituting $7 \leq y \leq 12$ in (2.6) and to consider the value z , which is a positive integer, we obtain that the positive integer solution (w, x, y, z, u) is $(5, 7, 7, 70, 1)$.

Case 1.1.4 $x = 8$. Since $x \leq y$, it implies that $8 \leq y$. From (2.3), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{7}{40}. \quad (2.7)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{7}{40}$ and so $y \leq 11$.

Substituting $8 \leq y \leq 11$ in (2.7) and to consider the value z , which is a positive integer, we obtain that the positive integer solution (w, x, y, z, u) is $(5, 8, 8, 20, 1)$.

Case 1.1.5 $x = 9$. Since $x \leq y$, it implies that $9 \leq y$. From (2.3), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{17}{90}. \quad (2.8)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{17}{90}$ and so $y \leq 10$.

Substituting $9 \leq y \leq 10$ in (2.8), we obtain that the value z is not a positive integer. Thus, in this case, there is no positive integer solution.

Case 1.1.6 $x = 10$. Since $x \leq y$, it implies that $10 \leq y$. From (2.3), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{1}{5}. \quad (2.9)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{1}{5}$ and so $y \leq 10$.

Substituting $y = 10$ in (2.9) and to consider the value z , which is a positive integer, we obtain

that the positive integer solution (w, x, y, z, u) is $(5, 10, 10, 10, 1)$.

Case 1.2 $u = 2$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{7}{15}. \quad (2.10)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{7}{15}$ and so $x \leq 6$. Since $w \leq x$, we have $5 \leq x$. Therefore $5 \leq x \leq 6$.

Case 1.2.1 $x = 5$. Since $x \leq y$, it implies that $5 \leq y$. From (2.10), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{4}{15}. \quad (2.11)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{4}{15}$ and so $y \leq 7$. Substituting $5 \leq y \leq 7$ in (2.11) and to consider the value z , which is a positive integer, we obtain that the positive integer solutions (w, x, y, z, u) are $(5, 5, 5, 15, 2)$ and $(5, 5, 6, 10, 2)$.

Case 1.2.2 $x = 6$. Since $x \leq y$, it implies that $6 \leq y$. From (2.10), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{3}{10}. \quad (2.12)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{3}{10}$ and so $y \leq 6$. Substituting $y = 6$ in (2.12), we obtain that the value z is not a positive integer. Thus, in this case, there is no positive integer solution.

Case 1.3 $u = 3$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{11}{20}. \quad (2.13)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{11}{20}$ and so $x \leq 5$. Since $w \leq x$, it implies that $5 \leq x$. Thus $x = 5$. Since $x \leq y$, we have $5 \leq y$. Substituting $x = 5$ in (2.13), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{7}{20}. \quad (2.14)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{7}{20}$ and so $y \leq 5$.

Substituting $y = 5$ in (2.14), we obtain that the value z is not a positive integer. Thus, in this case, there is no positive integer solution.

Case 1.4 $u = 4$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{5}. \quad (2.15)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{3}{5}$ and so $x \leq 5$. Since $w \leq x$, it implies that $5 \leq x$. Thus $x = 5$. Since $x \leq y$, we have $5 \leq y$. Substituting $x = 5$ in (2.15), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{2}{5}. \quad (2.16)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{2}{5}$ and so $y \leq 5$.

Substituting $y = 5$ in (2.16), we obtain that the positive integer solution (w, x, y, z, u) is $(5, 5, 5, 4)$.

Case 2. $w = 6$. From (2.2), we have $u \leq 2$.

Case 2.1 $u = 1$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{3}. \quad (2.17)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{1}{3}$ and so $x \leq 9$. Since $w \leq x$, it implies that $6 \leq x$. Thus $6 \leq x \leq 9$.

Case 2.1.1 $x = 6$. From (2.17), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{1}{6}. \quad (2.18)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{1}{6}$ and so $y \leq 12$.

From (2.18), it implies that $\frac{1}{y} < \frac{1}{6}$ or $7 \leq y$.

Substituting $7 \leq y \leq 12$ in (2.18) and to consider the value z , which is a positive integer, we obtain that the positive integer solutions (w, x, y, z, u) are $(6, 6, 7, 42, 1)$, $(6, 6, 8, 24, 1)$, $(6, 6, 9, 18, 1)$, $(6, 6, 10, 15, 1)$ and $(6, 6, 12, 12, 1)$.

Case 2.1.2 $x = 7$. Since $x \leq y$, it implies that $7 \leq y$. From (2.17), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{4}{21}. \quad (2.19)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{4}{21}$ and so $y \leq 10$.

Substituting $7 \leq y \leq 10$ in (2.19) and to consider the value z , which is a positive integer, we obtain that the positive integer solution (w, x, y, z, u) is $(6, 7, 7, 21, 1)$.

Case 2.1.3 $x = 8$. Since $x \leq y$, it implies that $8 \leq y$. From (2.17), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{5}{24}. \quad (2.20)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{5}{24}$ and so $y \leq 9$.

Substituting $8 \leq y \leq 9$ in (2.20) and to consider the value z , which is a positive integer, we obtain that the positive integer solution (w, x, y, z, u) is $(6, 8, 8, 12, 1)$.

Case 2.1.4 $x = 9$. Since $x \leq y$, it implies that $9 \leq y$. From (2.17), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{2}{9}. \quad (2.21)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{2}{9}$ and so $y \leq 9$.

Substituting $y = 9$ in (2.21), we obtain that the positive integer solution (w, x, y, z, u) is $(6, 9, 9, 9, 1)$.

Case 2.2 $u = 2$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}. \quad (2.22)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{1}{2}$ and so $x \leq 6$. Since $w \leq x$, it implies that $6 \leq x$. Thus $x = 6$. Since $x \leq y$, it implies that $6 \leq y$. Substituting $x = 6$ in (2.22), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{1}{3}. \quad (2.23)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{1}{3}$ and so $y \leq 6$.

Substituting $y = 6$ in (2.23), we obtain that the positive integer solution (w, x, y, z, u) is $(6, 6, 6, 6, 2)$.

Case 3. $w = 7$. From (2.2), we have $u = 1$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{5}{14}. \quad (2.24)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{5}{14}$ and so $x \leq 8$. Since $w \leq x$, it implies that $7 \leq x$. Thus $7 \leq x \leq 8$.

Case 3.1 $x = 7$. Since $x \leq y$, it implies that $7 \leq y$. From (2.24), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{3}{14}. \quad (2.25)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{3}{14}$ and so $y \leq 9$.

Substituting $7 \leq y \leq 9$ in (2.25) and to consider the value z , which is a positive integer, we obtain that the positive integer solution (w, x, y, z, u) is $(7, 7, 7, 14, 1)$.

Case 3.2 $x = 8$. Since $x \leq y$, it implies that $8 \leq y$. From (2.24), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{13}{56}. \quad (2.26)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{13}{56}$ and so $y \leq 8$.

Substituting $y = 8$ in (2.26), we obtain that the value z is not a positive integer. Thus, in this case, there is no positive integer solution.

Case 4. $w = 8$. From (2.2), we have $u = 1$. From (2.1), we get

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{3}{8}. \quad (2.27)$$

Since $x \leq y \leq z$, we obtain that $\frac{3}{x} \geq \frac{3}{8}$ and so $x \leq 8$. Since $w \leq x$, it implies that $8 \leq x$. Then $x = 8$. Since $x \leq y$, it implies that $8 \leq y$. From (2.27), we get

$$\frac{1}{y} + \frac{1}{z} = \frac{1}{4}. \quad (2.28)$$

Since $y \leq z$, we have $\frac{2}{y} \geq \frac{1}{4}$ and so $y \leq 8$.

Substituting $y = 8$ in (2.28), we obtain that the positive integer solution (w, x, y, z, u) is $(8, 8, 8, 1)$.

3. Conclusions

In this paper, we give all positive integer solutions of the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$, where w, x, y, z and u are positive integers with $5 \leq w \leq x \leq y \leq z$. The research found that the positive integer solutions (w, x, y, z, u) of this equation are $(5, 5, 11, 110, 1), (5, 5, 12, 60, 1), (5, 5, 14, 35, 1), (5, 5, 15, 30, 1), (5, 5, 20, 20, 1), (5, 6, 8, 120, 1), (5, 6, 9, 45, 1), (5, 6, 10, 30, 1), (5, 6, 12, 20, 1), (5, 6, 15, 15, 1), (5, 7, 7, 70, 1), (5, 8, 8, 20, 1), (5, 10, 10, 10, 1), (5, 5, 5, 15, 2), (5, 5, 6, 10, 2), (5, 5, 5, 5, 4), (6, 6, 7, 42, 1), (6, 6, 8, 24, 1), (6, 6, 9, 18, 1), (6, 6, 10, 15, 1), (6, 6, 12, 12, 1), (6, 7, 7, 21, 1), (6, 8, 8, 12, 1), (6, 9, 9, 9, 1), (6, 6, 6, 6, 2), (7, 7, 7, 14, 1) and $(8, 8, 8, 8, 1)$.$

Acknowledgements

The author would like to thank the reviewers for careful reading of this manuscript and the useful comments. This research was supported by the Research and Development Institute and Faculty of Science and Technology, Thammasat Rajabhat University, Thailand.

Declaration of Conflicting Interests

The authors declare they have no conflicts of interest for this article, and they alone are responsible for the content.

References

1. Sándor, J. A note on Diophantine equation. Notes Number Theory Discrete Math. 2013;19(4):1–3.
2. Zhao, W., Lu, J., Wang, L. On the integral solutions of the Egyptian fraction equation $\frac{a}{p} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. AIMS Math. 2021;6(5):4930–7.
3. Sándor, J., Atanassov, K. On a Diophantine equation arising in the history of mathematics. Notes Number Theory Discrete Math. 2021;27(1):70–5.
4. Tadee, S., Poopra, S. On the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{n}$. Int J Math Comput Sci. 2023;18(2):173–7.
5. Tadee, S. All solutions of the Diophantine equation $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+2}$. J Appl Res Sci Technol. 2024;23(2):1–5.
6. Yuan, X. On the Diophantine equation $\frac{4}{n} = \frac{1}{x} + \frac{1}{y} + \frac{1}{z}$. J Algebra Number Theory Appl. 2024;63(5):459–80.
7. Bai, T. On $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{2}$ and some of its generalizations. J Inequal Appl. 2018; (197)2018:1–13.
8. Atri, R. On the Diophantine equations $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{4}$ and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{t} = \frac{1}{4}$. Int J Sci Res. 2022;11(1):573–4.
9. Wongsanurak, W., Duangdai, E. The natural number solutions of the Diophantine equation $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{u}{u+1}$. Acad J Sci Appl Sci. 2023;2:91–8. (in Thai)