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ABSTRACT 
This paper presents the development of a deep learning model designed to identify two 

classes of object images: the work-in-process of a certain copper-based alloy water tap. The 
dataset consisted of 316 images of good parts and 320 images of defective parts. Both classes of 
images underwent processing using oversampling techniques for data augmentation to increase 
the number of images to 1,000 images per class, before transformation. Subsequently, the 
processed data were used to train six transfer learning models, including ResNet50, MobileNet, 
Xception, InceptionV3, EfficientNetB0, and DenseNet121. The results demonstrate 100% accuracy, 
precision, recall, and F1-score for ResNet50 and EfficientNetB0 when evaluated on the validation 
and test sets. However, considering the size of the models, it was found that EfficientNetB0 is 
only 15.48 MB, whereas ResNet50 is 90.03 MB. Therefore, EfficientNetB0 emerges as the optimal 
deep learning model for the development of an automatic detection and rejection station in the 
production line of water tap manufacturers in the future. One of the contributions of this study is 
providing proof of concept for using image processing and deep learning to enhance productivity 
within a manufacturing environment. 
 
Keywords: Oversampling, Data augmentation, ResNet50 , MobileNet, Xception, Transfer learning, 
Deep learning 
 

INTRODUCTION 
A. Background and Significance 

Water taps, typically made from copper-based alloys, are fixtures found in every 
household and building. As a result, they are a daily necessity, used in the morning and before 
bedtime. This underscores the significance of the tap industry. However, the production of each 
type of water tap involves over ten steps, such as forging, machining, boring, and assembly. Prior 
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to the final stage of producing finished goods, there is a possibility that the output of each step, 
known as work-in-process (WIP), may include defective products. These defective pieces must be 
identified and rejected before proceeding to subsequent stages.  

One of the important steps in producing water taps is forging, which results in the output 
shown in Figure 1 . When the part depicted in Figure 1 (a), which is a defect part, moves to the 
next stage for trimming, where excess material is removed from the main part, time and energy 
are wasted, affecting the productivity of the entire production line. Detecting defects before 
advancing to the trimming process is crucial to avoid these inefficiencies. Employing image 
processing and artificial intelligence (AI) to spot defects beforehand holds promise for enhancing 
overall equipment effectiveness (OEE) [1]. Hence, this study aimed to demonstrate the feasibility 
of a high-performance model capable of distinguishing between good and defective work-in-
progress (WIP). The goal is to showcase the potential of implementing a new system that can 
enhance production line productivity using the most effective model available.  
 

 
 

Fig. 1. (a) defect with the clipped part and (b) good work-in-process products 
 

A significant achievement of this research is the development of a deep learning model, 
which can be utilized to establish an automated system for identifying and eliminating defects 
prior to production in subsequent processes. This initiative aims to ultimately enhance 
productivity. 

This paper expands upon the content of [2] .  Following the subsection of this 
introduction, the paper delves into sections covering image processing overview, deep learning, 
transfer learning, and related work. Section II outlines the methods employed in the study, while 
Section III discusses the results and provides analysis. The conclusion and suggestions for future 
work are presented in Section IV. 
 

(a)                            (b) 
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B. Image Processing Overview 
The manipulation of digital images to extract vital information is commonly known as 

"image processing" or "digital image processing" [2-3]. Various strategies are employed within this 
field to tackle specific challenges such as noise generation and signal distortion. Digital image 
processing proves highly beneficial in addressing image-based issues. Moreover, image processing 
extends its application into more intricate domains like computer graphics and computer vision 
technologies, transcending mere data extraction [3-4]. Within digital picture editing, there exist 
several subfields [4-5] that fall under the umbrella of image processing. These subfields include 
segmentation, feature extraction and selection, compression and image enhancement, and 
restoration.   
C. Deep Learning and Transfer Learning Overview 

Artificial intelligence (AI) has been defined by Gartner as the application of sophisticated 
analysis and logic-driven methods, such as machine learning (ML), to understand events, aid 
decision-making, and automate actions. This definition aligns with the current and evolving 
landscape of AI technologies and capabilities [6]. Machine learning (ML) includes a subset known 
as deep learning, and both fall under the umbrella of artificial intelligence (AI). These fields draw 
inspiration from the structure of the human brain. Deep learning involves a technique called 
transfer learning, where features learned by training a primary network on one dataset can be 
transferred to a secondary network trained on another dataset [7-8]. 

This method enhances performance and decreases training time for the expected task 
by leveraging insights acquired from initial training. Pre-trained models are favored in computer 
vision and natural language processing for their efficacy and superior performance in analogous 
tasks. Transfer learning stands out as a valuable optimization approach. Compared to training 
from the ground up, employing a pre-trained model yields better initial values, gradient 
steepness, and overall performance.  

Inductive, transductive, and unsupervised learning represent some of the classification 
criteria utilized in transfer learning, aiding in the further categorization of transfer learning 
scenarios [9]. In this study, six inductive transfer learning models are employed: ResNet50, 
MobileNet, Xception, InceptionV3, EfficientNetB0, and DenseNet121 as follows:  

• ResNet50 [8]: abbreviated from Residual Network with 50 layers, is renowned for its 
unique residual connections, also known as skip connections, aimed at mitigating the problem of 
vanishing gradients during training. By integrating skip connections, ResNet50 enhances gradient 
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flow, enabling the network to discern alterations between layers more effectively. This facilitates 
the capture of intricate characteristics and patterns within the data. 

• MobileNet [10]: is a deep learning architecture designed to deliver efficient and robust 
performance on mobile devices. It employs a method known as depthwise separable 
convolutions, which involves two distinct stages: depthwise convolutions and pointwise 
convolutions. This approach divides the computation process, reducing both the required 
calculations and the model's complexity, all while preserving remarkable accuracy. 

• Xception [11]: abbreviated from "Extreme Inception," represents an advanced deep 
learning architecture. It employs depthwise separable convolutions, which improve the model's 
capacity to comprehend spatial and channel-wise relationships within data. Unlike traditional 
convolutional layers that process filters across all input channels, Xception resolves this 
inefficiency by splitting the process into two separate stages: depthwise convolutions and 
pointwise convolutions. 

• InceptionV3 [12]: is a renowned deep learning model celebrated for its precision in the 
realm of computer vision. Its architecture relies on a technique involving multi-scale convolutions 
for feature extraction. Utilizing numerous convolutional layers with diverse kernel sizes 
simultaneously, InceptionV3 captures features across different scales and resolutions. This diverse 
convolutional approach significantly enhances its ability to accurately identify intricate patterns 
and objects in images. 

• EfficientNetB0 [13]: is a deep learning model engineered to find an optimal equilibrium 
between computational efficiency and model effectiveness. Its design incorporates a scaling 
methodology aimed at refining model size and capability. This architecture operates with three 
key scaling factors: depth, width, and resolution. Depth scaling entails the addition of more layers 
to the network, facilitating the capture of intricate features. Width scaling amplifies the number of 
channels or filters within each layer, thereby improving feature representation. Additionally, 
resolution scaling adapts the input image resolution to accommodate various data types. 

• DenseNet121 [14], [15]: is a sophisticated deep learning model known for its efficiency 
and robust performance in computer vision tasks. Unlike conventional deep neural networks 
structured with densely connected convolutional layers (DenseNet), DenseNet121 employs a 
distinctive approach in layer connection, facilitating direct information sharing among all 
preceding layers. This unique connectivity enhances feature reuse, thereby mitigating the 
potential loss of critical information as data traverses through the network.  
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D. Data augmentation 
Data augmentation is a crucial technique in deep learning. It involves artificially 

expanding a training dataset by applying various transformations to the original data [16]. This 
process increases the dataset's diversity, enhancing the model's ability to generalize and become 
more robust [17]. In image processing, data augmentation is usually referred to as image data 
augmentation or simply image augmentation. Its primary objective is to create new images that 
resemble the original ones but with subtle differences, which can help improve the accuracy and 
robustness of deep learning and/or machine learning models [18]. Image augmentation directly 
addresses the limitations of the dataset, helping prevent overfitting and improving model 
performance, particularly when training data is insufficient [19]. Common or traditional techniques 
include rotation, shifting, flipping, resizing, warping, cropping, modifying colors and contrasts, and 
adding noise (e.g., Gaussian and Poisson) [20-21].  
 
E. Related Research Works 

After conducting a survey, numerous interesting previous studies were discovered, 
including those referenced in [22] and [23] that studied in Thailand. However, as outlined in 
Table I [24-32], only selected prior works connected to pertinent terms such as deep learning, 
classification, transfer learning, and manufacturing were identified. Nevertheless, there is a 
notable absence of research pertaining to Work in Progress (WIP) objects similar to the WIP 
products discussed in this investigation. Consequently, this presents a potential research gap that 
motivates the pursuit of the study. 

 
TABLE I. RELATED RESEARCH WORKS 
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[24] 2021 
Fine-tuned Xception to classify images into 
200 classes is presented using the standard 
Tiny ImageNet dataset 

✓ - - ✓ - - - - 

[25] 2021 
Using deep learning techniques to 
empower high-performance visual ✓ ✓ - - - ✓ - ✓ 
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recognition models can benefit the 
automation of garbage classification task 

[26] 2021 
Intelligent garbage classification system 
based on deep learning and an 
embedded Linux system 

- ✓ ✓ - ✓ - ✓ ✓ 

[27] 2022 
Automated recyclable transparent 
plastic bottle classification system ✓ ✓ - ✓ ✓ - ✓ ✓ 

[28] 2022 

Find a method for identifying the 
abnormal conditions of fused 
magnesium furnaces based on deep 
learning and multi-information fusion 

✓ - - - - - - ✓ 

[29] 2022 
Recognize the pavement texture using 
deep learning approaches ✓ - - - - - ✓ ✓ 

[30] 2023 
Achieve efficient Automatic License 
Plate Recognition (ALPR) ✓ - ✓ - - - - ✓ 

[31] 2023 
Hardness classification method for 
bearing rings. 

- - ✓ - - - - - 

[32] 2023 Style classification for footwear industry - - - - - - - ✓ 
 

METHODS 
To achieve the objective of this study, which is to identify the most suitable model for 

implementing a new system capable of detecting and rejecting defects in work-in-process 
products in the future, a methodology involving multiple steps, as depicted in Figure 2 , was 
carried out as follows: 

1.1 Image collection: concentrating on a specific type of water tap as outlined in Section I, 
both the positives and negatives were documented through photography. This study 
encompasses 316 images of the good work-in-process products and 320 images of the defective 
work-in-process products.  
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Fig. 3. Diagram of all work processes. 

 
1.2 Image labelling: the images of the good parts and the defective parts were the raw 

data of two classes called ‘good-WIP’ and ‘bad-WIP’ before processing in the next steps.   
1.3 Image pre-processing: during this step, cropping and segmentation techniques were 

employed to standardize the acquired images. This involved ensuring that all images had a 1:1 
aspect ratio and a size of 224 by 224 pixels. The uniform cropping effectively corrected the initial 
asymmetry by encompassing both the upper and lower sections. 

1.4 Data Augmentation: in this study, both the 'good-WIP' and 'bad-WIP' classes 
contained nearly equal numbers of images. However, having only around 300 images for each 
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class might seem insufficient. Consequently, both classes underwent oversampling, a technique 
within the augmentation process, to boost the number of images per class to 1,000. This was 
achieved by employing various methods associated with geometric modification, such as rotation 
and flipping (refer to Fig. 3). The tool utilized for this process is the ImageDataGenerator class in 
the TensorFlow library in Python, which has been widely used in prior works (e.g., [33-34]). The 
resulting dataset is referred to as the augmented dataset. 

1.5 Data Splitting: in this step, the augmented dataset was partitioned into three 
separate subsets: a training set (70%), a validation set (15%), and a testing set (15%). The testing 
set was specifically reserved for model evaluation in the final step.  

1.6 Model Training: in this step, six transfer learning models, as delineated in the 
preceding section, were utilized in this investigation. Each model underwent training using the 
training set (70%) acquired from the previous stage. 

1.7 Model Validation: all trained models underwent validation to ensure their accuracy, 
utilizing a validation set comprising 15% of the image data during this stage. 

1.8 Model Evaluation: this final step is called model evaluation, it involves testing all 
models using the test set (15%) to obtain accuracy, precision, recall, and F1-score values. These 
metrics are calculated using the equations provided in (1)-(4) [13], [23].  

 

 
Fig. 2. Generating of three augmented images from an original image using rotation and flipping, 

for example. 
 

Rotate -90º 
 
 
 
 
Flip horizontal 
 
 
 
 
Rotate +180º 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦  =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  =                            
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    (2) 

𝑅𝑒𝑐𝑎𝑙𝑙         =                           
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    (3) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =           
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    (4) 

After completing the final steps, the outcomes of both model validation and testing, 
encompassing accuracy, precision, recall, and F1 -score, are collated for presentation in  
the following section. 

RESULTS 
After conducting the processes as presented in Fig. 2, every model was trained using two 

classes of images of WIP - water taps. Then, the accuracy, precision, recall, and F1-score of each 
model under each condition were evaluated before presenting all results associated with values 
of accuracy, precision, recall, and F1-score in Table II.  

As presented in Table II, it is evident that ResNet50 and EfficientNetB0 exhibit the highest 
accuracy, precision, recall, and F1-score values of 100% in both the validation and test sets. This 
indicates that ResNet50  and EfficientNetB0  emerge as the top-performing models compared to 
others in this study, based on the evaluation results. Following closely, DenseNet121 
demonstrates accuracy, precision, recall, and F1-score values of 100% when tested with the 
validation set. However, when evaluated with the test set, it registers values of 99.003%, 
99.002%, 99.006%, and 99.003%, respectively. MobileNet becomes the next position, with 
accuracy, precision, recall, and F1-score values of 99.667%, 98.936%, 99.000%, and 99.667%, 
respectively, in the validation set. Nonetheless, when assessed with the test set, it records values 
of 99.668%, 99.673%, 99.664%, and 99.668%, respectively. Occupying the last two positions are 
Xception, and InceptionV3, respectively. Further details are provided in Table II. 
 
TABLE II. THE RESULTS 

Model 
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ResNet50 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
MobileNet 99.667 99.668 98.936 99.673 99.000 99.664 99.667 99.668 
Xception 96.333 97.010 95.833 97.015 95.913 97.006 96.333 97.009 
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Model 

Accuracy (%) Precision (%) Recall (%) F1-score (%) 
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InceptionV3 95.833 95.349 95.826 95.370 95.826 95.362 95.826 95.349 
EfficientNetB0 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
DenseNet121 100.000 99.003 100.000 99.002 100.000 99.006 100.000 99.003 

 

DISCUSSION 
It is evident that the accuracy, precision, recall, and F1-score results from four out of six 

models, evaluated with the augmented dataset, exceed 99.00% in both the validation and test 
sets. Additionally, it can be observed that each accuracy result aligns consistently with the 
respective F1-score result provided by each model. Moreover, the highest accuracy of 100% 
achieved by ResNet50 and EfficientNetB0 may be attributed to their performance or efficiency, 
while factors such as the fixed pattern and the limited number of classes—only two classes—
may also significantly influence these outcomes. Furthermore, when compared to previous 
works, the result from EfficientNet-B0 is consistent with the results presented in [25] that 
EfficientNet-B7, which is one of its family, shows high accuracy (95.20%) compared to other 
models, except the proposed GabageNet-family models. Besides, the high accuracy result from 
ResNet50 in this study is consistent with the high accuracy results of 99.10% and 99.07% from 
ResNet34 and ResNet152 respectively, as presented in [26-27]. 

Thus, ResNet50 and EfficientNetB0 can be considered for the development of the new 
automatic station for checking the WIP before delivery to the next station. However, advancing 
beyond reference [2], this study was conducted with additional transfer models. Also, the size of 
each model has been retrieved and presented in Table III. One can see that the size of the 
EfficientNetB0 model, which has an accuracy and related results of 100%, is only 15.48 MB, 
smaller than the size of the ResNet50 model (90.03 MB). Therefore, EfficientNetB0 should be 
considered the best option in this study for developing the new automatic station using 
computer vision technology for checking the WIP before delivery to the next station by rejecting 
unwanted parts in the future. However, from Table III, one can observe that MobileNet is the 
smallest model size, while it has an accuracy and related results of more than 99%. Its accuracy 
result is also consistent with the result of 99.84 from MobileNetV3 presented in [26]. Therefore, 
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MobileNet might be considered as an alternative option for the new automatic station in the 
future. 
 
TABLE III. THE MODEL SIZES 

 
 
 
 

 
 

 
 

CONCLUSION AND FUTURE WORKS 
After conducting this study on copper-based alloy water tap images using deep learning, 

it was found that ResNet50  and EfficientNetB0  provided the highest accuracy (100% ) , while 
MobileNet ranked second with an accuracy of approximately 99.67%  when evaluated with the 
test set. This test set was part of an augmented dataset consisting of 1,000 images per class, 
created from an original set of around 3 0 0  images per class. However, considering the model 
sizes, EfficientNetB0 with only 15.48 MB, is smaller than ResNet50, which is approximately 90 MB. 
Therefore, EfficientNetB0  emerges as the optimal choice for developing an automatic detection 
and rejection system in the production line of a water tap manufacturer in the future. 

However, this study utilized geometric-based augmentation techniques (e.g., rotation and 
flipping) exclusively. Future work should incorporate other augmentation techniques (e.g., noise 
addition) to further diversify the dataset. This expansion can enhance the variety of images for 
dataset enlargement. Additionally, this study was confined to only two classes of water taps. 
Subsequent research should investigate additional classes of water taps and integrate more 
augmentation techniques. Furthermore, the concepts introduced in this study could be 
extrapolated to other products across diverse industries. 
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Model Size (MB) Remark 

ResNet50 90.03 The largest 
MobileNet 12.34 The smallest 
Xception 79.63  

InceptionV3 83.22  
EfficientNetB0 15.48  
DenseNet121 26.87  
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