

โรงเรือนแบบไฮโดรโปนิกส์ที่มีระบบการควบคุมแบบอัตโนมัติโดยใช้พลังงานแสงอาทิตย์ Hydroponics house with automatic control system using solar energy

ขจรศักดิ์ พงศ์รนา^{1*}, ขัยวัฒน์ สากุล²

Kajornsak Pongtana^{1*}, Chaiwat Sakul²

¹คณะครุศาสตร์อุตสาหกรรมและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย สงขลา

²คณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลศรีวิชัย วิทยาเขตตรัง

¹Faculty of Industrial education and technology, Rajamangala University of Technology Srivijaya, Songkla,

²Faculty of Engineering and Technology, Rajamangala University of Technology Srivijaya, Trang campus,

*Corresponding author. Tel: 08 1541 42999, Email: pkajornsak@yahoo.com

บทคัดย่อ

บทความนี้นำเสนอการออกแบบการสร้างโรงเรือนแบบไฮโดรโปนิกส์ที่มีระบบการควบคุมแบบอัตโนมัติโดยใช้พลังงานแสงอาทิตย์ โครงสร้างของระบบจะมี 2 ส่วน คือ ส่วนแรกจะเป็นระบบพลังงานทดแทนจากพลังงานแสงอาทิตย์ สามารถผลิตกำลังได้ที่ 842.21 วัตต์ต่อวัน โดยใช้แผงโซล่าเซลล์ขนาด 120 วัตต์ ซึ่งสามารถทำงานได้ไม่น้อยกว่า 8 ชั่วโมงต่อวัน ส่วนที่สองจะเป็นการทำงานของระบบควบคุมการทำงานในโรงเรือน ซึ่งมีอยู่ 5 ระบบ คือ ระบบควบคุมการผสมปุ๋ย ระบบควบคุมการเปลี่ยนถ่ายน้ำ ระบบควบคุมการสูบน้ำ ระบบควบคุมอุณหภูมิและระบบควบคุมความชื้นภายในโรงเรือน ขนาดของโรงเรือนที่ใช้ในการทดสอบจะมีความกว้าง 1.2 เมตร และความยาว 2.4 เมตร หลังคาของโรงเรือนจะเป็นรูปแบบทรงหน้าจั่วโดยปลายยอดหลังคาจะสูงขึ้นจากโครงสร้าง 0.8 เมตร ข้อดีคือจะสามารถระบายความร้อนได้ดี และพื้นโรงเรือนจะยกสูงจากพื้นดิน 0.80 เมตร มีวัตถุประสงค์เพื่อให้สามารถระบายน้ำส่วนเกินออกได้ โดยที่ช่วงเวลากลางวันระบบสามารถควบคุมความชื้นภายในโรงเรือนได้ 80% ที่อุณหภูมิ 35°C และระบบการเปลี่ยนถ่ายน้ำจะทำงานควบคู่กับระบบการผสมปุ๋ยเมื่อตราส่วนคือ 400 มิลลิลิตร ต่อน้ำ 80 ลิตร ที่เวลา 13 วินาที โดยระบบจะมีการทำงานทุก ๆ 7 วัน ครบ 4 ครั้ง และในครั้งที่ 5 ระบบการเปลี่ยนถ่ายน้ำยังคงทำงานตามปกติโดยที่ระบบผสมปุ๋ยจะหยุดการทำงาน จากผลการทดสอบประสิทธิภาพการทำงานของระบบพบว่าโรงเรือนแบบไฮโดรโปนิกส์ที่ออกแบบสามารถทำงานได้อย่างมีประสิทธิภาพและสามารถนำไปประยุกต์ใช้งาน

คำสำคัญ: พลังงานแสงอาทิตย์ ระบบควบคุมอัตโนมัติ โรงเรือนไฮโดรโปนิกส์

Abstract

The article presents hydroponics house with an automation control system using solar energy. The structure of the system is divided into 2 parts: the first part is the solar energy

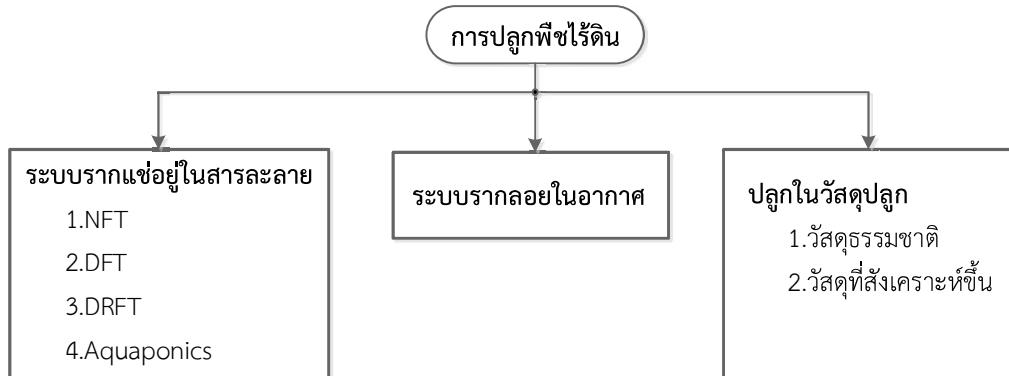
Received 31-07-2019

Revised 09-09-2019

Accepted 11-09-2019

system which can produce electric power at 842.21 Watt per day and the second part is the control system which consists of 5 operations; fertilizer mixing control system, water charging control system, water pump control system, temperature control system and humidity control system. The dimension of the hydroponics house is 12 meters wide and 2.4 meters in length. The house is covered with a gable roof with 0.8-meter height up from the roof frame for better ventilation, meanwhile, the floor frame is also 0.8-meter-high up from the ground for the release of overused water. During the daytime, the system can control 80% of humidity inside hydroponics house at a temperature of 35°C. The water charging control system will work in conjunction with the fertilizer mixing system with a ratio of 400 mL fertilizer per 80 liters of water at 13 seconds run time. The system is functioned to run every 7 days for 4 times and then at the fifth time, the water charging control system will still work as usual while the fertilizer mixing system will stop working. From the performance testing of the system, it is found that the designed hydroponics-house can work efficiently and is suitable for the application.

Keywords: Solar energy, Automation control system, Hydroponics-house


1. บทนำ

ประเทศไทยได้ชื่อว่าเป็นประเทศทางด้านเกษตรกรรมมาตั้งแต่อดีตถึงปัจจุบัน เนื่องจากเป็นประเทศที่ตั้งอยู่ในเขตมรสุมเอเชียตะวันออกเฉียงใต้ ซึ่งมีสภาพภูมิประเทศ ทรัพยากร ลิ่งแಡล้อมและมีภูมิอากาศเอื้อต่อการทำเกษตร ประชากรส่วนใหญ่ของประเทศไทยจะประกอบอาชีพทางด้านเกษตรกรรมหรืออาชีพที่เกี่ยวข้องด้านการเกษตร แม้ว่าในปัจจุบันได้มีการพัฒนาให้ประเทศไทยก้าวไปสู่ประเทศที่มีการพัฒนาทางด้านอุตสาหกรรมแต่ก็ยังคงต้องพึ่งพาอาชีวศึกษาและวิชาชีพที่มีการเปลี่ยนแปลงตามยุคสมัยด้วยเช่นกันตามกระแสการเปลี่ยนแปลงของโลกที่มีการเปลี่ยนแปลงตลอดเวลา การปลูกพืชก็เช่นเดียวกันในอดีตจะเป็นการปลูกพืชในดินซึ่งเป็นวิธีการที่มีการปฏิบัติโดยทั่วไป ต่อมาได้มีการนำเสนอด

งานวิจัยที่ได้แสดงจิวิชีและกระบวนการต่าง ๆ ในการปลูกพืชวิธีใหม่ขึ้นมาอย่างมากมาย [1-7] โดยได้เสนอวิธีการที่เหมาะสมกับการปลูกพืชในบริเวณที่ไม่มีพื้นที่สำหรับการเพาะปลูก เช่น คอนโด อพาร์ทเม้นท์ เป็นต้น นั่นคือวิธีการปลูกพืชแบบไฮโดรโปนิกส์ วิธีการแบบนี้เหมาะสมสำหรับการปลูกพืชผักสวนครัวที่มีลักษณะของลำต้นไม่ใหญ่หรือสูงมากนัก ส่วนใหญ่จะเป็นผักที่นำส่วนของใบมาประกอบอาหารเท่านั้น จุดเด่นที่สำคัญของการปลูกพืชแบบไฮโดรโปนิกส์จะสามารถป้องกันป้องกันแมลงที่เป็นศัตรุพืชได้และเป็นผักที่ปลอดสารพิษ แต่อย่างไรก็ตามการปลูกพืชแบบไฮโดร-โปนิกส์มีความจำเป็นต้องใช้พลังงานไฟฟ้าช่วยในการสูบน้ำเพื่อจ่ายให้กับพืชที่ปลูกตลอดเวลา ทำให้เกิดการสิ้นเปลืองพลังงานไฟฟ้าและโรงเรือนที่ใช้ปลูกพืชจะมีลักษณะเป็นแบบโรงเรือนปิดซึ่งจะมีข้อเสียคือภายในโรงเรือนจะมีความร้อนสะสมอยู่เป็นปริมาณมาก วิธีการแก้ไขือการสร้างระบบการระบายอากาศ

เพื่อให้มีอุณหภูมิที่เหมาะสมสำหรับการปลูกพืชตามความเหมาะสม ในส่วนของระบบการให้ปุ๋ยที่ผ่านมา จะใช้จะใช้วิธีการให้ปุ๋ยและวิธีการถ่ายน้ำทึบโดยมีมนุษย์เป็นผู้ดำเนินการทั้งหมดซึ่งอาจทำให้เกิดปัญหาและอุปสรรคตามมา เช่น ช่วงเวลาของการให้ปุ๋ยและถ่ายน้ำทึบไม่ตรงตามเวลาที่กำหนดอาจทำให้พืชที่ปลูกเกิดความเสียหายได้ ตัวอย่างงานวิจัยที่มีการนำเสนอในอดีตที่ผ่านมา [6] ได้เสนอโรงเรือนไฮโดรโปนิกส์อัตโนมัติ ซึ่งจะมีการทำงานโดยสามารถควบคุมความชื้น อุณหภูมิ การให้น้ำแบบหมุนเวียน เป็นต้น ซึ่งระบบจะเลือกการควบคุมการทำงานโดยมนุษย์ แต่มีข้อด้อยคือระบบการทำงานจะต้องใช้แหล่งพลังงานจากภายนอกมาควบคุมการทำงานทั้งระบบ

ดังนั้นเพื่อลดปัญหาและอุปสรรคดังกล่าว จึงได้เสนอการออกแบบโรงเรือนแบบไฮโดรโปนิกส์ที่มีระบบการควบคุมแบบอัตโนมัติโดยใช้พลังงานแสงอาทิตย์ ซึ่งข้อดีของระบบจะสามารถใช้ระบบที่มีการควบคุมแบบอัตโนมัติมาประยุกต์ใช้ในระบบต่าง ๆ ที่เกี่ยวข้องแทนการควบคุมโดยมนุษย์และทำให้สามารถประหยัดพลังงานไฟฟ้าโดยการใช้พลังงานแสงอาทิตย์ซึ่งจะใช้แผงโซล่าร์เซลล์ที่มีขนาด 120 วัตต์ เข้ามาช่วยในการผลิตกระแสไฟฟ้าเพื่อใช้ในเวลากลางคืน และข้อดีอีกประการหนึ่งคือเป็นการส่งเสริมให้มีการปลูกผักปลอดสารพิษเพื่อเก็บไว้รับประทานเองเพื่อสุขภาพที่ดีต่อไป

ภาพที่ 1 รูปแบบการปลูกพืชไฮโดร

2. วัสดุ อุปกรณ์ และวิธีการทดลอง

2.1 การออกแบบโรงเรือน

การออกแบบโรงเรือนแบบไฮโดรโปนิกส์ที่มีระบบการควบคุมแบบอัตโนมัติโดยใช้พลังงานแสงอาทิตย์การสร้างโรงเรือนแบบไฮโดรโปนิกส์ การออกแบบจะสร้างโรงเรือนขนาด 1.20×2.40 เมตร ส่วนของหลังคาจะเลือกแบบทรงหน้าจั่วข้อตีก็จะช่วยระบายความร้อนได้ดี โดยมีปลายยอดหลังคาสูงขึ้นจากโครงสร้างประมาณ 0.8 เมตร

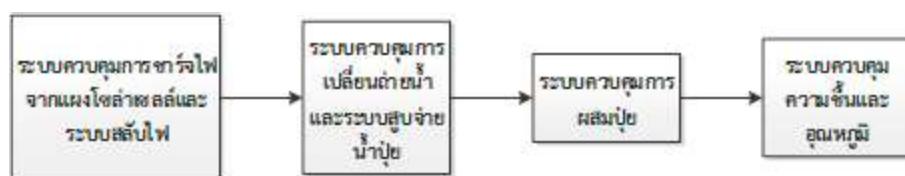
วัสดุอุปกรณ์ที่ใช้คือท่อพีวีซี โดยใช้ข้อต่อพีวีซีทากาวให้ยึดติดกันเพื่อความทนทาน ประกอบด้วย

- โครงสร้างอาคาร จะใช้วัสดุท่อพีวีซีโดยใช้ข้อต่อพีวีซีมายึดให้ทันทันให้กับโรงเรือน มีขนาด 1.20×2.40 เมตร ส่วนของหลังคาจะเลือกแบบทรงหน้าจั่วข้อตีก็จะช่วยระบายความร้อนได้ดี โดยมีปลายยอดหลังคาสูงขึ้นจากโครงสร้างประมาณ 0.8 เมตร

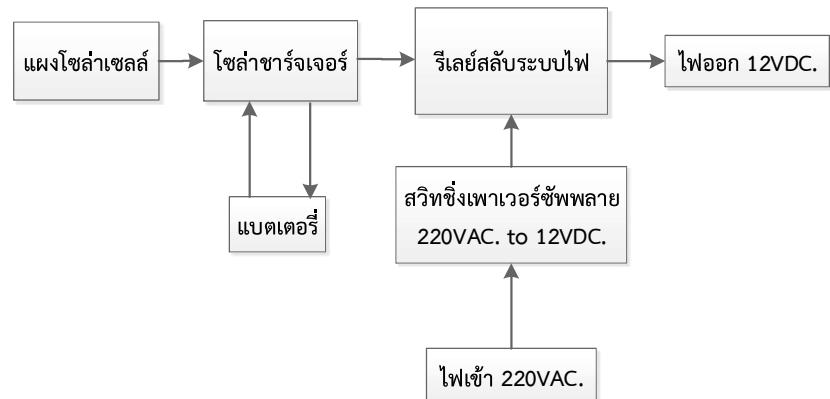
- พื้นโรงเรือนยกสูง 0.8 เมตร เพื่อให้สามารถระบายน้ำส่วนเกินออกได้

- วัสดุกันฝาโรงเรือนและหลังคาจะเลือก วัสดุพั้ยางคลุมเฉพาะสำหรับการปลูกผักไฮโดรโปนิกส์ คลุมทั้งโรงเรือนมีลักษณะเป็นพั้ยางพลาสติก สีขาวขุ่น

- ขั้นวางผักจะเป็นส่วนที่ต้องสัมผัสถกับน้ำ ปุ๋ย วัสดุที่เลือกใช้จึงควรมีความทนทานต่อการ สักกร่อน ความชื้น และเชื้อรา

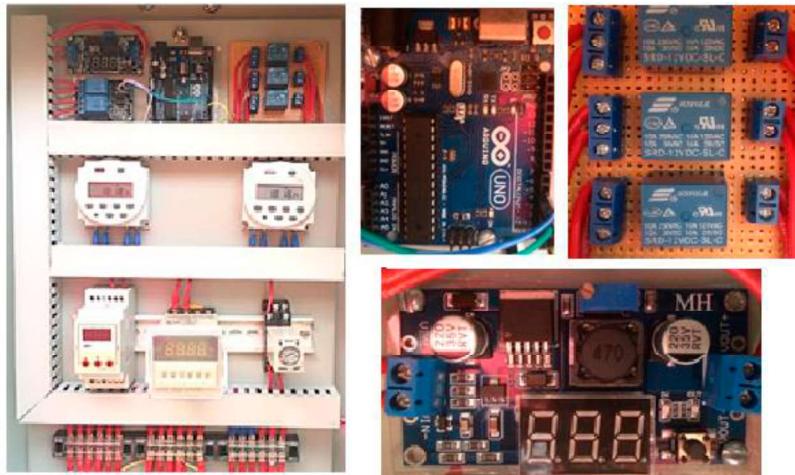

2.2 การออกแบบระบบควบคุม

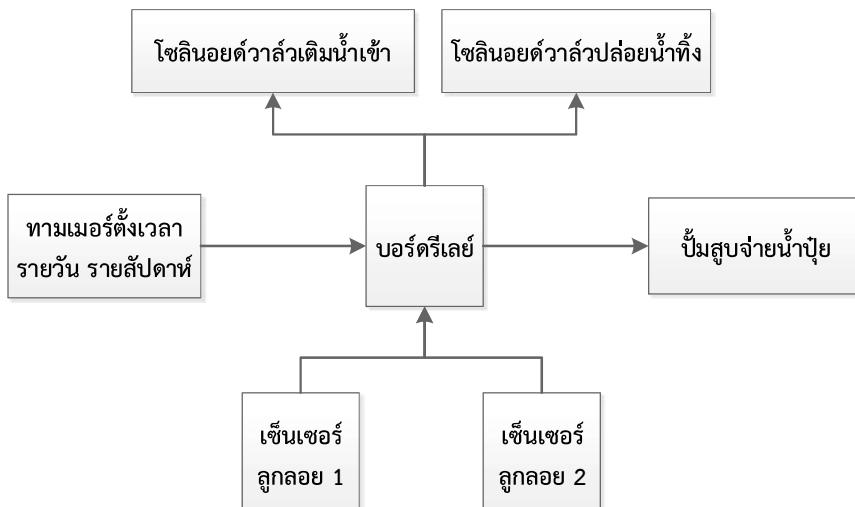
การปลูกพืชแบบไฮโดรโปนิกส์จะเป็น การศึกษาเกี่ยวกับการใช้ธาตุอาหารในการปลูกพืช โดยปราศจากดินที่ใช้ในการปลูกพืชโดยทั่วไป ซึ่งใน อดีตที่ผ่านมา มีแบบไฮโดรโปนิกส์สามารถแบ่งออก ตามลักษณะและวิธีการปลูกพืชสามารถแบ่งออกได้ เป็น 3 กลุ่ม ซึ่งประกอบด้วยกลุ่มแรกจะเป็นระบบ รากแข็งอยู่ในสารละลาย กลุ่มที่สองจะเป็นระบบ rak ลอยในอากาศและกลุ่มที่สามจะเป็นระบบที่ปลูกใน วัสดุปลูก แสดงได้ดังภาพที่ 1 ปัจจุบันมีผู้สนใจ งานวิจัยอย่างมากใน สำหรับรูปแบบของการของ การปลูกพืชไฮโดรปิดนหรือที่นิยมเรียกว่าการปลูกพืชแบบ ไฮโดรโปนิกส์นั่นเอง


การปลูกพืชในระบบ rak แข็งที่นำเสนอใน งานวิจัยนี้จะเป็นการปลูกพืชแบบระบบหัวตื้น NFT (Nutrient film technique) วิธีการนี้จะต้องให้ราก

ของพืชแข็งอยู่ในน้ำสมรรถนะอาหารพืชตลอดเวลาและ มีระบบเติมอากาศลงในสารละลายเพื่อให้รากพืช ได้รับออกซิเจนอย่างสม่ำเสมอ โดยงานวิจัยที่นำเสนอ นี้จะนำระบบการควบคุมโดยใช้ไมโครคอนโทรลเลอร์ มาประยุกต์ใช้ร่วมกับห้องแม่เมอร์แทนการควบคุมโดย มนุษย์ซึ่งอาจจะเกิดความผิดพลาดได้และได้ออกแบบ ให้ระบบการมีการใช้งานได้โดยใช้พลังงาน แสงอาทิตย์ซึ่งจะช่วยในการลดและประหยัดพลังงาน ได้อีกด้วย การทำงานของระบบการปลูกพืชแบบ ไฮโดรโปนิกส์ที่นำเสนอในงานวิจัยแสดงได้ดังภาพที่ 2

การออกแบบการสร้างโรงเรือนแบบไฮโดร- โปนิกส์ที่มีระบบการควบคุมแบบอัตโนมัติโดยใช้ พลังงานแสงอาทิตย์ที่ออกแบบในงานวิจัยนี้จะมี ส่วนประกอบต่าง ๆ ที่สำคัญรวม 4 ส่วนด้วยกัน โดย ที่การทำงานของแต่ละส่วนจะมีการทำงานร่วมกัน คือระบบควบคุมการซาร์จไฟจากแผงโซลาร์เซลล์และ ระบบควบคุมการสลับไฟฟ้า ระบบควบคุมการเปลี่ยน ถ่ายน้ำและระบบสูบจ่ายน้ำปุ๋ย ระบบควบคุม การผสมปุ๋ยและระบบควบคุมความชื้นและระบบ ควบคุมอุณหภูมิโดยใช้ไมโครคอนโทรลเลอร์เข้ามา ควบคุมโดยอาศัยหลักการเขียนโปรแกรมควบคุมที่ ออกแบบจากโปรแกรม Arduino


ภาพที่ 2 บล็อกไดอะแกรมการทำงานของระบบ


ภาพที่ 3 ระบบควบคุมการชาร์จไฟและระบบควบคุมการสลับไฟ

ภาพที่ 4 ระบบควบคุมการชาร์จไฟจากแผงโซล่าเซลล์และระบบควบคุมการสลับไฟ

ภาพที่ 5 ระบบควบคุมอัตโนมัติ

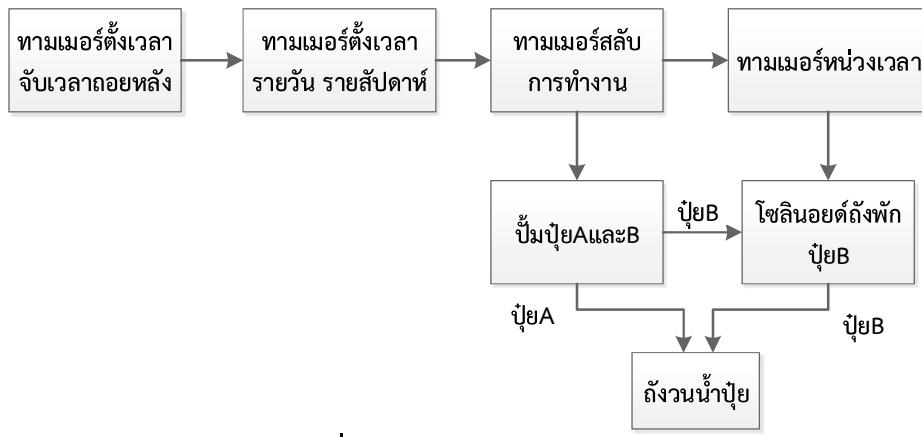
ภาพที่ 6 ระบบควบคุมการเปลี่ยนถ่ายน้ำและระบบสูบจ่ายน้ำปุ่ย

2.2.1 ระบบควบคุมการชาร์จไฟจากแผงโซลาร์และระบบการควบคุมการสลับไฟ

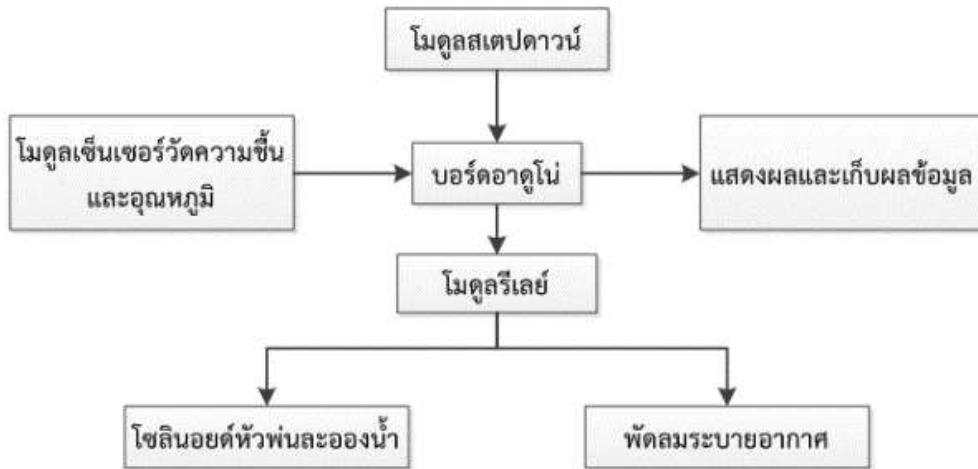
การทำงานของระบบจะมีหลักการทำงาน คือ จะทำการแปลงพลังงานแสงอาทิตย์ ในช่วงเวลากลางวันให้เป็นพลังงานไฟฟ้าและทำการชาร์จประจุเข้าสู่แบตเตอรี่ โดยพลังงานที่ใช้ในช่วงเวลากลางวันจะนำแรงดันไฟฟ้ากระแสสลับขนาด

220 โวลต์ แปลงเป็นแรงดันไฟฟ้ากระแสตรงขนาด 12 โวลต์ ทำหน้าที่จ่ายพลังงานไฟฟ้าให้กับอุปกรณ์ทางด้านอิเล็กทรอนิกส์ในตู้ควบคุมโดยตรง และในช่วงระยะเวลากลางคืนหรือในช่วงที่ไม่สามารถชาร์จพลังงานแสงอาทิตย์ได้ ระบบจะสลับการทำงานมาสู่หมุดที่ใช้พลังงานทดแทนโดยอัตโนมัติโดยใช้รีเลย์เป็นตัวตัดต่อการทำงานของระบบ ซึ่งจะใช้

พลังงานไฟฟ้ากระแสตรงจากแบตเตอรี่ที่ได้ชาร์จประจำไว้ และเมื่อพลังงานจากแบตเตอรี่หมดระบบจะสลับการทำงานไปใช้ไฟฟ้ากระแสสัมภาระที่ 3 และภาพที่ 4


2.2.2 ระบบควบคุมการเปลี่ยนถ่ายน้ำปุ่ยและระบบสูบจ่ายน้ำปุ่ย

การทำงานของระบบทั้งสองแบบจะใช้athamเมอร์ในการตั้งเวลา โดยสามารถที่จะตั้งเวลาให้ระบบมีการทำงานเป็นรายวันหรือรายสัปดาห์ เพื่อควบคุมให้ใช้ลินอยด์วาร์ล์ทำการเปิดวาล์วเพื่อถ่ายน้ำปุ่ยออกมา การทำงานของอุปกรณ์สามารถทำงานได้โดยนำรีเมอร์มาต่อ กับเซ็นเซอร์ลูกloyตัวที่ 1 ซึ่งจะเป็นเซ็นเซอร์ที่ควบคุมการเติมน้ำในการณ์ที่ต้องการเติมน้ำหรือในกรณีที่น้ำในระบบลดลง โดยจะสั่งให้โซลินอยด์วาล์วเติมน้ำกลับล่ออย่างน้ำเข้าสู่ระบบจนถึงระดับเซ็นเซอร์ของลูกloyตัวที่กำหนดจากนั้นระบบจะตัดการทำงานของชุดเติมน้ำ ระบบการทำงานของ


การเติมน้ำจะมีการทำงานตลอดเวลาและในกรณีสั่งให้โซลินอยด์วาล์วถ่ายน้ำปุ่ยออกตัวรีเรียกจะทำการตัดระบบการเติมน้ำอัตโนมัติออกไปจนถึงช่วงเวลาที่ตั้งตามเมอร์ไว้จะหยุดระบบการถ่ายน้ำปุ่ยทันที ในทางกลับกันส่วนของระบบเติมน้ำก็จะกลับมาทำงานเช่นเดิม และเมื่อระบบเติมน้ำในถังวนปุ่ยจนเต็มเช่นเชอร์ลูกloyตัวที่ 2 จะสั่งให้รีเรียกทำงานเพื่อสั่งให้ปั๊มสูบจ่ายน้ำปุ่ยทำงาน โดยจะสูบปุ่ยไปยังแปลงผักไฮโดรปอนิกส์ที่ออกแบบทันที การทำงานของระบบสามารถแสดงบล็อกได้ดังภาพที่ 5 และภาพที่ 6

2.2.3 ระบบควบคุมการผสมปุ่ย

ภาพที่ 7 จะแสดงระบบควบคุมการผสมปุ่ยซึ่งจะใช้athamเมอร์เป็นอุปกรณ์หลักในการออกแบบ สามารถอธิบายการทำงานของathamเมอร์ในแต่ละส่วนได้ดังนี้

ภาพที่ 7 ระบบควบคุมการผสมปุ่ย

ภาพที่ 8 ระบบควบคุมความชื้นและอุณหภูมิ

ตามเมอร์ตั้งเวลาจับเวลาถอยหลัง จะทำหน้าที่ในการจับเวลาบันถอยหลังซึ่งจะควบคุมระยะเวลาในการทำงานให้ระบบมีการทำงานตรงตามระยะเวลาที่กำหนด ซึ่งในงานวิจัยนี้จะกำหนดให้ระบบสมบูรณ์มีการทำงานตลอดระยะเวลา 4 สัปดาห์ และในสัปดาห์ที่ 5 จะตั้งให้ตามเมอร์ตั้งระบบสมบูรณ์ให้หยุดการทำงานเพื่อต้องการให้ระบบส่งน้ำให้แปลงผักก่อนทำการเก็บเกี่ยวประมาณ 3-5 วัน

ตามเมอร์ตั้งเวลา รายวัน รายสัปดาห์ จะทำหน้าที่สั่งให้ระบบสมบูรณ์ทำงานหลังจากที่ระบบเปลี่ยนถ่ายน้ำทำงาน

ตามเมอร์สลับการทำงาน จะทำหน้าที่ควบคุมควบคุมปริมาณของปั๊มให้มีอัตราส่วนตรงตามที่ผักต้องการ โดยจะสั่งให้ปั๊มปั๊ม A และปั๊มปั๊ม B ทำการปั๊มปั๊มในอัตราส่วนที่เท่ากัน การทำงานปั๊ม A จะถูกปั๊มลงสู่ถังน้ำปั๊กก่อน ส่วนปั๊มปั๊ม B จะปั๊มปั๊มลงสู่ถังพักปั๊ม B จนกว่าทามเมอร์หน่วงเวลาจะสั่งให้โซลินอยด์วาล์วปล่อยปั๊ม B ลงไปสมกับปั๊ม A ในถังวนน้ำปั๊ม

ตามเมอร์หน่วงเวลา จะทำหน้าที่หน่วงเวลาเพื่อให้โซลินอยด์วาล์วของถังพักปั๊ม B ปล่อยปั๊มลงไปสมกับปั๊ม A ในถังวนน้ำปั๊มในระยะเวลาที่เหมาะสม โดยในงานวิจัยนี้จะกำหนดให้มีการหน่วงเวลา 5 นาที ซึ่งในระยะเวลาดังกล่าว พบร่วมกับปั๊ม A และปั๊ม B จะสมเข้ากันได้ดีและที่สำคัญไม่ทำให้เกิดการตกตะกอนของปั๊มที่ทำการผสม

2.2.4 ระบบควบคุมความชื้นและอุณหภูมิ

การทำงานของระบบแสดงตั้งภาพที่ 8 โดยจะกำหนดให้ระบบทำงานเมื่อเซนเซอร์รับค่าความชื้นที่สูงกว่า 80% ที่อุณหภูมิสูงกว่า 35°C ซึ่งจะควบคุมการทำงานโดยไม้ไครคอลโลรีโดยจะทำการประมวลผลแล้วสั่งไม่ดูดรีเลย์ทำหน้าที่ในการตัดต่อให้พัดลมระบายอากาศทำงานเพื่อเป็นการดูดอากาศร้อนซึ่งบริเวณภายในของแปลงปลูกผักไฮโดรโปนิกส์ออกจนกว่าค่าความชื้นภายในจะลดลงตามที่กำหนดระบบควบคุมความชื้นและอุณหภูมิจึงจะหยุดการทำงาน ทั้งนี้เพื่อเป็นการ-

ป้องกันโรคระบาดที่เกิดขึ้นสำหรับการปลูกผักแบบไฮโดรโปนิกส์ และในกรณีที่แขนชอร์รับค่าอุณหภูมิที่มีอุณหภูมิสูงกว่าค่าที่กำหนด (ในงานวิจัยกำหนด อุณหภูมิในโรงเรือนมีค่า 35°C) ไม่ต้องรอต่อหล่อร์ จะสั่งให้โซลินอยด์เปิดให้น้ำไหลผ่านท่อน้ำไปยังหัวพ่นละอองน้ำทำงานจนกว่าอุณหภูมิต่ำกว่า 35°C ระบบจึงจะหยุดการทำงาน ระบบที่นำเสนอในงานวิจัยนี้จะเหมาะสมกับการเจริญเติบโตของผักไฮโดรโปนิกส์ เพราะการปลูกพืชไร้ดินในระบบไฮโดรโปนิกส์แบบ Nutrient film technique (NFT) ในโรงเรือนเพาะปลูกระบบปิด ซึ่งจะต้องมีการควบคุมให้มีอุณหภูมิในโรงเรือนระหว่าง $25-35^{\circ}\text{C}$ ความชื้น $60-80\%$ [1-4]

ภาพที่ 9 จะแสดงลักษณะโครงสร้างของโรงเรือนแบบไฮโดรโปนิกส์ที่ใช้พลังงานแสงอาทิตย์ ประกอบด้วย แผงโซล่าเซลล์ (หมายเลข 1) ตู้ควบคุมการชาร์จแบตเตอรี่และควบคุมการสับปะรด (หมายเลข 2) ตู้ควบคุมอัตโนมัติสำหรับโรงเรือนแบบไฮโดรโปนิกส์ (หมายเลข 3) ถังเก็บแบตเตอรี่และถังเก็บปุ๋ย (หมายเลข 4) ถังวนน้ำปุ๋ย (หมายเลข 5) และถังพักน้ำ (หมายเลข 6)

ภาพที่ 10 จะแสดงลักษณะโครงสร้างภายในของโรงเรือนแบบไฮโดรโปนิกส์ ซึ่งประกอบด้วย วาร์ล์บปรับปริมาณการให้เหลวของน้ำปุ๋ย (หมายเลข 1) หัวพ่นละอองน้ำ (หมายเลข 2) พัดลมดูดความชื้น (หมายเลข 3) เชนเชอร์ตรวจสอบอุณหภูมิและความชื้น (หมายเลข 4) และร่างปลูกผัก (หมายเลข 5)

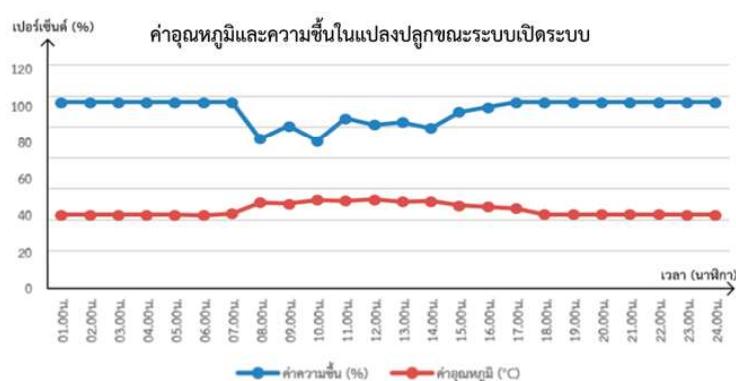
ภาพที่ 9 ลักษณะโครงสร้างของโรงเรือนแบบไฮโดรโปนิกส์ที่ใช้พลังงานแสงอาทิตย์

ภาพที่ 10 ลักษณะโครงสร้างภายในของโรงเรือนแบบไฮโดรเป็นิกส์

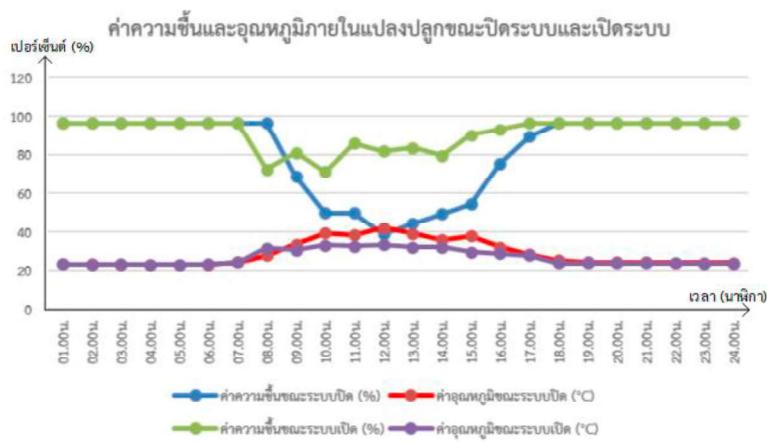
3. ผลการทดลองและอภิปรายผล

การทดสอบการทำงานของระบบจะทำการทดสอบ 4 ส่วนด้วยกัน ดังนี้คือ ส่วนแรกคือทดสอบระบบวัดค่าความชื้นและค่าอุณหภูมิอัตโนมัติ ส่วนที่สองจะเป็นการทดสอบการทำงานของระบบการเปลี่ยนถ่ายน้ำปุ่ย ส่วนที่สามจะเป็นการทดสอบการทำงานของระบบผสมแม่ปุ่ย A และแม่ปุ่ย B และสุดท้ายจะทดสอบการทำงานของระบบสลับไฟฟ้า เป็นการใช้ระบบไฟจากพลังงานแสงอาทิตย์ [5-7] ดังนี้

3.1 การทดสอบระบบการทำงานวัดค่าความชื้นและอุณหภูมิ


ภาพที่ 11 เป็นการทดสอบในขณะปิดระบบ พบร้าความชื้นในตอนกลางวันมีค่าต่ำกว่า 80% ที่อุณหภูมิสูงกว่า 35°C ทำให้อาศาสภายในโรงเรือนโดยรวมจะเป็นอากาศที่ไม่เหมาะสมสำหรับการปลูกผักแบบไฮโดรเป็นิกส์

ภาพที่ 12 เป็นการทดสอบในขณะเปิดระบบ พบร้าความชื้นในตอนกลางวันมีค่าไม่เกิน 80% ที่อุณหภูมิสูงกว่า 35°C ทำให้อาศาสภายในโรงเรือนโดยรวมจะเป็นอากาศที่เหมาะสมสำหรับการปลูกผักแบบไฮโดรเป็นิกส์


ภาพที่ 13 จะเป็นผลการทดสอบค่าความชื้นและอุณหภูมิในขณะที่ปิดระบบควบคุมอัตโนมัติ ในช่วงเวลากลางวันค่าความชื้นภายในโรงเรือนจะมีค่าต่ำและค่าอุณหภูมิมีค่าสูงทำให้ส่งผลให้สภาพอากาศภายในโรงเรือนมีสภาพอากาศที่ร้อนแห้งจืดไม่เหมาะสมสำหรับการปลูกพืชแบบไฮโดร-เป็นิกส์ และเมื่อเปิดระบบควบคุมอัตโนมัติให้ทำงานพบร้าค่าความชื้นและอุณหภูมิภายในโรงเรือนจะมีค่าเปลี่ยนไปจากเดิมโดยที่ค่าความชื้นจะมีค่าเพิ่มมากขึ้นแต่อุณหภูมิจะไม่เกินค่าที่กำหนดไว้จึงทำให้สภาพอากาศภายในโรงเรือนมีสภาพอากาศที่เหมาะสมแก่การเพาะปลูกพืชแบบไฮโดรเป็นิกส์

ภาพที่ 11 ค่าความชื้นและอุณหภูมิในขณะปิดระบบ

ภาพที่ 12 ค่าความชื้นและอุณหภูมิในขณะเปิดระบบ

ภาพที่ 13 ความแตกต่างของค่าความชื้นและอุณหภูมิระหว่างปิดระบบกับเปิดระบบ

3.2 การทดสอบระบบการทำงานระบบเปลี่ยนถ่ายน้ำปุ๋ย

การทดสอบเปิดระบบการทำงานเปลี่ยนถ่ายน้ำปุ๋ยเพื่อหาระยะเวลาที่เหมาะสมในการเปลี่ยนถ่ายน้ำปุ๋ยและเติมน้ำปุ๋ย โดยการใช้นาฬิกาในการจับเวลาการระบายน้ำและการเติมน้ำจนเต็ม จำนวนจะตั้งเวลาโดยใช้ตามเมอร์คบคุณ พบร่วางในกรณีใช้ถังวนน้ำปุ๋ยที่มีขนาด 80 ลิตร จะใช้เวลาในการถ่ายน้ำทั้งประมาณ 15 นาทีและใช้เวลาเติมน้ำประมาณ 10 นาที การทดสอบจะตั้งเวลาที่ตัวตามเมอร์คบคุณ การถ่ายน้ำปุ๋ยในการปลูกพืชไฮโดรโปนิกส์เป็นระยะเวลา 1 เดือน พบร่วางระบบสามารถทำงานได้ตรงตามระยะเวลาที่ตั้งไว้ โดยกำหนดให้ระบบถ่ายน้ำทั้งทำงานที่เวลา 18.00-18.15 น. และเวลาที่ระบบเติมน้ำจนเต็มเวลา 18.15-18.25 น. ในทุก ๆ 7 วัน จำนวน 5 ครั้ง

3.3 การทดสอบระบบการทำงานการผสมแม่ปุ๋ย A และแม่ปุ๋ย B

การทดสอบการตั้งเวลาการทำงานกรณีใช้ถังวนน้ำปุ๋ย 80 ลิตร จะใช้อัตราส่วนของแม่ปุ๋ยกำหนดให้ใช้การผสมเป็นแม่ปุ๋ย 5 มิลลิลิตรต่อน้ำ 1 ลิตร ดังนั้นในกรณีนี้จะต้องใส่แม่ปุ๋ย A และแม่ปุ๋ย B ชนิดละ 400 มิลลิลิตร โดยจะตั้งเวลาของตามเมอร์ปั้มสูบแม่ปุ๋ย 13 วินาที และตั้งเวลาของตามเมอร์ระบบปิดการผสมปุ๋ยที่เวลา 600 ชั่วโมง ดังนั้นจะต้องใช้เวลาในการทดสอบ 5 สัปดาห์ สำหรับระบบที่ทำการออกแบบ โดยระบบผสมปุ๋ยมีการทำงานตลอดระยะเวลา 4 สัปดาห์ และในสัปดาห์ที่ 5 จะตั้งให้ตามเมอร์ตั้งระบบผสมปุ๋ยให้หยุดการทำงานเพื่อต้องการให้ระบบส่งน้ำให้แบ่งผังก่อนทำการเก็บเกี่ยวประมาณ 3-5 วัน โดยจะสามารถลดการขาดของผักและจะทำให้ผักสามารถดูดทรัพย์ปุ๋ยไปใช้ใน

การเจริญเติบโตจนหมดก่อนนำผักนั้นมาทำการบริโภค

3.4 การทดสอบระบบการทำงานของระบบสลับไฟฟ้าไปใช้ไฟฟ้าจากพลังงานแสงอาทิตย์

การทำงานของระบบพลังงานแสงอาทิตย์โดยใช้โซลาร์เซลล์จะตั้งให้ระบบมีการทำงานอยู่ในโหมด 2 ชั้งจะมีการทำงานหลังจากที่ดวงอาทิตย์ตก (12 ชั่วโมง) โดยจะกำหนดให้รีเลย์สลับไปใช้พลังงานจากแบตเตอรี่ที่ผ่านการชาร์จประจุจากโซลาร์เซลล์ในช่วงเวลากลางวัน ในกรณีที่พลังงานจากแบตเตอรี่หมดระบบก็จะตัดไปใช้พลังงานไฟฟ้าชั่วคราวโดยอัตโนมัติ ผลการทดสอบพบว่าระบบการชาร์จพลังงานไฟฟ้าโดยใช้พลังงานแสงอาทิตย์จะสามารถชาร์จประจุไฟฟ้านำมาใช้ในโรงเรือนนาน 8 ชั่วโมง 25 นาที ใช้เวลาในการทดสอบ 7 วัน พบร่วางระบบมีการทำงานสลับไปใช้ไฟฟ้าจากบ้านและลี้ในช่วงระยะเวลา 03.05 น. ถึง 18.40 น. และระบบจะสลับไปใช้ไฟฟ้าจากแบตเตอรี่เมื่อเวลา 18.40 น. ถึง 03.05 น.

4. สรุปผลการวิจัย

ระบบควบคุมอัตโนมัติสำหรับโรงเรือนแบบไฮโดรโปนิกส์โดยใช้พลังงานแสงอาทิตย์ โรงเรือนมีขนาด $(1.20 \times 2.40 \times 1.60)$ เมตร (กว้างxยาวxสูง) สามารถปลูกผักได้จำนวน 60 ต้น สามารถประยัดดพลังงานไฟฟ้าและเพิ่มประสิทธิภาพของโรงเรือนเพาะปลูกแบบไฮโดรโปนิกส์ การทำงานจะใช้ไมโครคอนโทรลเลอร์ควบคุมความชื้นและอุณหภูมิสามารถควบคุมความชื้นภายในโรงเรือนในช่วงเวลากลางวันไม่เกิน 80% ที่อุณหภูมิไม่เกิน 35°C สำหรับการปลูกพืชไร้ดินในระบบไฮโดรโปนิกส์ แบบ Nutrient film technique (NFT) โรงเรือนเพาะปลูกจะเป็นระบบปิดซึ่งต้องควบคุมให้มีอุณหภูมิระห่วง

25-35°C ความชื้น 60-80% ส่วนระบบการเปลี่ยนถ่ายน้ำจะทำงานควบคู่ไปกับระบบสมปุย โดยจะผสมปุยที่อัตราส่วน 400 มิลลิลิตรต่อน้ำ 80 ลิตร ซึ่งจะใช้เวลา 13 วินาที โดยระบบจะทำงานทุก ๆ 7 วัน จักรอบ 4 ครั้ง เมื่อเข้าสู่ครั้งที่ 5 ระบบสมปุยจะหยุดการทำงาน แต่ระบบเปลี่ยนถ่ายน้ำยังมีการทำงานตามปกติ ทุก ๆ ครั้งที่ระบบเปลี่ยนถ่ายน้ำทำงานทำให้ระบบการสูบจ่ายน้ำปุยหยุดการทำงานลงจนกระทั่งระบบเปลี่ยนถ่ายน้ำปุยเปลี่ยนถ่ายน้ำเสร็จ ระบบสูบจ่ายน้ำปุยถึงจะกลับมาทำงานอีกครั้ง ส่วนระบบพลังงานแสงอาทิตย์จะทำการชาร์จในช่วงเวลากลางวัน พลังงานที่ได้จากการแผงโซล่าเซลล์ขนาด 120 วัตต์ จะผลิตกำลังวัตต์ได้เฉลี่ย 842.21 วัตต์ต่อวัน ขึ้นอยู่กับปริมาณและระยะเวลาของแสงจากดวงอาทิตย์ที่ลงมาต่ำกระหบกับแผงโซล่าเซลล์ กำลังการผลิตไฟฟ้าที่ได้จากการแผงโซล่าเซลล์สามารถนำพลังงานมาใช้กับระบบห้องน้ำด้วยในโรงเรือนได้มากกว่า 8 ชั่วโมงต่อวัน และเมื่อนำมาคิดค่าความคุ้มทุนพบว่าเมื่อนำไปสร้างเป็นโรงเรือนขนาดใหญ่จะทำให้ลดต้นทุนแต่ยังมีข้อจำกัดในส่วนของพื้นที่และงบประมาณที่ค่อนข้างสูงสำหรับการปลูกพืชไว้รับประทานเองในครอบครัว

5. กิจกรรมประการ

ผู้วิจัยขอขอบคุณนายสันติ พูนสวัสดิ์และนางสาวบุญธิดา เดชอรัณ นักศึกษาคณะวิศวกรรมศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีราชมงคลรัตนโกสินทร์ วิทยาเขตตังรัง ที่ได้ช่วยทางด้านเทคนิคในการจัดทำงานวิจัยให้สำเร็จตามวัตถุประสงค์

6. เอกสารอ้างอิง

- [1] ดิเรก ทองร่าม. การปลูกพืชโดยไม่ใช้ดิน: หลักการจัดการผลิตเชิงธุรกิจในประเทศไทย (ฉบับปรับปรุงพิมพ์ใหม่ครั้งที่ 3). กรุงเทพฯ: พิมพ์ดีการพิมพ์; 2550.
- [2] นพดล เรียมเลิศหริรัญ. การปลูกพืชไร้ดิน (พิมพ์ครั้งที่ 3). กรุงเทพฯ: สุวิรยาสาส์น; 2553.
- [3] ไสระยา ร่วมรังสี. การปลูกพืชแบบไม่ใช้ดิน. กรุงเทพฯ: โอดี้ียนสโตร์; 2544.
- [4] อนันธ์ ตันโช. คู่มือการปลูกพืชโดยไม่ใช้ดิน. เยียงใหม่: ทริโอล็อกโนรีไซเคิล แอนด์ มีเดีย; 2552.
- [5] ธนากร น้ำหอมจันทร์, อติกร เสรีพัฒนาณฑ์. ระบบควบคุมอุณหภูมิและความชื้นสัมพันธ์ในโรงเรือนเพาะปลูกพืชไร้ดินแบบ Evaporative Cooling System ร่วมกับการสเปรย์ละอองน้ำแบบอัตโนมัติโดยใช้ PLC. รายงานฉบับสมบูรณ์ ทุนวิจัยมหาวิทยาลัยอีสเทิร์นเอเชีย ประจำปีการศึกษา 2555. กรุงเทพฯ; 2556.
- [6] คำคุณ พันธวงศ์, รัชศิลป์ รานอกภานุวัชร์. โรงเรือไฮโดรโปนิกส์อัตโนมัติ. การประชุมวิชาการงานวิจัยและพัฒนาเชิงประยุกต์ ครั้งที่ 9 การประยุกต์ใช้เทคโนโลยีเพื่อตอบสนองท้องถิ่นและภาคอุตสาหกรรม. The 9th Conference on Application Research and Development; 25-28 กรกฎาคม 2560; เชียงคาน, จังหวัดเลย. 2017
- [7] สมเนก ฉิมเรือง, ตันติกร จันโภ. การพัฒนาระบบควบคุมอุณหภูมิและความชื้นสัมพันธ์ในโรงเรือนเพื่อการปลูกผักสวนครัว. ภาควิชาชีวกรรมเกษตร คณะวิศวกรรมศาสตร์ กำแพงแสน มหาวิทยาลัยเกษตรศาสตร์. ประเทศไทย; 2559.