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Abstract

In this work, we developed a model of mathematics and physics for the series of
the RLC circuit loop. The purpose of this study is to evaluate for finding the time-
dependent electric charge that is a consequence of time-dependent voltage force.
Which the voltage force is in the cosine function. We calculated by using the second-order
non-homogeneous ordinary differential equation and integration by part technique. We
can find that the time-dependent electric charge corresponds to capacitance but is
inversely proportional to induction. The time-dependent electric charge is in contrast to
the charge. If & and o have slightly different values the time-dependent electric charge

behaves like an oscillation wave group.
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INTRODUCTION
In one loop of RLC circuit or second-order circuit is from the including of resistor,
inductor and capacitor where in this case, we analyze where the voltage depends on
time and it is in cosine function. Mohazzab J. et al. (2008) study RLC circuit response
and analysis using state space method. So he easily fined the response and stability of

the RLC circuit or second-order circuit and also with the help of the response of the
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RLC is examined from different input functions by using Matlab. The analysis of an RLC
circuit becomes too simpler. Sonam (2015) can use Matlab for analyzing the free
natural angular frequency repercussion of the second-order circuit, time repercussion
of the circuit. To analyse other standard second-order circuit conformation such as low
pass and high pass RLC network, we use interactive GUI. In GUI you can change the
RLC or second-order circuit parameter and see the fructification on the time and free
natural angular frequency repercussion in real time.

Dino (2019) study a low frequency hook with positive imaginary part in the
impedance spectrum can be explained by several phenomena and it occurs in a
number of photo-electrochemical system. Ahammodullah (2019) have successfully
applied the Kirchhoff’s voltage rule (KVL) modified into non-homogeneous second-
order differential equation to series circuits loop containing an electromotive force,
resistor, inductor and capacitor. The purpose of this paper is solving the series of RLC
circuits or second-order circuit (Sokol et al., 2013) in the driven force dependent on
time in cosine function form by using Wronskian’ s method form of the non-
homogeneous second-order differential equation. As the result gives 2 cases of charge
parameter that the electric charge value corresponds to the capacitance but inversely
proportional to induction, anywhere if the value of the parameter ¢ is defined as
ratio between resistance with double inductance and the free natural angular
frequency (o) have more different values, electric charge would have the behavior of
themselves like wave group.

MATERIALS AND METHODS

E® = Ly
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Figure 1: Representation the series of RLC circuit with time-dependent voltage.

The electrical system was made up of a capacitor(CCap), resistance(Rres),
inductance(Lmd) and applied voltage force(E(t)) is one of the most important
resonate systems in figure 1 (Kishore, 2008). In this work-study, the voltage force
depends on time and in cosine form. Thus the sum of the voltages encountered in
going around the whole circuit must be zero. Let us analyze the circuit of this case by
applying Kirchhoff’s rule, we get

E(t)=E,+E, +E, (1)

From the article above, the time-dependent applied voltage force is cosine function
form E(t)= Eoe’”zt cos’(ot) (Hutem & Masoongnoen,. 2021) which E,is the initial
voltage force, 77 is the coefficient of damping of the voltages force and ¢ is a constant
and is called the free natural ansular frequency. After substituting E(t) into Equation

(1), we obtain
E,e " cos?(ot) = E, +E, +E, 2)

We may write the voltage drop across the resistance Eg =1 R, across the
capacitor it is E. =q/C,, and across the inductance it is E, =L, (dlsys/dt) (Atamp
1990) and in the new form where I, =dq/dt (Goldstein and Safko, 2002), we get

2
Ol—?JrE OI—q+#q = 5e”’2t cos’ (ot) (3)
dt Lind dt Lind Ccap Lind

Therefore, we can set the new form whereR /L, is defined as 26,1/L,,C,,, is

ind cap

defined as o’and E,/L,, is defined as &,. Figure 1. represents an analogous

electrical driven oscillator with an applied voltage force emf source given by

E(t)= Eoe”’zt cos’(at) . We can rewrite Equation (3) as
d?q dq 2
F+25a+azq =¢g,e”"" cos’ (ot) (4)

Equation 4 is called a non-homogeneous second-order differential equation

(Tikjha et al., 2018) that can give the solution by using the summation of two part as

q(t) =ac (1) + 0, (1), (5)
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where g, (t) is the time-dependent electric charge particular solution of an
inhomogeneous differential equation and the time-dependent electric charge of
complementary function q.(t) is solution of the corresponding homogeneous
differential equation (that is equation (4) with the right side equal to zero number),
then equation (5) is also a solution of the non-homogeneous second-order differential
equation. q.(t) is the time-dependent electric charge of complementary function
solution of the homogeneous second-order differential equation (Riley & Hobson ,
2006)

42

dt?+252—?+02q=0 6)

Let us solve the auxiliary equation as m* +26m+o>=0. The auxiliary equation

has the roots
m=—5++62 —c? (7)

For this case, we can select to analyze the underdamped for the convenience
to substitution where d<o. We must havem=-§+iX and K:m. Thus, the
complementary function solution of the homogeneous differential equation of
Equation (6) is

qc(t) =e (asin(it) + Scos(it)) . (8)

We can find the value of &is a constant and pBis a constant by setting the
boundary conditions q(0)=gq, (the initial electric charge) and dq(0)/dt=0.Thus, we
consider the charge depends on time when t =0 as

Gc(0)=0+pcos(0), = B =g (9)
where g =q,is the initial charge. Next, we can find the derivative of charge

depends on time term as

_dqdct(t) =e " (akcos(kt) - Bsin(kt))-5e ™ (aksin(it) + Scos(kt))
From the initial condition of derivative part, we must have

a=% %% (10)

i /0_2_52’

whereR, /2L, , is defined as §, g, is the initial electric charge. Thus, the

res

homogeneous of Equation (6) gives the complementary function solution as
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g.(t)=e (%sin(m) +0, cos(?xt)j (11)

Then, let us seek the particular solution of Equation (5) by using Wronskian
method (Susan, 2004). We try the trigonometry and exponential solution of the form
that

y,(t) =e " sin(kt) , Y, (t) = e cos(kt)

y, (t) = X~ cos(At) — se~*" sin(At) y; (t) = —%e ™" sin(&t) — se™" cos(it)
We can find the solution of Wronskian method by the form below

v, (1) Y, (1)
yi(t) s (t)

Wr

Thus, we get

W - e " sin(kt) e~ cos(it)
" ke cos(kt) — se* sin(kt) —e sin(kt) — S~ cos(t)
W, =-xe?" (12)

Consider the first Wronskian method and we satisfy the solution as

W 0 e~ cos(it)
" | g0 cos? (ot) (e~ sin(xt) + se " cos(At) )
W, = —&,e " *" cos?(ot) cos(it) (13)

Consider the second Wronskian method and we satisfy the solution as
e % sin(kt) 0

e cos(kt) — e ' sin(At) g,e”"" cos?(ot)

W, = &, " " cos?(ot)sin(it) (14)
We can satisfy the derivative equation for Wronskian method (Sadri ,1991) as

du, W —g e "N cos? (ot) cos(it ,
a, Wy _ % zgta YCOS(AY) _ 20 o™ gos(iit) cos? (o)
&t W, s %

So we set the parameter of ¥ = (5-7°) as

dul gO t 2
—1 =% ¢ cos®(ot) cos(it
=& 00s? (ot) cos(h)

du, _ 0 gn (1+ cos(Zat)Jcos(m)
da

& 7
u = ﬁ I e” (1+cos(2ot)) cos(At) dt (15)

Thus,
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su(t) = ;-;(Ie’v‘ cos(it)dt + J‘e*‘ cos(xt) cos(o-2t)dt) (16)

We can find the first integral function by using integration by part technique for
estimation the right hand of Equation (16).
Ksin(?&t)+;(cos(7it)j
(A +2%)
Then consider the second integral function by using integration by part

(17)

je”‘ cos(kt)dt = e [

technique for estimation the right-hand side of Equation (16).
e” ((20 +R)sin((20 + A)t) + z cos((20 + A)t))
(Qo+R)*+ 1)

N e” (X —20)sin((x —207)t) + x cos((h — 2a)t))} (18)
(R-20)"+ 1)

I e*' cos(At) cos(2ot)dt = %{

We will get the solution of derivative equation for Wronskian method as
£,e" [(Ksin(xt) + y cos(kt)) . ((20 +K)sin((20 + K)t) + y cos((20 + R)t))
2K R+ 5% 2020+ 1) + 1%)
, (=20)sin(R ~20)t) + y cos(( - zc;)t)]
2((x—20)" + 1%)

The derivative for the second Wronskian method can be satisfied as

U (t) =

(19)

du, W, :_goe—<n2+a>t cos? (ot) sin(kt) __ 5o gn (L+ cos(201)) sin(it)
2%

d W et
Therefore,
u, (t) = —5—;( [e” sin(xt)dt + [ e sin(xt) cos(20-t)dt) (20)

We can find the first derivative in the right hand of Equation (20) by using

integration by part technique for estimation.
e’ (xsin(&t) — & cos(it))
(2* +1%)

Then, we also use integration by part technique for estimate the second integral

j e* sin(it) dt = (21)

function in the right hand of Equation (20) as
e” (xsin((R —20)t) — (A —20) cos((R — 20)t))
277 +(R-20)))
. e* (gsin((X+20)t) — (X + 20) cos((R + 20)t))
2(x° +(k+20)?)

Thus, we get the solution of derivative of the second Wronskian method as

I e*' cos(2ot)sin(kt)dt =

(22)
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0 (0) = £,e" ((;(sin(xt) —Rcos(kt)) (gsin((X—20)t) - (A —207) cos((k - 20)t))

2% F+r 27 +(h—20)7)
(xsin((X+20)t) — (R + 207) cos((R + 20)t) )
" 27 +(h+20))

(23)

The particular of a non-homosgeneous, the second order, linear equation in
Equation (4) with the constant C is

t) = g (rsin(ae)+ (5 -n*)cos(r)) ((20+R)sin((20 + 1)) + (8 ) cos((20 + W)Y))
qp()_ 27{, sI ( (X2+(5_772)2) * 2((20‘+K)2+(5_772)2)

((5-n")sin(At) - &.cos(At) )
(6-7n")"+1")

N (% —20)sin((k - 20)t)2+ (6- 1722) Czos((?» - 2cr)t)j B soe”’z' cos (Kt)[
2(x-20)" + (5 -1°)") 21

((8 = m?)sin((k —20)t) - (A —20) cos((k —20)1)) (8 =) sin((k + 20)1) = (& + 20) cos((A + Za)t))j .
+ + +
2((6-7°)" +(k-20)") 26 -7") +(h+20))

(24)

We can find the parameter of C by using the initial condition as q,(0) =g, .
& (_ i - (A -20) - (A +20) }

2k (R +(5-1")")  2(R-20)"+(5-7°)") 2(R+20)"+(5-1")")

_g_o( x . (k—20) . (k+20) j (25)
2K\ (R +(6-1°)")  2(R-20)"+(5-1")") 2(R+20)° +(5-7")")

Therefore, we get the particular solution of a non-homogeneous, second order,

6, (0) =~

C:qo

differential equation as

o e N )( (xsin(it) + (5 —n")cos(kt)) (20 +XK)sin((20 + K)t) + (5 - n°) cos((20 + R)t) )
0, (t) = ——si

w07y 220+ 1) +(0—1))

, (= 20)sin(( = 20)0) + (5 - ") cos(( ~ 20)1) j e costl) ((5 - n)sin(kt) - &.cos(it))
2A(-20) +(5-1°)) 2k (-1 +1)

((5 = m?)sin((x - 20)t) - (1 — 20 cos((k ~ 20))) (6 =) sin((k + 20)0) = (k. + 20) cos((2 + Zo)t))j
+ +

2((6-n°)" +(k-20)") 26 -7") +(h+20))
& % (R —20) (1 +20) 26
e 271((7&2+(5772)2)+2((K20)2+(5772)2)+2((7i+26)2+(5nz)z)J 20
Thus, we get the parameter of the time-dependent electric charge in Equation
(5) as

,,721

Ksin(it) + (5 — 1) cos(ii
qt)=e™ (%sin(?&thqo cos(7Lt)j+‘EoZ7L (Rsin(xt) + (5 —7°) cos(i))

R +(5-n)")
. ((20- +R)sin((20 + A)t) + (6 —1°) cos((20 + K)t)) . (X —20)sin((k - 20)t) + (5 —1°) cos((A — 2o-)t)J
220 + 1) +(5—1n°)) 2(R-20) +(5-n°)")

sin(xt)(
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—n’t

(6 -n°)sin(xt) - R cos(it)) +((5—n2)sin((x—20)t)—(X—ZU)cos((?»—za)t))

ce (
_% it
T ){ (6-7")" +%%) 2(6-n")+(r-20)")
((5-n*)sin((k +20)t) - (k + 25) cos((k + 20)t) ) tq %o x
) Y S
2 -1") +(1+20)) ° 2R (R*+(5-1))

(A—20) N (A +20) (27)
2(A-20)"+(6-1")") 2(h+20)" +(5-7))
From Equation (27) is the charge depends on time show in program. Putting this

into program Mathematica for plotting graph.

Casel:the time-dependent electric charge where § and o have more different

value. (o > 6)

The time-dependent electric charge can behave like the underdamp wave.

(Teoh & Rahifa, 2018).
Case2: the time-dependent electric charge where ¢ and o have slightly

different value. (o >J)

The time-dependent electric charge can behave like the wave group.

RESULTS
We can explain of numerical and result of the time-dependent of electric charge
in Equation (27) which effects by cosine voltage force as time-dependent charge as

figure (2), figure (3), figure (4) and figure (5)
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Figure 2: Illustration showing the relation parameter between charges depends on
time where ¢ and o have more different value. (a) Representation the relation

between the charge and time when the capacitor value is unable (The purple solid
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line is Cg,, = 4uF . The green solid line is C,, =8uF . The light blue solid line is

Ceaps =12uF The pink solid line is C.,, =16uF ), (b) Representation the relation

Cap3
between the charge and time when the Inductor value is unable (The purple solid line
is L, = 210H . The green solid line is L4, = 250H . The light blue solid line is

L.g5 = 290H The pink solid line is L, , = 330H ).
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Figure 3: Illustration showing the relation parameter between charges depends on
time where ¢ and o have more different value. (a) Representation the relation
between the electric charge and time when the initial applied voltage force (E,) value
is unable (The purple solid line is E,, = 0.1Vol . The green solid line is E, = 8kV . The
light blue solid line is Ey,=16kV The pink solid line is Ey, = 26kV), ( b)
Representation the relation between the electric charge and time when the resistance

(Re) value is unable (The purple solid line is R, = 100 W. The green solid line is

resl

R, = 150 W. The light blue solid line is R.;= 200W The pink solid line is

res2

R..s = 250 W).
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Figure 4: Illustration showing the relation parameter between charges depends on
time where § and o have slightly different value (¢>4). (a) Representation the
relation between the charge and time when the capacitor value is unable (The yellow
solid line is Cg,, = 410uF . The green solid line is C,,, = 412uF . The blue solid line is

Ceaps = 414uF The pink solid line is C.,, =416uF ), (b) Representation the relation

Cap3
between the charge and time when the inductor value is unable (The yellow solid line
is Ly =110H. The green solid line is L,,=112H. The blue solid line is

Ligs = 1.14H The pink solid line is L, = 1.16H ).
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Figure 5: Illustration showing the relation parameter between charges depends on
time where § and o have slightly different value (o >46). (a) Representation the
relation between the time-dependent electric charge and time when the initial applied
voltage force (E,) value is unable, (b) Representation the relation between the time-

dependent electric charge and time when the resistance (R,) value is unable.

DISCUSSION
From figure 2 (a), we set q,=05uxC, n =01, L, =450H, E,=350Vol,
R., = 250W are the control variable. But the capacitor is an independent variable and
the time-dependent electric charge is a dependent variable. If the capacitance is
higher, the wavelength of the vibrating electric charge is longer, but the frequency of
the vibrating electric charge is lower. From figure 2 (b), we set q,=05uC, n =0.1,

Cew =8uF, E, =350Vol R =250W is control variable. The inductance is an

Cap res

independent variable and the time-dependent electric charge is a dependent variable.

If the inductance is higher, the amplitude of the vibrating electric charge is higher, and
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the wavelength of it is longer. From Figure 3 (a), we set q,=0.5uC, n =0.1, L,, = 40H

Ceap2 =81F ,R,, =100W as the control variable. The initial voltage force E, is the

) res

control variable and the time-dependent electric charge is the dependent variable. If
E, higher, the vibrating of electric charge is smaller, more of the amplitude of the
vibrating electric charge is split. From figure 3 (b), we set q,=05uC, 7 =0.1,
Lo =150H , Ccyp, =8uF  E; = 250Vol as the control variable. The resistance R, is the
independent variable and the time-dependent electric charge is the dependent
variable. If the resistance is higher, the amplitude of the vibrating electric charge is
lower. Thus, we can compare the resistance as the damping coefficient of the electric
charge. From figure 4 (a), we set @q,=05uxC, n =01, L, =1102H, E,=220Vol,
R.. =100W is control variable. The capacitance is the independent variable and the
time-dependent electric charge is the dependent variable. If § and o have slightly
different, the time-dependent electric charge behaves itself like wave group. If the
capacitance is higher, the amplitude of the vibrating electric charge is higher. From

figure 4 (b), we set q,=05uC, n =01, C., =420uF, E, =220Vol R, =100W as

control variable. The inductance is the independent variable and the time-dependent
electric charge is the dependent variable. If the inductance is higher, the amplitude of
the vibrating electric charge is lower. From figure 5 (a), we set ¢,=05uC, n =0.1,
L =L112H, Cqy, = 420uF R

’ res

=100W as the control variable. The initial voltage force
E, is the independent variable and the time-dependent electric charge is the
dependent variable. If E, is higher, the amplitude of the vibrating electric charge is
higher. From figure 5 (b) we set q,=05uC, 7 =01, L, =112H, Cc,, =420uF,
E, = 220Vol is the control variable. The resistance R, is the independent variable and
the time-dependent electric charge is the dependent variable. If resistance is higher,
the amplitude of the vibrating electric charge is higher.

We had explicated the series of RLC loop circuit of resonant system that can be
used to effectually substantiated, in a very visual way, the phase relation between the
voltages across reactive and resistive elements (Sokol et al., 2013). We have
explicated the series of RLC loop circuit of resonant system that can be used to

effectually substantiate new soft ferromagnetic magnetic materials made possible the
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use of the magnetic amplifier technology in designing competitive electric-power
engineering supplies (Eloisa & Romeo, 2004). We can see the time-dependent electric
charge perturb via applied voltage force emf has the behavior like wave group but the
time-dependent electric charge in paper of title application of linear differential
equation in an analysis transient and steady response for second order RLC closed
series circuit of Ahammodullah Hasan has not behavior like wave group, if we add the
time, the amplitude slowly decreases. A modeling approach of a magnetic amplifier
based on the magnetic hysteresis loop of the core soft ferromagnetic material is

presented here for a common amorphous magnetic alloy.
CONCLUSIONS

From equation (27), we known that if the value of the parameter of ¢ is
defined as ratio between resistance with double inductance and the free natural
angular frequency ¢ have more different values, the electric charge have their
behavior like underdamped. If the value of the parameter of ¢ is defined as ratio
between resistance with double inductance and the free natural angular frequency o
have slightly different values, the electric charge will have their behavior like wave

group.
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