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Abstract 
In this work, we developed a model of mathematics and physics for the series of 

the RLC circuit loop.  The purpose of this study is to evaluate for finding the time-
dependent electric charge that is a consequence of time-dependent voltage force. 
Which the voltage force is in the cosine function. We calculated by using the second-order 
non-homogeneous ordinary differential equation and integration by part technique.  We 
can find that the time-dependent electric charge corresponds to capacitance but is 
inversely proportional to induction. The time-dependent electric charge is in contrast to 
the charge. If   and   have slightly different values the time-dependent electric charge 
behaves like an oscillation wave group. 
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INTRODUCTION 
In one loop of RLC circuit or second-order circuit is from the including of resistor, 

inductor and capacitor where in this case, we analyze where the voltage depends on 
time and it is in cosine function. Mohazzab J. et al. (2008) study RLC circuit response 
and analysis using state space method. So he easily fined the response and stability of 
the RLC circuit or second-order circuit and also with the help of the response of the 
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RLC is examined from different input functions by using Matlab. The analysis of an RLC 
circuit becomes too simpler.  Sonam (2015) can use Matlab for analyzing the free 
natural angular frequency repercussion of the second-order circuit, time repercussion 
of the circuit. To analyse other standard second-order circuit conformation such as low 
pass and high pass RLC network, we use interactive GUI. In GUI you can change the 
RLC or second-order circuit parameter and see the fructification on the time and free 
natural angular frequency repercussion in real time.  

Dino ( 2019)  study a low frequency hook with positive imaginary part in the 
impedance spectrum can be explained by several phenomena and it occurs in a 
number of photo-electrochemical system. Ahammodullah ( 2019)  have successfully 
applied the Kirchhoff’ s voltage rule (KVL) modified into non-homogeneous second-
order differential equation to series circuits loop containing an electromotive force, 
resistor, inductor and capacitor. The purpose of this paper is solving the series of RLC 
circuits or second-order circuit (Sokol et al., 2013) in the driven force dependent on 
time in cosine function form by using Wronskian’ s method form of the non-
homogeneous second-order differential equation. As the result gives 2 cases of charge 
parameter that the electric charge value corresponds to the capacitance but inversely 
proportional to induction,  anywhere if the value of the parameter δ  is defined as 
ratio between resistance with double inductance and the free natural angular 
frequency ( σ ) have more different values, electric charge would have the behavior of 
themselves like wave group. 

MATERIALS AND METHODS 
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Figure 1: Representation the series of RLC circuit with time-dependent voltage. 
The electrical system was made up of a capacitor ( )CapC , resistance ( )resR , 

inductance ( )indL  and applied voltage force ( )( )E t  is one of the most important 
resonate systems in figure 1 (Kishore, 2008).  In this work-study, the voltage force 
depends on time and in cosine form. Thus the sum of the voltages encountered in 
going around the whole circuit must be zero. Let us analyze the circuit of this case by 
applying Kirchhoff’s rule, we get 

( ) R L CE t E E E= + +     (1) 

From the article above, the time-dependent applied voltage force is cosine function 

form 2 2

0( ) cos ( )tE t E e t−=    (Hutem & Masoongnoen,. 2021) which 0E is the initial 
voltage force,   is the coefficient of damping of the voltages force and   is a constant 
and is called the free natural angular frequency. After substituting ( )E t into Equation 
(1), we obtain 

2 2

0 cos ( )t

R L CE e t E E E− = + +    (2)  

We may write the voltage drop across the resistance R sys resE I R= , across the 
capacitor it is C cap

E q C=  and across the inductance it is ( )L ind sysE L dI dt=  (Atamp , 
1990) and in the new form where

sysI dq dt=  (Goldstein  and Safko, 2002), we get 
2

2
20

2

1
cos ( )tres

ind ind cap ind

R Ed q dq
q e t

L dt L C Ldt

−+ + =    (3) 

Therefore, we can set the new form where
res ind

R L  is defined as 2 ,1 ind capL C  is 
defined as 2 and 

0 ind
E L  is defined as 0 .  Figure 1. represents an analogous 

electrical driven oscillator with an applied voltage force emf source given by 
2 2

0( ) cos ( )tE t E e t−=   . We can rewrite Equation (3) as 
2

2
2 2

02
2 cos ( )td q dq

q e t
dtdt

−+ + =        (4) 

Equation 4 is called a non-homogeneous second-order differential equation 
(Tikjha et al., 2018) that can give the solution by using the summation of two part as 

( ) ( ) ( )C Pq t q t q t= + ,    (5) 
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where ( )Pq t  is the time-dependent electric charge particular solution of an 
inhomogeneous differential equation and the time-dependent electric charge of 
complementary function ( )Cq t  is solution of the corresponding homogeneous 
differential equation (that is equation (4) with the right side equal to zero number), 
then equation (5) is also a solution of the non-homogeneous second-order differential 
equation. ( )Cq t  is the time-dependent electric charge of complementary function 
solution of the homogeneous second-order differential equation (Riley & Hobson , 
2006) 

2
2

2
2 0

d q dq
q

dtdt
+ + =      (6)

 
Let us solve the auxiliary equation as 2 22 0m m+ + =  .  The auxiliary equation 

has the roots 
2 2m = −  −        (7) 

For this case, we can select to analyze the underdamped for the convenience 

to substitution where   .  We must have m i= −   and 2 2= −  .  Thus, the 
complementary function solution of the homogeneous differential equation of 
Equation (6) is 

( )( ) sin( ) cos( )t

Cq t e t t−= +   .   (8) 
We can find the value of  is a constant and  is a constant by setting the 

boundary conditions 0(0)q q=  (the initial electric charge) and (0) 0dq dt = .Thus, we 
consider the charge depends on time when 0t =  as 

( ) 0(0) 0 cos 0 ,Cq q= +  =      (9) 
where 0q= is the initial charge. Next, we can find the derivative of charge 

depends on time term as 

      ( ) ( )
( )

cos( ) sin( ) e sin( ) cos( )t tCdq t
e t t t t

dt

− −= − − +       

From the initial condition of derivative part, we must have 
0 0

2 2

q q
= =

−

 


 
,   (10) 

where 2res ind
R L  is defined as  , 

0q  is the initial electric charge. Thus, the 
homogeneous of Equation (6) gives the complementary function solution as 
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0

0( ) sin( ) cos( )t

C

q
q t e t q t−  

= + 
 

    (11) 

Then, let us seek the particular solution of Equation ( 5)  by using Wronskian 
method (Susan, 2004). We try the trigonometry and exponential solution of the form 
that 

1( ) sin( )ty t e t−=    ,   
2 ( ) cos( )ty t e t−=   

   
1 ( ) cos( ) sin( )t ty t e t e t− − = −    

2 ( ) sin( ) cos( )t ty t e t e t− − = − −   
We can find the solution of Wronskian method by the form below 

1 2

1 2

( ) ( )

( ) ( )
Wr

y t y t
W

y t y t
=

 
 

Thus, we get 

                    sin( ) cos( )

cos( ) sin( ) sin( ) cos( )

t t

Wr t t t t

e t e t
W

e t e t e t e t

− −

− − − −
=  

− − −

 

    
 

2 t

WrW e−= −       (12) 
Consider the first Wronskian method and we satisfy the solution as 

                       
( )

21 2

0

0 cos( )

cos ( ) sin( ) cos( )

t

W t t t

e t
W

e t e t e t

−

− − −
=

− +



    
 

                         2( ) 2

1 0 cos ( )cos( )t

WW e t t− += −                   (13) 
Consider the second Wronskian method and we satisfy the solution as 

22 2

0

sin( ) 0

cos( ) sin( ) cos ( )

t

W t t t

e t
W

e t e t e t

−

− − −
=

−



    
 

2( ) 2

2 0 cos ( )sin( )t

WW e t t− +=       (14) 
We can satisfy the derivative equation for Wronskian method (Sadri ,1991) as 

           
2

2
( ) 2

( ) 21 0 01

2

cos ( )cos( )
cos( )cos ( )

t

tW

t

Wr

W e t tdu
e t t

dt W e

− +

−

−

−
= = =

−

 
 



  
  

So we set the parameter of 2( )= −    as  
201 cos ( )cos( )tdu

e t t
dt

= 
  

01 1 cos(2 )
cos( )

2

tdu t
e t

dt

+ 
=  

 

    

( )0

1 1 cos(2 ) cos( )
2

tu e t t dt= +


   (15) 

Thus, 
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             ( )0

1( ) cos( ) cos( )cos( 2 )
2

t tu t e t dt e t t dt = + 
 

    (16) 

We can find the first integral function by using integration by part technique for 
estimation the right hand of Equation (16). 

                         
2 2

sin( ) cos( )
cos( )

( )

t t t t
e t dt e

 +
=  

+ 


  


    (17) 

Then consider the second integral function by using integration by part 
technique for estimation the right-hand side of Equation (16). 

( )
2 2

(2 )sin((2 ) ) cos((2 ) )1
cos( )cos(2 )

2 ((2 ) )

t

t
e t t

e t t dt
 + + + +

= 
+ +





   


 

 

( )
2 2

( 2 )sin(( 2 ) ) cos(( 2 ) )

(( 2 ) )

te t t − − + −
+ 

− + 

    

 
  (18) 

We will get the solution of derivative equation for Wronskian method as 

     ( ) ( )0

1 2 2 2 2

sin( ) cos( ) (2 )sin((2 ) ) cos((2 ) )
( )

2 ( ) 2((2 ) )

t t t t te
u t

+ + + + +
= +

+ + +

     

  

 
2 2

( 2 )sin(( 2 ) ) cos(( 2 ) )

2(( 2 ) )

t t − − + −
+ 

− + 

   

 
    (19) 

The derivative for the second Wronskian method can be satisfied as 

  
2( ) 2

0 02 2

2

cos ( )sin( )
(1 cos(2 ))sin( )

2

t

t

t

e t tdu W
e t t

dt W e

− +

−
= = − = − +

 




  
  

Therefore, 

               ( )0

2 ( ) sin( ) sin( )cos(2 )
2

t tu t e t dt e t t dt= − + 
 

     (20) 

We can find the first derivative in the right hand of Equation ( 20)  by using 
integration by part technique for estimation. 

( )
2 2

sin( ) cos( )
sin( )

( )

t

t
e t t

e t dt
−

=
+







     (21) 

Then, we also use integration by part technique for estimate the second integral 
function in the right hand of Equation (20) as 

( )
2 2

sin(( 2 ) ) ( 2 )cos(( 2 ) )
cos(2 )sin( )

2( ( 2 ) )

t

t
e t t

e t t dt
− − − −

=
+ −




   


 

               

                                ( )
2 2

sin(( 2 ) ) ( 2 )cos(( 2 ) )

2( ( 2 ) )

te t t+ − + +
+

+ +

    

 
      (22) 

Thus, we get the solution of derivative of the second Wronskian method as 
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( ) ( )0

2 2 2 2 2

sin( ) cos( ) sin(( 2 ) ) ( 2 )cos(( 2 ) )
( )

2 ( ) 2( ( 2 ) )

t t t t te
u t

− − − − −
= − +

+ + −

     

  
 

            ( )
2 2

sin(( 2 ) ) ( 2 )cos(( 2 ) )

2( ( 2 ) )

t t+ − + + 
+ 

+ + 

   

 
                  (23) 

The particular of a non-homogeneous, the second order, linear equation in 
Equation (4) with the constant C  is 

( ) ( )2 2 2

0

2 2 2 2 2 2

sin( ) ( ) cos( ) (2 ) sin((2 ) ) ( ) cos((2 ) )
( ) sin( t)

2 ( ( ) ) 2((2 ) ( ) )

t

P

t t t te
q t

− + − + + + − +
= +

+ − + + −






       

    
 

     ( )
2 22

0

2 2 2 2 2 2

( )sin( ) cos( )( 2 )sin(( 2 ) ) ( )cos(( 2 ) )
cos( )

2(( 2 ) ( ) ) 2 (( ) )

t t tt t e
t

− − −− − + − −
+ −

− + − − +


 

 

       

    

( )2

2 2 2

( )sin(( 2 ) ) ( 2 )cos(( 2 ) )

2(( ) ( 2 ) )

t t− − − − −
+

− + −

    

  

( )2

2 2 2

( ) sin(( 2 ) ) ( 2 ) cos(( 2 ) )

2(( ) ( 2 ) )

t t
C

− + − + +
+ +

− + +





    

  
 

                                                                                               (24) 
We can find the parameter of C by using the initial condition as 

0(0)pq q= . 
0

2 2 2 2 2 2 2 2 2

( 2 ) ( 2 )
(0)

2 ( ( ) ) 2(( 2 ) ( ) ) 2(( 2 ) ( ) )
pq C

 − +
= − − − − + 

+ − − + − + + − 

  

       
 

0

0 2 2 2 2 2 2 2 2 2

( 2 ) ( 2 )

2 ( ( ) ) 2(( 2 ) ( ) ) 2(( 2 ) ( ) )
C q

 − +
= − + + 

+ − − + − + + − 

  

       
 (25) 

Therefore, we get the particular solution of a non-homogeneous, second order, 
differential equation as 

( ) ( )2 2 2

0

2 2 2 2 2 2

sin( ) ( ) cos( ) (2 ) sin((2 ) ) ( ) cos((2 ) )
( ) sin( t)

2 ( ( ) ) 2((2 ) ( ) )

t

P

t t t te
q t

− + − + + + − +
= +

+ − + + −






       

    

( )
2 22

0

2 2 2 2 2 2

( )sin( ) cos( )( 2 )sin(( 2 ) ) ( )cos(( 2 ) )
cos( )

2(( 2 ) ( ) ) 2 (( ) )

t t tt t e
t

− − −− − + − −
+ −

− + − − +


 

 

       

    
 

( )2

2 2 2

( )sin(( 2 ) ) ( 2 )cos(( 2 ) )

2(( ) ( 2 ) )

t t− − − − −
+

− + −

    

  

( )2

2 2 2

( ) sin(( 2 ) ) ( 2 ) cos(( 2 ) )

2(( ) ( 2 ) )

t t− + − + +
+

− + +





    

  

0
0 2 2 2 2 2 2 2 2 2

( 2 ) ( 2 )

2 ( ( ) ) 2(( 2 ) ( ) ) 2(( 2 ) ( ) )
q

 − +
+ − + + 

+ − − + − + + − 

  

       
       (26) 

 
Thus, we get the parameter of the time-dependent electric charge in Equation 

(5) as 
( )2 2

0

2 2 2

0

0

sin( ) ( ) cos( )
sin( )

2 ( ( ) )
( ) sin( ) cos( )

t

t
t te

t
q

q t e t q t
−

−
+ −

+ −

 
= + +     




 

 



( )2

2 2 2

(2 ) sin((2 ) ) ( ) cos((2 ) )

2((2 ) ( ) )

t t+ + + − +
+

+ + −

    

  

2

2 2 2

( 2 ) sin(( 2 ) ) ( ) cos(( 2 ) )

2(( 2 ) ( ) )

t t− − + − −
+

− + −





    

  
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( )2 2

0

2 2 2

( ) sin( ) cos( )
cos( )

2 (( ) )

t t te
t

− − −
−

− +






  

 

( )2

2 2 2

( )sin(( 2 ) ) ( 2 )cos(( 2 ) )

2(( ) ( 2 ) )

t t− − − − −
+

− + −

    

  

( )2

2 2 2

( ) sin(( 2 ) ) ( 2 ) cos(( 2 ) )

2(( ) ( 2 ) )

t t− + − + +
+

− + +





    

  

0
0 2 2 22 ( ( ) )

q




+ −
+ −



 

2 2 2 2 2 2

( 2 ) ( 2 )

2(( 2 ) ( ) ) 2(( 2 ) ( ) )

− +
+ + 

− + − + + − 

 

     
  (27) 

From Equation (27) is the charge depends on time show in program. Putting this 
into program Mathematica for plotting graph. 

Case1:the time-dependent electric charge where   and   have more different 
value. (𝜎 ≫ 𝛿) 

The time-dependent electric charge can behave like the underdamp wave.  
(Teoh & Rahifa, 2018).  

Case2:  the time-dependent electric charge where   and   have slightly 
different value. ( )σ δ  

The time-dependent electric charge can behave like the wave group. 
 

RESULTS 
We can explain of numerical and result of the time-dependent of electric charge 

in Equation (27)  which effects by cosine voltage force as time-dependent charge as 
figure (2), figure (3), figure (4) and figure (5)  

 

  
  ( )a      ( )b     
Figure 2:  Illustration showing the relation parameter between charges depends on 
time where   and   have more different value.  ( a)  Representation the relation 
between the charge and time when the capacitor value is unable (The purple solid 
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line is 
1 4CapC μF= . The green solid line is 

2 8CapC μF= . The light blue solid line is 

3 12CapC μF=  The pink solid line is 
4 16CapC μF= ), ( b)  Representation the relation 

between the charge and time when the Inductor value is unable (The purple solid line 
is 1 210indL H= . The green solid line is 2 250indL H= . The light blue solid line is 

3 290indL H=  The pink solid line is 4 330indL H= ). 
 

  
                                (a)                                                           (b) 

Figure 3:  Illustration showing the relation parameter between charges depends on 
time where   and   have more different value.  ( a)  Representation the relation 
between the electric charge and time when the initial applied voltage force ( )0E  value 
is unable (The purple solid line is 01 0.1E Vol= . The green solid line is 02 8E kV= . The 
light blue solid line is 03 16E kV=  The pink solid line is 04 26E kV= ), ( b) 
Representation the relation between the electric charge and time when the resistance
( )resR  value is unable (The purple solid line is 1 100 WresR = . The green solid line is 

2 150 WresR = . The light blue solid line is 3 200 WresR =  The pink solid line is 

4 250 WresR = ).  
 

 
        (a)               (b) 
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Figure 4:  Illustration showing the relation parameter between charges depends on 
time where   and   have slightly different value ( )σ δ .  ( a)  Representation the 
relation between the charge and time when the capacitor value is unable (The yellow 
solid line is 

1 410CapC μF= . The green solid line is 
2 412CapC μF= . The blue solid line is 

3 414CapC μF=  The pink solid line is 
4 416CapC μF= ), ( b)  Representation the relation 

between the charge and time when the inductor value is unable (The yellow solid line 
is 1 1.10indL H= . The green solid line is 2 1.12indL H= . The blue solid line is 

3 1.14indL H=  The pink solid line is 4 1.16indL H= ). 
 

  
        (a)                                                  (b) 

Figure 5:  Illustration showing the relation parameter between charges depends on 
time where   and   have slightly different value ( )σ δ .  ( a)  Representation the 
relation between the time-dependent electric charge and time when the initial applied 
voltage force ( )

0
E  value is unable, (b) Representation the relation between the time-

dependent electric charge and time when the resistance ( )resR  value is unable. 
 

DISCUSSION 
 From figure 2  (a), we set 0 0.5q μC= , 0.1η = , 450indL H= , 0 350E Vol= ,
250WresR =  are the control variable. But the capacitor is an independent variable and 

the time-dependent electric charge is a dependent variable. If the capacitance is 
higher, the wavelength of the vibrating electric charge is longer, but the frequency of 
the vibrating electric charge is lower. From figure 2  (b), we set 0 0.5q μC= , 0.1η = , 

8CapC μF= , 0 350E Vol= , 250WresR =  is control variable. The inductance is an 
independent variable and the time-dependent electric charge is a dependent variable. 
If the inductance is higher, the amplitude of the vibrating electric charge is higher, and 
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the wavelength of it is longer. From Figure 3 (a), we set 0 0.5q μC= , 0.1η = , 40indL H=

, 2 8CapC μF= , 100WresR =  as the control variable. The initial voltage force 0E  is the 
control variable and the time-dependent electric charge is the dependent variable. If 

0E  higher, the vibrating of electric charge is smaller, more of the amplitude of the 
vibrating electric charge is split. From figure 3  (b), we set 0 0.5q μC= , 0.1η = , 

150indL H= , 2 8CapC μF= , 0 250E Vol=  as the control variable. The resistance resR is the 
independent variable and the time-dependent electric charge is the dependent 
variable. If the resistance is higher, the amplitude of the vibrating electric charge is 
lower. Thus, we can compare the resistance as the damping coefficient of the electric 
charge. From figure 4  (a), we set 0 0.5q μC= , 0.1η = , 1.102indL H= , 0 220E Vol= ,

100WresR =  is control variable. The capacitance is the independent variable and the 
time-dependent electric charge is the dependent variable. If   and   have slightly 
different, the time-dependent electric charge behaves itself like wave group. If the 
capacitance is higher, the amplitude of the vibrating electric charge is higher. From 
figure 4 (b), we set  0 0.5q μC= , 0.1η = , 420CapC μF= , 0 220E Vol= , 100WresR =  as 
control variable. The inductance is the independent variable and the time-dependent 
electric charge is the dependent variable. If the inductance is higher, the amplitude of 
the vibrating electric charge is lower. From figure 5  (a), we set 0 0.5q μC= , 0.1η = , 

1.12indL H= , 2 420CapC μF= , 100WresR =  as the control variable. The initial voltage force 

0E  is the independent variable and the time-dependent electric charge is the 
dependent variable. If 0E  is higher, the amplitude of the vibrating electric charge is 
higher. From figure 5  (b) we set 0 0.5q μC= , 0.1η = , 1.12indL H= , 2 420CapC μF= ,

0 220E Vol=  is the control variable. The resistance resR is the independent variable and 
the time-dependent electric charge is the dependent variable. If resistance is higher, 
the amplitude of the vibrating electric charge is higher. 

We had explicated the series of RLC loop circuit of resonant system that can be 
used to effectually substantiated, in a very visual way, the phase relation between the 
voltages across reactive and resistive elements (Sokol et al., 2013).  We have 
explicated the series of RLC loop circuit of resonant system that can be used to 
effectually substantiate new soft ferromagnetic magnetic materials made possible the 
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use of the magnetic amplifier technology in designing competitive electric-power 
engineering supplies (Eloısa & Romeo, 2004). We can see the time-dependent electric 
charge perturb via applied voltage force emf has the behavior like wave group but the 
time-dependent electric charge in paper of title application of linear differential 
equation in an analysis transient and steady response for second order RLC closed 
series circuit of Ahammodullah Hasan has not behavior like wave group, if we add the 
time, the amplitude slowly decreases. A modeling approach of a magnetic amplifier 
based on the magnetic hysteresis loop of the core soft ferromagnetic material is 
presented here for a common amorphous magnetic alloy. 

CONCLUSIONS 

 From equation ( 27) , we known that if the value of the parameter of   is 
defined as ratio between resistance with double inductance and the free natural 
angular frequency σ  have more different values, the electric charge have their 
behavior like underdamped.  If the value of the parameter of   is defined as ratio 
between resistance with double inductance and the free natural angular frequency σ
have slightly different values, the electric charge will have their behavior like wave 
group. 
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