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Forest waw XGBoost uuusasamaiismfumslfinaiansdnnisanulsiaugavestoyade
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wuUd1aee XGBoost Tisyansanlunisiuegegn dannuusdugide 83.95% dalunguues
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ABSTRACT

This study presents the comparison of machine learning models for predicting
student learning outcome in an online learning management system. Based on student
activities stored in the log file of the system, we identify and create relevant features
for predicting student performance. In this study, we divide the features into two
groups, i.e., features related to the system usage behavior of the students and features
related to the score the student obtained. Then, we analyze the importance of these
two sets of features by creating models with different sets of the features. We
compare the prediction performances of several well-known machine learning models
including Logistic Regression, Naive Bayes, K-Nearest Neighbor, Support Vector
Machines, Decision Tree, Random Forest and XGBoost. Several preprocessing methods
are employed to improve the performance prediction including handling imbalanced
data with Synthetic Minority Oversampling Technique (SMOTE) and choosing relevant
features by XGBoost model. We found that XGBoost model yields highest prediction
accuracy at 83.95%. The models trained by features related to score alone yield better
performance than those trained by features related to the system usage behavior, but
using the features from both groups together yields the best performance. Moreover,
we found that feature selection can improve the performance of low-complexity models,
while impair the performance of high-complexity models.

Keywords: Online Learning Management System, Prediction, Learning Outcome,

Machine Learning
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(Jalota and Agrawal, 2021)
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P(class) = (1)

Tned X; Ao @mé’ﬂwmzﬁaﬁi dle i=1,2,3,..,N

Bo Ao Aluwesa (Bias)

B; o Ardulszavides X; Wei=1,2,3,..,N

e o Aasivendamaniiiuguvesaon3iusssund falasUszsana 271828

. o Y] | = a & al
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Laplace i (Amra and Maghari, 2017)

P(XIC)P(c)
P(x)

P(clx) =
Taginuafuys fadl
P(c|x) WWunrudrazilunldnatalanatanis Weldnudnvazuds 3unan
“Posterior Probability”
P(c) Wupuaziduiildranalanananils Sonin “Prior Probability”
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2.mny; = class1 aglan wix; +bh>1
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—~ o~ o~
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= T =

4) K-Nearest Neighbor A8 88N MUUY AT ATENIINA ML kA AT lna A e
Pilrandegndiiiuau K g nefinnsansvesneivesigaiunsdennatalitiugaivl {Juwisnns

a

ladie Beuideyaldiss danunumuseateyasuniulid widewisUszananad (Amra and
Maghari, 2017)

5) Decision Tree Tunugfssulinduiaglunisdnaula uwudiassiini
e esandulidauladunisideunuunsindulaveaywd vnouiuaudnuuy
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Decision Tree Wasuls enaviliAn Overfitting Auteyaléiine vinlidsuasensinneteya
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6) Random Forest 11 Decision Tree wang#ufilaignfuu1veusanfuuda
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7) XGBoost 693113910 Extreme Gradient Boosting 138 U3AMUAANAIANTTINUNEY
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msvhuneluimeansiug by waganudgvestayanisvmagey (Bishop, 2006)
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Mnadsefieadeandnil §ifeldhmsaguuuamamsianinuuaesmentsfng
adsil Tneldmafia SMOTE Weususiuudeyalifiawauga ussnnaeddfuuudaossznm
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FEULIANRRLNITVIILUUNAFBUTINYN
ASILAATLIDY (W) (6 1589) LavlaaY
UIRER

ANTE99UNDUKRUNY

- FIUIUASINARNIN DI TULDUNLNY
(4 Aauanye)

FIUIUASINAANUIDN UL D UMY
Weiazl3e4 (3 1399) WAL TINYNITRN

- UIUTUTENINSTULI NN EN ULDUNLNE
wazJugarnensasueunINg (1 Aakinyuy)

I TUTENINITULINNENNULDUNUNE
wazugavnensdsnuauvang (1 1584)
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fauus

AND5UNEVBIRLUS

2.3 finuaziuun1sUsEEIUNaNI SIS auS

Aznuunanssuluiaasey (30%)

a 4 a 6
- pzkuuianssuluesssusaulall
(4 ApsnwY)

Azkuuianssuluresssusaulal
Weiagl304 (3 1399) UALTINYNITDN

ALLUURALNITI NS EU

- AzkUUMTIISEU (1 Aasinyey)

ALLUULUUNAZDULAALLID (6 1599)
WAETINYNLTBN

- ATLUULUUNAZBY (7 AMGNWME)

AZLLUUNA19N1A (30%)

- AZkUUdRUNANNNTA (1 Qmﬁﬂﬂm%) AZLUUEBUNAWNANIA

AZLULULBUTINNG (2 1399) WagTIl
YNS09

- AZLULNUNBUNINY (3 AENYIY)

4. n3§1579%0ya

9nnsdrsadeya laeldnwn Python nuilsifideyafivinmelulunadnuugla 9
wazthaadnuagmaduluAnwauduiusiussdunanistoudeiininsyasvesieya
wuudalsnsu (Histogram) ﬁLLammmﬁlmaﬂ%’aa&a ALAAIN MU TENDU 2

405 Students

120

100

count

40

20

C+ C D+ D E W

AMNUSZABU 2 TIUIURARTLUNLNTA
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1%
Y [

NAmMUsENEY 2 NuNTIwIuddanliinge £ 1 au uazinse W 1 A dedy Andeya

v
Y

vosfidniiliing £ wog W oon Jumdediuaudan 403 au fanwdsenay 2 vl faudsi
FoansviuesazidunanisiFeudun # uazdosuiuuse deldannisulamainsailésy
Taelidandilasuinsadu A, B+ feidunanisFeudunildiuau 185 au 1ns B, C+ 1una
Ma3eud T3 174 au waz D+ asly WunansiFoussausuugedisuiu 44 au
5. m3ian1sanuliaunavasdaya

A3devinsuusgateyasendu 2 dw fie Yeyadmsuldlnasuwuudiaes (Training set)
uwazdayadmiunageu (Test set) ludnsndau 80 e 20 lneiideyadmiviinaeuuuudiass
$1uu 322 A wazdoyanismaaeu S1uau 81 au esanludeyad niuiinasunuudiass
Usznausieddnlainanisisounuin 141 Ay, nan15i3uuR 147 AU LAZHANITEURDIUTUUTS
34 Au Tdnvazvesdoyailiauna Jwinisuiuaruaunavesteya Tagldimaiia SMOTE
TnsusuinnudoyaludndanifinanisSeussduiun uazsedudosuiuuse Iilanuauna
Tngl#38dudin vlideyarisaunguiisuurhiu fo 147 au Suansmmsznay 2

Before SMOTE
147

After SMOTE
147 147

count
count

34

Satisfactory Excellent Good Satisfactory
Class Class

o

Excellent

AMWUTENBU 2 WEAIINUIUNANLAAYSLAUNANISISIU NOUWALNRINITYIN SMOTE

6. NSASIUUUTIADINTIUNYTZLAN
ndsannlddeyadmiviinasunuudiassfiininuaunasionisvin SMOTE Tagld
SMOTE(k_neighbors=13, random _state=42) a7 m%ﬁﬁayjamﬁmﬂﬂaauLLU‘Uﬁfﬂam
Tnglunsdnuil irmesedlduuuaesiiliunnudenuasdvsyansnmgdunaiouiues
ASEITIAY 7 WUUSIane Feiinnsiiuanisifimesimunzan teun Logistic Regression
Tneld LogisticRegression(random _state=42), Naive Bayes Inglt GaussianNB(), K-Nearest Neighbor
Ingld KNeighborsClassifier(), Support Vector Machines Tagly SVC(kernel='linear), Decision Tree
gty DecisionTreeClassifier(random_state=42), Random Forest 1agly RandomForestClassifier

NsaTIemansuazmalulag N 6 adun 1




91

(random_state=42) waz XGBoost ngld XGBClassifier(randomm_state=42) nauidguuudnaes
wdrdisimsusuruavesteyalagly Standardscaler) Tumiﬂﬂwmmaaammumaawu 499
dieAnwinaziIouiisuussaniawnisiunsvesnudnuas 2 ngu éun audnvazngy
AUy wazAudnvazngungAnssunsidldauszuy Insuuudiassyail 1 azlideya
AudnyurAsUTIARINgY easUssnaufenndnuasivay 115 audnvue duluiuudiaes
yodl 2 aglihazuuuapunatanIAIAnse Tngdunawsaziuuduvasionsaluioniou
yinlimdoifios 111 Audnwae LuUSIasyail 3 wlithaadnvaznguazuuunlyd edy
wiifsnmdnvazremninssunslfnussuuresidnwiity f5uaukediu 99 audnume
Tuduuuudnaes 4 alviudiissndnuaznguazuu ldldnadnuaengunginssunisldnu
sruutesian fuauiedy 18 ARUANWALE FalansNT1eR 3

M13°99 3 TwazBuan1sliRMaNYUrdmMTUIUIY LUUTIABING 4 YA

WUUINRBY
¢ e o il 1 | wefi2 | yefi3 | weii 4
AanwaznlddmIuvituig ! ! ! !
) 115 111 99 18
AMANYILE | ANANTY | ANANBY | AMENYME
"agaﬁ"alﬂ
- Az AdANGoU (1 Adnua)
- et (1 Aauanwely) v
AMaNYUTATUNgAnsIUNIsTdUTEUY
Ya4ildn
- Maldauszuu (1 Aadnyy) v v v X
- m3vudonsiBeus (37 Andnuay) v v v X
- Msvuvunagey (54 AanbY) v v v X
- MIANULBUNINY (5 ARANBY) v v v X
AMENYMZATUATILLUNITUTSIUNE
n13i5eu3
- pzsuufInssuluiasey (30%) v v X v
(12 paudinwaly)

- ATLUUNANNNTA (30%) (4 ARUANYY) v X X v
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fatu Tunsfnunil snavendeazuunlaiiu 60% sududeyangnssunisléauszuy
voafidn unldlunisvitune uasdoyasieyana Laun e azaAne U15IUUIERANTITEY
fainsififeindeyaludiuveunauazauzuilfaudae inoifinaudnsazvosdoyali
anysafiIny

wonnilunuusaeduisiazen §ATedddiiouiioulssavinmssmrinuuusaesild
Aadnvarvesteyalundazyansudiu Aunvudiaseiilideyainiunisidengudnuay
Tnglduuudaes XGBoost Wudadndonaadnwuedald SelectFromModel(XGBClassifier
(random_state=42)) Tneamsviaaesiild Iiuandtilunssd 4
7. M3IaUsANSA Y LuUTIABY

n&sa1nadiauuTansssinnnatuuda a"m%’umﬁ%’mf%ifmmmgﬂéfaq
(Accuracy), AUUET (Precision) wisUszdiuuuusiassn wuudiasaiuszdniamwlusedud

innvetiosualviu Tnsuansauns (6) - (7) (Almasri wazeudu 9 , 2020)

Precision = s (6)
TP+FP
Recall = P (7N
TP+FN

Taesuussng 9 anaunis (6)7) Siarumne il

1. True Positive (TP) fie Hamsviuneinduaaafiauls Wudsdudeyauriasadunana
favlafienuvaneindumsviunegnéies

2. True Negative (TN) e namsviuneinlsildifunanaiiauls wuderfudoyausiase
Lilfidunanadtauls danumneindunsiunegnies

3. False Positive (FP) Ao wamsviuneinduaaaiiauls widoyauiasdlililunana
faulafinnumneindunsiueRanann

4. False Negative (FN) #ie wan1sviunelalldidupanadiauls witayaurisadunana
favlafinnumneindunsiueRanan

NAN1ISNAaILAaZN1SAUTIONS
Tunsiauszansnnnuusiass s lganukdugndudnUseansam welSeudieu

waeINYAtayan1vaaeu 4 4n LUvuedeyaniekuuiaein1sIwunUTEn nan1s
Muenan1siseunlaannisldaudneusiinun wazn1sdnidianAudnvarreIyndaya
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a | Y] ° | aa a a A P ) P
Muansineiu 4 ga lnsuvudiaeduiiazyanlivse@nsninangn suansiadiavidy
(Bold Font) #4m1519% 4

M1519% 4 M3siUIguguaNUkiug @ mTUYANAaRUNLANGT 4 YA VBIWUUTIAY 7 WU

il 1 ol 2 ol 3 il 4

dayatuiinnsly | dayatuiinasld | deyaduiinns | azuuuRanssu

W ATHUY | U UWAZATHUY e lutaseu

Aanssulu Aanssuly aaulall uaz

. TiesSeusaulay | HeuSeusaulay ASULUUNATS

wuuaeg
KAZAZLUUNAN A
1A

anw | Wasu| Anu | Wasu | Aaw | Wahsu | anw | wWas

wiugn | wuae*| wiug | wdae* [usiudn | uuae |uaiudn |udae
(%) (%) (%) (%)

1. Logistic Tnndnuasiomn | 6296 | 1111 | 6543 | 371 | 5679 | 9.88 | 7407 |-1481
Regression ndenandnway | 74.07 69.14 66.67 59.26

2. Naive Bayes | Mdnaidnunzsionun | 6543 - 6049 | 6.18 | 4815 | - | 64.20 |-3.71
AnlienAndneMe | 65.43 66.67 48.15 60.49

3. K-Nearest | l¥mnwasviovun | 6296 | 9.88 | 6296 | 1.24 | 5556 | 864 | 77.78 |-7.41
Neighbor AnLABNAMAN YUY 72.84 64.20 64.20 70.37

4. Support Mnndnuuesionun | 7160 | 1.24 | 5802 | 865 | 5556 | 7.40 | 7160 |-12.34
Vector Machine | Apifonaaiinumg | 72.84 66.67 62.96 59.26

5. Decision Tnndnwasiomn | 6543 |-1111 | 5802 | - | 4691 | - | 6914 |-988
Tree Andienamdnuy | 54.32 58.02 46.91 59.26

6. Random Mnndnuuzionun | 6914 | 493 | 6914 | 864 | 67.90 | -741 | 7650 |-17.28
Forest AnienAndneMg | 74.07 77.78 60.49 59.26

7. XGBoost Tnadnueiomn | 83.95 | 988 | 7901 | - | 6543 | 124 | 7650 |-1481
AoudenAmuanwuy | 74.07 79.01 66.67 61.73

L6 LWABUWUAY® U80S Sp8aEN15HURsULUAIUBIAINNLLUEN MRIDINNIUNITANLEDN

ABANYY

1) wan1siSeuiisunuudnassn1sinuienanisiseunlddoyangfnssunisiyeu

STUUTIUNUALHUY BAZUUINADIN IUNE9ATHUY

U

M50 4 aziiuin WewSeuifieunavesuudiasudazyiln Weuhunldiudeya
waazyn doyayadl 1 azliussdnsningean Jadulumuiiainnisel esainnisisily
AN UL RENNATUNIY ATMANANSYIIUEALuEgn InewuuTiaesnviuelauiugiian
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A9 LUUT1a99 XGBoost taedlAnuuiiugd 83.95% wansliiiuladn wuus1asd XGBoost
Adnennlunisiunldlunisiunenanisseuvealdnlaegnaliusea@nsain

M13199 5 A1 Prediction UagA1 Recall vaauuuinaas XGBoost vasdayayail 1

STAUNANISLIIU A1 Precision A1 Recall
AN 0.93 0.86
A 0.76 0.81
RoaUTuUge 0.73 0.80

uana il 1efin15an91nA Prediction uarAn Recall ¥94 XGBoost luteyaynd 1
fanandlumsnsdl 5 apiiudn wwudiassasilen Recall TunadumanisiFeusiosiuussesil 0.80
wiitrouniid lundudeyavens Tanlunguilfiviinudeutratos uiuuusiaosidd
Arwannsodunianlunguioonunld WeusihfuiAnlundunaninFoudun wasd deldn
Tunguil wwdudfnnduilindesnisusnueresnun ilelidasulfanumelaladufiny
wardAnlailonmausuusmansGeul Ayl

Tuduveansiueransideulasldldazuuuaeunananielugad 2 Su ediuléi
Taoramud Uszdvsnmvssnuudaedudeyayed 1 genduuudaedludeyayail 2 laoiade
4.06% wanslifiuinnisviungamideufiianesdaaounansareenuitu fanuusiue
anaslaiinniin uenaniuiieauuiugiveauuTIaes XGBoost azAnasting use Recall
Tunsdifeyayail 2 TunguiidnnanisiSeusosuugeidaliaegi 0.80 Wulfa

yrin mnshifosanesuu dduteyayed 3 wiuin Ussdvsnmwesuudaesynuie
anasegaiulidna Tnodsudianaddie 12.17% Wesuivussdvinmusauudaedudeya
Yafl 11 Iuﬁﬁa;gaﬁqmﬁl wuudaes XGBoost AfiUszavisnmasey Weisuriuwuuiassiadu
Bnvia ludiayaydl 3 1 A1 Recall lundaunaniaGeudessuusmwomnuuuiiaes sxiiashmivie
Wiy 0.60 Ve (meuuusans XGBoost fiA1 Recall winiy 0.50) fatiu TumsvinuenamsFeu
Ingordaudiiestoyanginssun1sidnussuy vesidnagunen Tneliendonzuunlutuisou
anliifisaneramsvinenan1sseuveslidnlaagauiug

TuduvesUssavsamuuuaosiilideyayad 4 asfimmuuiudiiutuliinnlaendeds
4.06% WlenSsuiiisuiunnuwsiugwesteyayail 1 usuuudians XGBoost luyadi 1 sl
uiudnganduusaesiluyad 4 s 7.019% uandiidiudn wuudiaes XGBoost Tildusiiiiensuy
filsioghaien Taglifnsandoyamainssunsldnuszuuresiian Tinansihuewsiudidesnii
dlafteufuuuuinaesidlitoyanginsaundldmussuuresianimifunzuuy
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nnnsAnuludind asdiuin msldaadnvazasudiuiaenguio audnuus
FuAzuuL wazAndnuazsungAnssinadldsruus i lugadeyadl 1 asliuszansnm
vomnuuuiasigean luvazilugadeyai 3 15ldgadnvuzdunginssunisdildszuy
uilflssednaien azlinanisviuneiinningadeyad 4 Aldusifiosqadnuasiuazuuy
agafied Fevilbiiuladn ednalsinnu audnvazdiuasiuy Faelmiuignansiseuld
WUENTT AMSNYUEATUNGANTIULALNEIDENLAET ugiviaid wuudnaesagliauuugasan
leldnadnunsiiaesnguisuiu

TudiuveUsedninmuuudiaesgatoyausasyanan gl wuudiass XGBoost
TsfusyAvSnmmsviiunegean vludoyayadl 1 wey 2 Saduteyadmildnudnumsanniian
wazfinanisvihunefudugifian drulugadeyadl 3 uuudiasediliuszansandiige
3z\u Random forest LéiA1 67.9 dauuuT1aed XGBoost agliA1Auuiug 1y
Suduaes i 65.43 drlugndoyadl ¢ uuusians XGBoost alAIMLLILEY 7654 Failen
Wudusuaes luvmziiuuudians K-Nearest Neighbor 1A AN U gegn?l 77.78
azimiuladn lngsiuuds wuud1aes XGBoost @1unsavinuiedoyayanie 9 taagiuiugl
pgemiaue wiinluuragadeya uuusiass XGBoost enadlldlaUsyansnmiigaiign
wsirneuslud7ild Aildugniuuushaesiiafignuinin dluyndeyal 3 uar 4 wuudiaes
XGBoost slwmrnuududniudusuas 39a3Uladn wuudiass XGBoost LlunuudIans
fomngiunsianldnuivludoyayaiiniian Weswnliussansanlneugeiiagnagng
aaveluyadoyavnussian

Tudruwesnisinuyadeyadl 3 uax 4 ffu iFosmsAnwUsrans amnisviunees
msldnadinuaiznguuamgAnssunisidildnussuy Weudumsldnudnuaznguuanzuuueaey
gdlumsfinen wmuilumsasauuuineesdilaenuuds mavhuemansSeuseudnunendy
YesRriULdBUW e R aglviauuwiuggand1 nslinadnuaenduuemgingsy s
Wl nussuuwsieseg1ufen

¥

! 1% ° ~ v a o ° A 1% = & o
LL@iua’ﬁaﬁ’]ﬂLLUUQW@@QLW@SLSUQ']UT\]i\T Liﬁﬁ]zaSNLLUUﬁnaawi‘Uﬁﬂmauaw 1 Wunan

Y

Fdladeazuin wuudiaes XGBoost WuuwuuTaesfiuzauiutoyayailiian
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2) nan1siSguiisuLuUaRISTINUNERaNM SR U LA NYMLTIIIALAZIUUTNERY
nimMIfaEanAMENEME

M19199 6 MUIUAMTNYULNBULAYNINNYTIINTARIRBNAMINYY

N13AALRDNAMEN ALY YA 1 Y 2 ¥ 3 | yan 4
foun1sARLaDNAMEN Y 115 111 99 18
NAINTARRENAMAN YUY 36 33 41 5

Teyuuda nmsdndenaadnuae Sldeliuuussesinuldivseans mwiatutn
Tuwuudaesiisimuusiughaeutiegs 1wy win XGBoost s usiluwuudaesiisimududousi
19 LWUUTN@94 Naive Bayes 38 Logistic Regression mﬁﬁmﬁaﬂ@mé’ﬂwmﬁi’mﬁummuﬂuﬁw
onadilldidn el amenadumszuuuesuend famududeuldndn Wetarldiutoya
ffTurugudnuuzain 9 sxililiamisadssananateyalddtnilviianuwiug
Aoude uiifleanduaunudnvugas liuvuSasanardannsovinufudoyadid
arwdudoutiosninldesaiusyansaimanndu Jeiliuuudassmarifiauudiugigay
Soiswihnsdnidengadnvazdie lusasfiuuudiasman XGBoost Lind fanududougs
ogud anunsaUszanadeyaiifirududeuinn 4 16 Suinlivhauiuteyaildnudnuas
asuiulsogsiiusansam luvaedoiswihnsdndonandnuny Sudufesdinisdadeya
viadrueenly vilvnanisvihungliwiudwindulunsdiuuudiassuszatanadoya
fldnndnuazasuiu

d3UuIy

mAdeiinsaisuuusiasimsiuenanadouresidnildsuunsdanatoud
poulail lneTiudunisusuanuaunavesdayameinaila SMOTE wazn1sAnldonAuanyue
nan1siseuvesddauuseanidu 3 szau ldun Auin, A wazdeausuuse yadeyadmsy
mMsviuenansFeu Taudnvugnateyssian liun doyavaly wdnssunisldamssuy
ALLLULAY wazAruuunatsnIa gadeyaignulseanidu 4 nad nudranainisiFoud
uAnAnafy wazdssnnvesnudnuuy Win ged 1 ldoyarmuannamdnuus, gaf 2
sglsithazuuunansniaunly, gadl 3 erdenudnuazveanginssunisldauszuuvesian
Wiy wazaedl 4 WifssazuuuimuaniduiinisUssduUssansnmeeauuudaosng o
lngfiansanAnUuiugIINNTUSeuigUUsEaENMMYRMUUTIABY MSTINUIEHANTSISEY
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Mddoyanginssunisldnussuusiuduaziuuiaziuudiaeanldiissnsuuy dunis
Wiuilguusganianveauudnaesildnaudnuaeynuseian uaziuuiaasiiinisAniden
Aasanuaue a3ulaan

1. WUUT180 XGBoost lidayanmuanunrvenginssunsidnussuusuiu

'
a

azuuulugeiussansamnsihueiinfgn Tnsnudnvaziuaziuuaziinadeninuuiug,
YDUUTIRRRNNNIAMENYEAUNgAnsIuNTusTEUY
2. msfinidenaudnuas Hreluuudiassiifinnududeuliinin wu Logistic

Regression 1138 Naive Bayes fuszAvisnmitu ulldsuuudmesiifieududougsegudn
WU XGBoost

uananiaudnuugiiddglunsiuneranisouresian fe nginssunislday
sruuvesidn dvatengAnssuie 19 audnyie AzkuuNanIsUsElun1seus dileq
10 ANy Lazdoyannzuasildn Fetfu arunsaiuuusiaes XGBoost TUvunga
nsssuvesldn lngldnadnvauzvaanginssunisldnussuuniuiuazuullazAns veldn
dethuamsvhuneiluduusinastemdefanlfognnaizas annsofinniuanudrmd
Tunsisewveiidnlimiuseyaea wieraununisdouliunzauiuidn wazddndvarimun
finwrnsSeuduniu

AnRNIsuUsZNIA

unauAdeiduiaqaasludieninunianues sosmians1a138 asilnd yuins
594AAR519158 055001 Bansnasn veveunszamviiudliliaueynseilRiive
#dHoya suiadsaasnanduiidlunslisuusnifddussloniogis Dalonalidnom
Pglvdayaiidn Toyafanssunsiiounisaeu namin1susziiunan1siSeus wavveveun
504M1an519158 A3 INAAYYI YNA1Y U By 919138 ATgUNT anansmual Al
AueyATzLnERelauTeya
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