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Abstract
Cumulative sum (CUSUM) control chart is widely used in industries for the detection of small 

and moderate shifts in the process. Evaluation of the Average Run Length (ARL) plays an important role 

in the performance comparison of the control chart. Approximated ARL with the Numerical Integral 

Equation (NIE) method calculated by solving the system of linear equations and concept of integration 

based on the partition and summation the area under the curve of a function. The main purpose of this 

paper is to approximate the ARL of the CUSUM control chart using the Numerical Integral Equation (NIE) 

method for long-memory process in case of exponential white noise. The NIE method approximate 

solutions are derived by the Gauss-Legendre quadrature rule technique. For the long memory, the process 

is derived from the fractionally integrated with the exogenous variable model, which details the process 

depends on fractional differencing. This ARL approximation using NIE method is shown to be in good 

alternative compared with the explicit formula. An obvious extension is to other control charts for long 

memory under the fractionally integrated with the exogenous variable process, and hopefully, this work 

will encourage real-world applications such as finance economics and agriculture.
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Introduction

The Cumulative sum (CUSUM) control chart 

is one of the most applied tools in statistical process 

control (SPC) using in control chart. Monitoring the 

detection of small process shifts and controling the 

quality of products from manufacturing processes, 

CUSUM chart has been broadly applied at this stage. 

Page [1] initially proposed a review of CUSUM chart 

which has been studied in numbers of literatures 

particularly in Gan [2], Luceno and Puig-Pey [3], and 

Wu and Wang [4]. Evaluation and comparison of the 

performance the control chart based on the Average 

Run Length (ARL) were extensively involved in using 

measurement for CUSUM chart. The average number 

of observations was measured by ARL taken before 

the signals. Before raising of a false out-of-control 

alarm which is measured in terms of a false-alarm rate 

measurement, the average number of observations 

from the in-control process was generally fixed and 

referred to the in-control ARL abbreviated by ARL
0
. 

On the other hand, there is a requirement of out-of-

control ARL abbreviated by ARL
1
 which is the average 

number of observations representing the detection 

power of the control chart see Ryu et al. [5]) for 

detecting a process mean shift. The performance of 

CUSUM control chart with the autocorrelation has 

been studied in many aspects; for example, Johnson 

and Bagshaw [6], Lu and Reynolds [7], and Kim et al. [8].

The assessment made to exponential white 

noise and time series has been completely 

conducted. The process of ARMA (1,1) is to denote 

the autoregressive moving-averageprocess order 

(1,1). According to Jacob and Lewis [9], it is shown 

that after the observation, white noise would 

beexponentially distributed.The Bayesian analysis 

of the autoregressive model order 1 denoted by 

AR (1) with exponential distribution was conducted 

by Mohamed and Hocine [10] after 26 years later. 

Additionally, the exponential white noise was 

employed to make development to the application 

of Bayesian for threshold autoregressive model 

analysis (Pereira and Turkrman [11]).

The Autoregressive Fractionally Integrated 

Moving Average (ARFIMA) model was the first 

presented by Granger and Joyeux [12], and Hosking 

[13] to describe and fit the long memory. The long-

memory process is involved in a number of 

applications including finance and economics, 

environmental sciences and engineering. The long 

memory is said to be fractionally integrated, or FI(d), 

if it is integrated of order d, with d not necessarily 

integer and 0<d<0.5 (Granger and Joyeux [12], 

Hosking [13]). Typically, the real economic variables 

are fractionally integrated or trend stationary (see 

Marmol and Velasco [14]). 

According to the relevant research studies, 

several methods, for instance, Monte Carlo 

simulations (MC), Markov Chain approach (MCA), 

Martingale approach, Numerical Integral Equation 

(NIE) method and explicit formulas, could be 

employed to evaluate the Average Run Length. 

Some case studies would be illustrated as examples 

in this section. Integral equation and Markov Chain 

approach application to study EWMA and CUSUM 

charts for ARL evaluation in the case of AR(1) process 

with additional random error were conducted by 

Vanbrackle and Reynold [15]. Derivations of 

analytical formulas of the Average Run Length (ARL) 

and the average delay (AD) with Martingale approach 

in the case of Gaussian and a few non-gaussian 
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distributions were illustrated by Sukparungsee and 

Novikov [16]. Numerical Integral Equation (NIE) 

method of ARL for CUSUM chart for a stationary 

first order autoregressive, AR(1) process, with 

exponential white noise was employed by Busaba 

et al. [17]. Furthermore, the same methods were 

presented by Phanyaem et al. [18] with major focus 

on analytical explicit formulas found in ARL
0 
and 

ARL
1
 with the NIE method on CUSUM chart for 

ARMA(1,1) process with exponential white noise. 

Next, Phanyaem et al. [19] proposed the developed 

NIE method to calculate ARL of autoregressive and 

moving average process, ARMA(p,q) process with 

exponential white noise on EWMA and CUSUM 

charts as well as to compare ARL between EWMA 

and CUSUM charts. Moreover, Paichit et al. [20] 

derived analytical formulas and use numerical 

methods to find ARL of CUSUM control chart for 

ARX(1) processes with exponential white noise for 

detecting a change in the process mean. Finally, 

Peerajit et al. [21] also presented that observations 

are long memory processes with non-seasonal and 

seasonal ARFIMA model with exponential white 

noise when the NIE method is applied for ARL 

approximation on CUSUM chart.

The two main goals of this paper are to 

approximate ARL by using Numerical Integral 

Equation (NIE) method based on Gauss-Legendre 

quadrature rule technique of CUSUM control chart 

for long memory process under fractionally 

integrated with the exogenous variable model in 

case of exponential white noise and to compare 

between NIE method and explicit formula with rest 

to the performance of ARL. Other sections of the 

paper are organized as follows. Section 2 is the brief 

introduction to the preliminaries, CUSUM control 

chart, characteristics of Average Run Length and the 

process known as long memory with the fractionally 

integrated with the exogenous variable process 

which was applied to this paper. The two 

subsequent sect ions are devoted to the 

approximation of ARL. Sections 3 and 4 are the 

approximation of ARL with the use of Numerical 

Integral Equation (NIE) method for long memory 

process under fractionally integrated with the 

exogenous variable model, and the comparison of 

numerical results respectively. Concluding remarks 

are provided in Section 5.

Material and Methods

Preliminaries

In the following sections, CUSUM control 

chart, characteristics of Average Run Length and, long 

memory process under fractionally integrated with 

the exogenous variable model used in the paper 

will be described, that is, the approximation of ARL 

are computed by Numerical Integral Equation (NIE) 

method.

1. CUSUM control chart

The upper-sided CUSUM chart is defined as 

the chart under the assumption                  as a 

sequence of independent and identically distributed 

(i.i.d) continuous random variables with common 

probability density function. The CUSUM chart’s 

statistics is expressed by the recursion:

{ }, , ,...=tC t 1 2  
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where the chart’s parameter tY  is a sequence of the generalized fractionally integrated with exogenous 

variable processes in case of exponential white noise. The starting value          is an initial value and the 

constant k is called the reference value.

More formally, the CUSUM control chart in Equation (1) is characterized by the stopping time ( hτ ) 

which can be written as:

		

where h is a constant parameter known as upper control limit (UCL) of CUSUM control chart.

2. Characteristics of Average Run Length

Let )·(mE denote the expectation of stopping time for a fixed change point m under distribution       

as follows:

where γ  is assumed be large enough.

Let       be the ARL of CUSUM chart for long memory under fractionally integrated with the 

exogenous variable model with initial value ,u  can be written as, 

where the initial value 

3. The long memory and generalized FIX(d, X) process with exponential white noise

3.1 Long Memory 

The process has long memory (see. Baillie [22], and Beran et al. [23]), if its autocorrelation function 

(ACF) has power-law decay:        For example, 

 

where pc  is finite non-zero constant,           is the autocorrelation function (ACF) at lag j, and d are restricted 

to the range of (0, 0.5). In addition, the parameter d is the memory parameter. If the parameter d = 0, 

the process will not exhibit long memory. While d is in the range of (- 0.5, 0), it is said to be anti-persistent 

(see. Baillie [22], and Beran et al. [23]).

Remark: The symbol ~ means that the ratios of the left and the right hand sides are finite when K tends 

to be equal to infinity (see. Baillie [22], Beran et al. [23]).
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3.2 Generalized FIX(d, X) Process

The theoretical long memory process related to fractionally integrated process. Especially in 

the case of the ARFIMAX(p, d, q, X) process is when p and q are selected zero to model no effects. This 

process is called the pure fractionally integrated model with the exogenous variable, denoted by 

ARFIMAX(0, d, 0, X) or abbreviate FIX(d*, X), which will be the main goal of in this paper, and it can be 

written as: 	

		

where tY  is a sequence of FIX(d*) process, ε t  is i.i.d white noise process assumed with exponential 

distribution ,                   L is the lag-operator, iX  is a exogenous variable and β is a coefficent, d is 

the fractional which represents the degree of fractional difference (or fractional integration) operator. In 

fractional, values of d is interesting in the context of long memory process that are restricted to the range of 

(0, 0.5), which is not an integer. 

The expression of the operator            can be defined in a natural way by using binomial expansion 

for any real number d with Gamma function:

		

Obviously, the generalized fractionally integrated with exogenous variable (abbreviation FIX(d, X)) 

process for long memory       with exponential white noise which is used for CUSUM chart in Equation (1), 

namely:

	

where                  It is assumed that the initial value of tε  and fractional integration process equals 1. 

The initial value of generalized FIX(d, 1) process is assigned as                                   
 
equals 1.

Numerical Integral Equation (NIE) Method of ARL of CUSUM Control Chart

The idea of the derived an integral equation for computing its performance ARL and introduced 

the CUSUM chart was suggested by Page [1]. Moreover, Page [24] the midpoint rule was employed to solve 

the ARL from the integral equation. Similarly, the integral equations for the approximate ARL performance 

of upper-sided CUSUM chart can be demonstrated as

	

 	

is formed as a Fredholm integral equation of the second kind, and                         whereas  

(3)( )1 ( ) ,d
t i tL Y Xβ µ ε− − = +

 

( ),ε λt Exp
 

(1 )− dL
 

(4)

(6)

(5)

2 3( 1) ( 1)( 2)(1 ) 1 ... .
2! 3!
− − −

− = − + − +d d d L d d d LL dL
 

( )tY  

2 3
1

1

( 1) ( 1)( 2) ... ,
2! 3!

r
t t

t i i t t
i

d d Y d d d YY X dYβ ε− −
−

=

− − −
= + − + − +∑

 

( ).ε αt Exp
 

tε  

( ), ,..., , ,...,− − − − +t 1 t 2 t k t k 1Y Y Y Y
 

2 3
1

1

( 1) ( 1)( 2)
( )   1+ (0) ...

2! 3!

r
t t

i i t t
i

d d Y d d d Y
L u L F k u X dYβ ε− −

−
=

− − − 
= − − − + − + − 

 
∑

 

      

2 3
1

10

( 1) ( 1)( 2)
( ) ( ... ) ,

2! 3!

h r
t t

i i t t
i

d d Y d d d Y
L z f z k u X dY dzβ ε− −

−
=

− − −
+ + − − − + − + −∑∫

( ) 1 λ−= − uF u e

( ) .λλ −= uf u e

2 3
1

1

( 1) ( 1)( 2)
( )   1+ (0) ...

2! 3!

r
t t

i i t t
i

d d Y d d d Y
L u L F k u X dYβ ε− −

−
=

− − − 
= − − − + − + − 

 
∑

 

      

2 3
1

10

( 1) ( 1)( 2)
( ) ( ... ) ,

2! 3!

h r
t t

i i t t
i

d d Y d d d Y
L z f z k u X dY dzβ ε− −

−
=

− − −
+ + − − − + − + −∑∫

( ) 1 λ−= − uF u e

( ) .λλ −= uf u e

( )1 ( ) ,d
t i tL Y Xβ µ ε− − = +

 

( ),ε λt Exp
 

(1 )− dL
 

( )1 ( ) ,d
t i tL Y Xβ µ ε− − = +

 

( ),ε λt Exp
 

(1 )− dL
 

2 3( 1) ( 1)( 2)(1 ) 1 ... .
2! 3!
− − −

− = − + − +d d d L d d d LL dL
 

( )tY  

2 3
1

1

( 1) ( 1)( 2) ... ,
2! 3!

r
t t

t i i t t
i

d d Y d d d YY X dYβ ε− −
−

=

− − −
= + − + − +∑

 

( ).ε αt Exp
 

tε  

( ), ,..., , ,...,− − − − +t 1 t 2 t k t k 1Y Y Y Y
 

2 3
1

1

( 1) ( 1)( 2) ... ,
2! 3!

r
t t

t i i t t
i

d d Y d d d YY X dYβ ε− −
−

=

− − −
= + − + − +∑

 

( ).ε αt Exp
 

tε  

( ), ,..., , ,...,− − − − +t 1 t 2 t k t k 1Y Y Y Y
 

2 3
1

1

( 1) ( 1)( 2)
( )   1+ (0) ...

2! 3!

r
t t

i i t t
i

d d Y d d d Y
L u L F k u X dYβ ε− −

−
=

− − − 
= − − − + − + − 

 
∑

 

      

2 3
1

10

( 1) ( 1)( 2)
( ) ( ... ) ,

2! 3!

h r
t t

i i t t
i

d d Y d d d Y
L z f z k u X dY dzβ ε− −

−
=

− − −
+ + − − − + − + −∑∫

( ) 1 λ−= − uF u e

( ) .λλ −= uf u e

2 3
1

1

( 1) ( 1)( 2)
( )   1+ (0) ...

2! 3!

r
t t

i i t t
i

d d Y d d d Y
L u L F k u X dYβ ε− −

−
=

− − − 
= − − − + − + − 

 
∑

 

      

2 3
1

10

( 1) ( 1)( 2)
( ) ( ... ) ,

2! 3!

h r
t t

i i t t
i

d d Y d d d Y
L z f z k u X dY dzβ ε− −

−
=

− − −
+ + − − − + − + −∑∫

( ) 1 λ−= − uF u e

( ) .λλ −= uf u e



ว. วิทย. เทคโน. หัวเฉียวเฉลิมพระเกียรติ 19ปีที่ 5 ฉบับที่ 2 กรกฎาคม - ธันวาคม  2562

Apparently, when the final term of Equation (6) is applied to quadrature rule, the integral can be 

approximated by the sum of rectangle as shown below:

	  	

where the integral f  value is chosen by base          the heights is maintained at the midpoints of intervals 

of length and            beginning at zero. The interval [ ]0,h  is divided into partitions                              and                                                                                            

Therefore, approximation for an integral by Equation (7) obtained from the summation form becomes
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More formally, solve the system of m linear equations in the m unknowns, which are able to the 

approximated solution of          for the interval [ ]0,h  by replacing u  by ia  in Equation (6) as follows:
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Results and Discussion 
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To construct the tables for ARL values, the 
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two methods for this target and long memory with 

the use of the generalized FIX(d, X) process such as 

d = 0.17, 0.26, 0.35 and X = 1, respectively, are 

presented and compared.

The numerical results of the ARL obtained 

from the Numerical Integral Equation (NIE) method 

and the explicit formula given a = 3.0 for ARL
0
 =370 

and 500, as shown in Tables 1-3. As the magnitude 

of shift size (δ ) of increases, the out-of-control ARL 

decrease more rapidly for both methods. The NIE 

method is also decreasing more than explicit 

formula only slightly. Additionally, both methods 

indicate that small shift (                     	 ) a n d 

moderate shifts (                      ) in every level of 

d of the long memory with FIX(d, X) process can be 

detected more quickly for ARL
0
 = 370 and 500. 

According to the absolute percent error formula                  	

	 is calculated as Equation (12), shown in 

the rows 3, and 6 of Tables 1-3. The results of the 

ARL is calculated in terms of absolute percent error 

as Equation (13), shown in rows 3 and 6. Considering 

each level of d of the long memory with FIX(d, X) 

process, it is found that when d is increased, the 

absolute percent error increases at the magnitude 

of small shifts (                        ), while the absolute 

percent error for each level of d is similar when at 

the magnitude of moderate shifts (                      ) 

for all ARL
0
. It was found that the absolute percent 

error of two methods less than 0.25. Therefore, the 

results of approximated ARL by NIE method in terms 

of absolute percent error are shown to be a similar 

and a good agreement compared with the explicit 

formula.

Table 1 Comparison of ARL
1
 values on FIX(0.17, 1) process between NIE method and explicit formula given a = 3.00 

ARL
0

h
Shift size (δ )

0.01 0.03 0.05 0.30 0.50 1.00

370

3.
95

18
55  346.219 304.318 268.809     79.1567     40.458    14.253

 345.479 303.687 268.268       79.0452     40.414    14.244

 0.214 0.208 0.202       0.141       0.109      0.063

500

4.
30

10
35  465.880 406.127 355.892     96.868     47.478    15.787

 464.791 405.209 355.113     96.7224        47.4239     15.7771

 0.234 0.226 0.219       0.150       0.114      0.063

Bold is the minimum ARL
1
.
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Table 2 Comparison of ARL
1
 values on FIX(0.26, 1) process between NIE method and explicit formula given a = 3.00 

ARL
0

h
Shift size (δ )

0.01 0.03 0.05 0.30 0.50 1.00

370

3.
74

03
48

6  346.705 305.571 270.609 203.618 81.471 41.968

 345.985 304.954 270.078 203.245 81.356 41.921

 0.208 0.202 0.196 0.183 0.141 0.112

500

4.
07

85
12  466.664 408.131 358.754 265.265 100.323 49.654

 465.603 407.230 357.985 264.736 100.171 49.595

 0.227 0.221 0.214 0.199 0.152 0.119

Table 3 Comparison of ARL
1
 values on FIX(0.35, 1) process between NIE method and explicit formula given a = 3.00 

ARL
0

h
Shift size (δ )

0.01 0.03 0.05 0.30 0.50 1.00

370

3.
57

29
13

5  347.037 306.426 271.842 205.365 83.109 43.058

 346.337 305.825 271.322 204.997 82.992 43.010

 0.202 0.196 0.191 0.179 0.140 0.112

500

3.
90

43
02  467.188 409.476 360.680 267.955 102.729 51.202

 466.154 408.595 359.925 267.431 102.573 51.140

 0.221 0.215 0.209 0.196 0.152 0.120

Conclusion

This article proposes the observations of 

the long memory under fractionally integrated with 

the exogenous variable model where exponential 

white noise. These experimented was observed by 

applying the Numerical Integral Equation (NIE) 

method to approximate the ARL for CUSUM control 

chart. According to the aforementioned findings, 

the encouragement is made to the real-world 

situation. With the applications employed to the 

different processes of data as a solution to the 

economics, finance, and other issues, the successful 

outcome could be achieved with the NIE method 

and the explicit formulas of FIX(d, X) process with 

Bold is the minimum ARL
1
.

Bold is the minimum ARL
1
.
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exponential white noise. The variety of data processes 

i.e. long memory process with seasonal fractional 

integration with exogenous variable could be 

extended to other observations. When observations 

are made to long memory processes with exponential 

white noise, the method could also be employed to 

the application of other control charts, for instance 

EWMA chart, and HWMA chart, the NIE method’s 

results obtained from approximate the ARL could be 

further studied by other researchers of this field as 

the extension of the research Ramjee et al. [25].
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