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Farrowing Monitoring System for Sows Using Deep Learning Techniques
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Abstract

This research aims to develop a surveillance system for monitoring prepartum symptoms in sows
using deep learning techniques combined with interviews and pig behavior observations in Nakhon Pathom
province. The system uses YOLOv7 and Deep SORT for object detection and tracking. When a sow moves,
the data was recorded via a web application, which sends abnormality alerts through the LINE application.

For accuracy testing, the system data were compared with manually recorded data by human. The results
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showed that achieved an average accuracy of 96.34%, while alert accuracy for pig farmers averaged 96.5%.
These results indicated that the system is practically applicable in typical pig pen environments. However,
to implement it in industrial-scale facilities, the model must be retrained with data from real farm

environments.
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1.4 YOLO Model
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Detected
Detection by Tracking by ] )
object with 1D
YOLOwT Deep Sort

Input Video
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3.1 N15M599TUTNQABTAND3NN YOLOVT (Object Detection by YOLOV?)
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amaFeulmilfosmsmsnsiadunuuiFealnl [24] Sumeulsznaudae

1) nsheinsmeaes §idedienuaddluniafudeyauiansiulsaou Tasvinfususanimisves
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4)  msUTuwdsazalsEansnmveslawesnisidiwes Tonmsimunailaesnsiwesaiuyn
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1) lawesmislwesyan 1 Tonsinsisens (LR) 0.01 vakuns 64 wagduiuseu 50
@ lewedmsdimesund 2 Tns1nsiBous 0.02 vwauund 32 wardauseu 75
3 lewesmsimesyai 3 fSasmsiieus 0.03 wauund 16 wazdusey 100
5) Data Augmentation ﬁwmﬂﬁuﬂ%u’1mLLazmmwmﬂua’mm‘ﬁa;ﬂa ﬁasnwﬂ%’mﬂ?suﬁwmsmu
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mensseusideingleutaya (Transfer Learning) iatiganszesiialumstinszuuaauitunes [26] fsnni 2

Dataset 1

Image Recognition

Pretrained
Models

Gesture 3classes
Recognition sit, stand, sleep

Dataset 2

AN 2 MTINYeInsiseusideneloudeya (Transfer Leaming)

v '
P =
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Hndufalunsdwuninglunm
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M3199 1 wamsinuseansainnisiuundeya

Predicted class

1 (sit) 2 (sleep) 3 (stand)
1 (sit) 0.951 0.049 0
Actual class 2 (sleep) 0.026 0.913 0.061
3 (stand) 0 0.012 0.988

NENTRA 1 WU imanstuanuusiugiunian Ingdlvinds uagvinueu wlugleenudaau

3.2 MIAAANInginedanasiiau Deep Sort (Object Tracking by Deep Sort)
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=] int
ID_Sews Int
ID_ Mevements Int
ID_Sows Int —————3 | Location_y Float ID_ M t Int
Name Varchar (10) | Location_w Float Movements Varchar (10}
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Bounding_boxs Float
Timestamp Timestamp
Count Int
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Q “Pig" has been disconnected. Q "Pig" has been disconnected.

Your personal access token
has been generated.

Your personal access token
has been generated,

Pig: Ky 1 agluamu:du Pig: Ky 1 agluamusdu

Pig: KWYA 2 agluamusdu Pig: kYA 2 agluamusBu

Pig: KUMA 3 agluamusto Pig: kYA 3 agluanustiv

Pig: kudA 1 Iugmswisu
amu:u1udd 6 Sl

Pig: KyA 1 [uTmswWasu
amuzuuad 6 $luo

Pig: kYA 3 Dmswasuamus
tAu 10 Aso

a Y A | a o ¢
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dl v ¥ % 1% v dl d! a 1 o L ¥ 1 v
wasulianndesiisau Tusseziian 7 U anndeedian 2 Jaluansdiuau 2 f Uszneulude 1) wignsvies

gou 2) ulansinanaen Imvunraenluiun 28 liguieu 2566 Aauanideyalunisni 2

M3 2 HANIATIIADUANNNABITINIUNITIRBUlITaaNs AT B UBUTENINNISTMUNAIBALAUNIS

UNFIEYTEUY
Fuil AMRUENT  NITTMUNTIUIUAWIZUY  N1TIUUNTIUIUAIBAU ANAQNABY
22 fiquneu 2566 1 13 12 91.70
2 22 20 90.00
23 flquieu 2566 1 12 12 100.00
2 34 33 96.97
24 figuneu 2566 1 13 13 100.00
2 36 36 100.00
25 dquieu 2566 1 11 10 90.00
2 33 35 94.30
26 flquneu 2566 1 13 12 91.70
2 30 29 96.60
27 ﬁqmﬂu 2566 1 13 13 100.00
2 36 36 100.00
28 ﬁqmﬂu 2566 1 17 17 100.00
2 40 39 97.50
AndsnnugnAes 96.34

PNAITNA 2 WU Nﬁﬂ’limi?ﬁ]ﬁ@Uﬂ’J’]@JQﬂg]’a\‘i‘Ua\‘lﬂﬁiﬁUﬁf’]u’luﬂ’liLﬂgauvLﬁ’J‘U@\‘iLLlIIQﬂiiﬂEJﬂ’]i

WU BUTENINMTTMUNAIEAUAUNTIILUNMETEUU dAnafsanugndeeg ovay 96.34 laguslgnsiag

Viesdouldnsnsiadaulmitseniuansilndnaen

nan1sUszlivUsEansn wnIsIiunsudLiausinuweunantulaudinens
NINARBINTIRIADUMTHINFBUVBITE UL UKeUN Gt Ula Tl USsuTis uiuNsAnm UM deulnive
vy v v A 1 <, = A = = I Y ' =
ansanndewnenuy maudsfeuwtseendu 2 ndl 1) nsdifiudanslifinnundeulviluigi 3 $3lus 2) wiansdl
wumstannni 10 aswiedy
nsdif 1 msvageulowignslifinaedeulwadua 3 lus lnedddvmisiua 3 dundnsizi
wudsruvaansadimsudsfeuludueundndulauldegigndesilelinumnuadeulmveians lnefidade
ANUYNFBIRgTosay 100 Aansloyalunisnai 3

M1399 3 NANITIFBUANUYNARINITHIBFBUNShdeulmueugns

andulud ravaslng uansn1sudufau ANAQNADY
1 3 4T3 9 wnil 1 A 100.00
2 4 4T3 32 Wdl 1 A 100.00
3 3 Falu 47 unil 1 A 100.00

ARREANNYNADI 100.00
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