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Abstract 

 This study investigates the exponential Diophantine equation 
𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2, 

where 𝑝 is a prime number and 𝑛, 𝑥, 𝑦, 𝑧 are non-negative integers, subject to the modular condition 
𝑛 ≡ 5(mod 12) with gcd(𝑛, 2𝑝 − 1) = 1. 

The primary objective is to determine all non-negative integer solutions of this equation by employing quadratic 
residue theory, modular arithmetic, and its connections to Pell-type equations. 
The results demonstrate that the equation admits a unique non-negative integer solution given by 

(𝑛, 𝑝, 𝑥, 𝑦, 𝑧) = (𝑛, 2,0,1,2). 

For all other values of 𝑝, no non-negative integer solutions exist, and it can be rigorously proven that 𝑧 cannot 
be a perfect square outside this solution. These findings provide a clear classification of the solution set structure 
and offer theoretical insights beneficial for further studies on exponential Diophantine equations, including 
potential applications in computational number theory and cryptographic systems. 

Keywords: Diophantine equations, congruence, integer solutions, number theory  

Introduction 
The study of Diophantine equations holds enduring theoretical importance and serves as a cornerstone 

in advancing applied mathematics. Systematic investigation of these equations reveals fundamental solution 
patterns, establishes general problem-solving frameworks, and extends classical results—thereby providing         
a robust foundation for both pure and applied research. Insights into the integer solutions and their structures 
empower researchers to develop methods applicable to more complex equations and contribute to future 
mathematical discoveries. 

Over the past decade, researchers have devoted considerable effort to analyzing various forms of 
exponential Diophantine equations, focusing on uncovering the properties and structure of integer solutions 
through systematic strategies. Achievements in this domain are noteworthy, as illustrated by several pivotal 
studies: 
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In 2004, Catalan’s Conjecture which had been proposed in 1844 by Catalan [2], stating that the only 
solution (𝑎, 𝑏, 𝑥, 𝑦) = (3,2,2,3)  satisfies the equation 𝑎𝑥 − 𝑏𝑥 = 1,  with min {𝑎, 𝑏, 𝑥, 𝑦} > 1 was finally proven 
by Mihăilescu [7]. 

In 2011, Suvarnamani [11] considered the equation in the form 2𝑥 + 𝑝𝑦 = 𝑧2 and found that solutions 
of this equation follows the value of 𝑝 for example, (3, 0, 3) is a solution for 𝑝 > 2, besides, (4, 2, 5) is another 
solution to the equation for 𝑝 = 3. 

Later in 2012, Sroysang [9] proved that the Diophantine equation 3𝑥 + 5𝑦 = 𝑧2  has a unique non-
negative integer solution. The solution (𝑥, 𝑦, 𝑧) is (1, 0, 2). 

In 2014, Sroysang [10] showed that the Diophantine equations 7𝑥 + 31𝑦 = 𝑧2 has no non-negative 
integer solution. 

Additionally, in 2018, Kumar, Gupta and Kishan [6] showed that the Non-Linear Diophantine equation 
𝑝𝑥 + (𝑝 + 6)𝑦 = 𝑧2,  when 𝑝 and  𝑝 + 6 both are primes, has no solution in non-negative integers. Moreover, 
Fernando [5] demonstrated that the Diophantine equation  𝑝𝑥 + (𝑝 + 8)𝑦 = 𝑧2  when 𝑝 > 3 and 𝑝 + 8   are 
primes, admits no solution (𝑥, 𝑦, 𝑧) in positive integers. In 2020, Burshtein [1] proved that the Diophantine 
equation  𝑝𝑥 + (𝑝 + 5)𝑦 = 𝑧2  , when 𝑝 + 5 = 22𝑢  where 𝑥, 𝑦, 𝑧  and 𝑢  are positive integer, has no solution 
(𝑥, 𝑦, 𝑧) in positive integers. In 2021, N. Viriyapong and C. Viriyapong [12] studied a Diophantine equation         
𝑛𝑥 + 13𝑦 = 𝑧2  which has exactly one solution (𝑛, 𝑥, 𝑦, 𝑧) = (2,3,0,3),   where 𝑥, 𝑦  and z  are non-negative 
integers and 𝑛 is a positive integer with 𝑛 ≡ 2(mod 39) and 𝑛 + 1 is not a square number. In the same year.  
Tangjai and Chubthaisong [13] investigated non-negative integer solutions of the Diophantine equation            
3𝑥 + 𝑝𝑦 = 𝑧2, where 𝑝 ≡ 2(mod 3). They found that for 𝑦 = 0, the unique solution is (𝑝, 𝑥, 𝑦, 𝑧) = (𝑝, 1,0,2), 
and for 𝑦 not divisible by 4, the unique solution is (𝑝, 𝑥, 𝑦, 𝑧) = (2,0,3,3). Later in 2022, Pakapongpun and 
Chattae [8] had demonstrated how to find the solution of the equation 𝑝𝑥 + 7𝑦 = 𝑧2, it was found that there 
was a unique solution for the equation, (𝑥, 𝑦, 𝑧) = (3,0,3) when 𝑝 ≡ 2(mod 6). In 2023 Tadee and Siraworakun 
[14] studied the Diophantine equation 𝑝𝑥 + (𝑝 + 2𝑞)𝑦 = 𝑧2 where 𝑝, 𝑞 and  𝑝 + 2𝑞  are prime numbers and 
showed that the equation has no positive integer solution. 

After reviewing previous research on exponential Diophantine equations, it is evident that this topic 
remains both challenging and highly intriguing, particularly in the search for non-negative integer solutions. 
Several earlier studies have demonstrated that certain forms of these equations possess either a unique solution 
or no solution at all under specific conditions. Motivated by these findings, this study aims to investigate all 
non-negative integer solutions of the Diophantine equation 

𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2     (1) 
where  𝑝 is a prime number and 𝑛, 𝑥, 𝑦, 𝑧 are non-negative integers, under the modular condition  
𝑛 ≡ 5(mod 12) and gcd(𝑛, 2𝑝 − 1) = 1. 
The principal objectives are to find all nonnegative integer solutions under these conditions, analyze the 
structural features imposed by modular and coprimality constraints, and close an existing gap in the literature 
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since this particular formulation has yet to be thoroughly explored. Beyond its theoretical contributions, this 
line of research has potential implications in cryptography. Modern encryption schemes such as RSA, ElGamal, 
and Diffie–Hellman rely on the computational difficulty of solving exponential equations modulo large primes. 
Understanding the intricate behavior and structure of such equations can inform the development or security 
assessment of cryptographic protocols in the future. 
1. Preliminaries 
Definition 1. [4] Let 𝑎 and 𝑏 be two integers such that 𝑏 ≠ 0. We say that 𝑎 divides  𝑏, and write 𝑎|𝑏,  
if 𝑏 = 𝑎𝑐 for some integer 𝑐. 
Definition 2. [4] Let 𝑎, 𝑏 and 𝑚 be three integers such that 𝑚 ≥ 1. We say that 𝑎 is congruent to  𝑏 modulo 
𝑚, and write 𝑎 ≡ 𝑏(mod 𝑚), if 𝑚|𝑎 − 𝑏 .  

Definition 3. [4] Let 𝑛 be a positive integer and 𝑎 be an integer such that (𝑎, 𝑛) = 1. It can be explained that 𝑎 
is the quadratic residue of 𝑛 if it is an integer. 𝑥 ∈ {1,2,3, … , 𝑛 − 1} that makes 𝑥2 ≡ 𝑎(mod 𝑛) have a solution, 
but if 𝑥2 ≢ 𝑎(mod 𝑛) has no solution, we can say that 𝑎 is not the quadratic non-residue of 𝑛. 
Theorem 1. (𝑎, 𝑏, 𝑥, 𝑦) = (3,2,2,3) is a unique solution of the Diophantine equation 𝑎𝑥 − 𝑏𝑦 = 1, 
where 𝑎, 𝑏, 𝑥 and 𝑦 are integers with min {𝑎, 𝑏, 𝑥, 𝑦} > 1. 
Proof see Mihăilescu [7]. 
Lemma 1. [4] Let 𝑎, 𝑏, 𝑐, 𝑑 and 𝑚 are integers such 𝑚 ≥ 1.. Then the following statement hold. 
1. 𝑎 ≡ 𝑎(mod 𝑚). 

2. If  𝑎 ≡ 𝑏(mod 𝑚), then 𝑏 ≡ 𝑎(mod 𝑚). 

3. If  𝑎 ≡ 𝑏(mod 𝑚) and 𝑐 ≡ 𝑑(mod 𝑚),  then  𝑎𝑐 ≡ 𝑏𝑑(mod 𝑚). 

4. If  𝑎 ≡ 𝑏(mod 𝑚) and 𝑐 ≡ 𝑑(mod 𝑚), then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑(mod 𝑚). 

5. If  𝑎 ≡ 𝑏(mod 𝑚), then  𝑎𝑘 ≡ 𝑏𝑘(mod 𝑚) for all integer 𝑘 ≱ 0.                     

Lemma 2. Let 𝑧 ∈ ℤ is a positive integer. Then 𝑧2 ≡ 0,1,4,9(mod 12). 
Proof. Since 𝑧 is a positive integer, Then 𝑧 ≡ 𝑟(mod 12) for 𝑟 ∈ {0,1,2,3,4,5,6,7,8,9,10,11,12}. 

 Case 1:  𝑧 ≡ 0(mod 12).    Then 𝑧2 ≡ 0(mod 12). 

Case 2:  𝑧 ≡ 1(mod 12).    Then 𝑧2 ≡ 1(mod 12). 

Case 3:  𝑧 ≡ 2(mod 12).    Then 𝑧2 ≡ 4(mod 12). 

Case 4:  𝑧 ≡ 3(mod 12).    Then 𝑧2 ≡ 9(mod 12). 

Case 5:  𝑧 ≡ 4(mod 12).    Then 𝑧2 ≡ 4(mod 12). 

Case 6:  𝑧 ≡ 5(mod 12).    Then 𝑧2 ≡ 1(mod 12). 

 Case 7:  𝑧 ≡ 6(mod 12).    Then 𝑧2 ≡ 0(mod 12). 

Case 8:  𝑧 ≡ 7(mod 12).    Then 𝑧2 ≡ 1(mod 12). 

Case 9:  𝑧 ≡ 8(mod 12).    Then 𝑧2 ≡ 4(mod 12). 

Case 10:  𝑧 ≡ 9(mod 12).   Then 𝑧2 ≡ 9(mod 12). 

Case 11:  𝑧 ≡ 10(mod 12). Then 𝑧2 ≡ 4(mod 12). 
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Case 12:  𝑧 ≡ 11(mod 12). Then 𝑧2 ≡ 1(mod 12). 

Thus, for every  𝑧 ∈ ℤ is a positive integer. Then 𝑧2 ≡ 0,1,4,9(mod 12). 

This completes the proof.                 

Lemma 3. Let  𝐴 ∈ ℤ, and let 𝑛 ∈ ℤ+ be a positive integer. Then (12𝐴 + 9)𝑛 ≡ 9(mod 12) for all 𝑛 ≥ 1. 

Proof. We will prove the lemma using mathematical induction on 𝑛 ∈ ℤ+.  
Base case: For 𝑛 = 1, we have  (12𝐴 + 9)1 ≡ 12𝐴 + 9 ≡ 9(mod 12), 
which satisfies the claim. Inductive hypothesis: Assume that for some  𝑘 ∈ Ζ+, (12𝐴 + 9)𝑘 ≡ 9(mod 12).  

By the inductive hypothesis, (12𝐴 + 9)𝑘 ≡ 9(mod 12), and since 12𝐴 + 9 ≡ 9(mod 12),  
it follows that (2𝐴 + 9)𝑘+1 ≡ (9)(9) ≡ 81 ≡ 9(mod 12). 

Thus, by the principle of mathematical induction, (12𝐴 + 9)𝑛 ≡ 9(mod 12), for all 𝑛 ∈ ℤ+. 
This completes the proof.            

Lemma 4. Let 𝐴 be a positive integer. Then for any positive integer 𝑛, we have: 

(12𝐴 + 5)𝑛 = {
12𝑀 + 1, if 𝑛 is even.
12𝑁 + 5, if 𝑛 is odd   

 

For some positive integers 𝑀 and 𝑁. 
Proof. For some positive integers 𝑀 and 𝑁, we divide the proof into two cases: 

Case 1. Let 𝑛 be a positive even number, i.e., 𝑛 = 2𝑘 for some positive integer 𝑘. 

Since 12𝐴 + 5 ≡ 5(mod 12), we have (12𝐴 + 5)2𝑘 = ((12𝐴 + 5)2)𝑘 = (144𝐴2 + 120𝐴 + 25)𝑘. 

Reducing modulo 12, note that 144𝐴2 ≡ 0(mod 12), 120𝐴 ≡ 0(mod 12) and 25 ≡ 1(mod 12). 

Therefore, (12𝐴 + 5)2 ≡ 1(mod 12).  It follows that (12A + 5)2k ≡ 1(mod 12) , can be written in the form 
12𝑀 + 1 for some positive integer 𝑀. 

Case 2. Let 𝑛 be a positive odd integer, i.e., 𝑛 = 2𝑘 + 1 for some positive integer 𝑘. 
Assume that (12𝐴 + 5)2𝑘+1 = 12𝑁 + 5 for some positive integer 𝑁. 
Then,      (12𝐴 + 5)2(𝑘+1)+1 = (12𝐴 + 5)2𝑘+1(12𝐴 + 5)2 

        = (12𝑁 + 5)(144𝐴2 + 120𝐴 + 25) 
        = 12(144𝑁𝐴2 + 120𝑁𝐴 + 25𝑁 + 60𝐴2 + 50𝐴 + 10) + 5. 

Since  144𝑁𝐴2 + 120𝑁𝐴 + 25𝑁 + 60𝐴2 + 50𝐴 + 10 is a positive integer, 
by the principle of mathematical induction, it follows that for every positive even integer 𝑛 > 0,  we 
have (12𝐴 + 5)𝑛 = 12𝑁 + 5 for some positive integer 𝑁. 
This completes the proof.  
Lemma 5. Let  𝑛, 𝑥 and z be non-negative integers. The Diophantine equation 𝑛𝑥 + 1 = 𝑧2 has  
no solution in non-negative integers when 𝑛 ≡ 5(mod 12).  

Proof. Assume, for the sake of contradiction (𝑛, 𝑥, 𝑧) is a solution in non-negative integers to the equation 𝑛𝑥 +

1 = 𝑧2. Since 𝑛 ≡ 5(mod 12 ), it follows that 𝑛𝑥 ≡ 5𝑥(mod 12). By Lemma 4, we know that 5𝑥 ≡ 1(mod 12)  
(if 𝑥 is even) or 5𝑥 ≡ 5(mod 12)  (if 𝑥 is odd) Therefore 𝑧2 ≡ 2(mod 12) or 𝑧2 ≡ 6(mod 12). This contradicts   
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Lemma 2, which states that no perfect square can be congruent to 2 or 6 (mod 12). Hence, no solution exists 
under the given conditions.         
This completes the proof.      
Lemma 6. Let 𝑝 be a prime number. Then the Diophantine equation 1 + (2p − 1)y = z2 has a unique solution 
(𝑝, 𝑦, 𝑧) = (2,1,2)  where y, z are non-negative integers.  
Proof. Let 𝑝 be a prime number and 𝑦, 𝑧 are non-negative integers.  
We divide the proof into two cases based on the value of 𝑦. 

Case 1.  𝑦 = 0, then 𝑧2 = 2. It is impossible.  
Case 2.  𝑦 ≥ 1, let 𝑝 be an odd prime, and let 𝑦 be an integer. Consider the Diophantine equation, 

1 + (2𝑝 − 1)𝑦 = 𝑧2.  

We rewrite the equation            (2𝑝 − 1)𝑌 = 𝑧2 − 1 = (𝑧 − 1)(𝑧 + 1).          (2) 
let (2𝑝 − 1)𝑘 = 𝑧 − 1  and (2𝑝 − 1)𝑦−𝑘 = 𝑧 + 1,  𝑘 ≥ 0, substituting these expressions into equation (2),  
we obtain (2𝑝 − 1)𝑘((2𝑝 − 1)𝑦−2𝑘 − 1) = 2.  

Since 2𝑝 − 1 ≥ 3, the only possible value for this equation to equal (2) is when (2𝑝 − 1)𝑘 = 1,  
which implies  𝑘 = 0. Substituting 𝑘 = 0 into the equation yields (2𝑝 − 1)𝑦 − 1 = 2,  
or equivalently (2𝑝 − 1)𝑦 = 3. Thus, 𝑦 = 1, 2𝑝 − 1 = 3, which implies  𝑝 = 2.  

Therefore, the solution is (𝑝, 𝑦, 𝑧) = (2,1,2).          
Lemma 7. Let 𝑝 be an odd prime then 𝑝 ≡ 1,3,5,7,11(mod 12). 

Proof.  Every integer modulo 12 is congruent to one of the integers in the complete residue system modulo 
12, namely {0,1,2,3,4,5,6,7,8,9,10,11}. We now examine each of these residue classes and determine whether 
it is possible for a prime number 𝑝 ≥ 3 to be congruent to each of them modulo 12. 

Case 1. If 𝑝 ≡ 0(mod 12), then 𝑝 is divisible by 12, and hence divisible by both 3 and 4. Since a prime 
number has no divisors other than 1 and itself, 𝑝 cannot be prime. 

Case 2. If 𝑝 ≡ 2,4,6,8,10(mod 12), Since 2, 4, 6, 8, and 10 are all divisible by 2, it follows that 𝑝 is 
divisible by 2. As a prime number can only have 1 and itself as positive divisors, this implies that 𝑝 cannot be a 
prime number. 

Case 3. 𝑝 ≡ 9(mod 12), since 9 is divisible by 3, this implies that 𝑝 is divisible by 3. The only prime 
divisible by 3 is 𝑝 = 3, but 3 ≡ 3(mod 12), not 9. Hence, 𝑝 cannot be congruent to 9 modulo 12. 

Case 4. 𝑝 ≡ 3(mod 12), this is only true for 𝑝 = 3, which satisfies both 𝑝 ≥ 3 and primality. 
Thus, the only congruence classes modulo 12 that a prime number 𝑝 ≥ 3 can belong to are 1,3,5,7,11(mod 12). 

This completes the proof.          
Lemma 8. Let 𝑛 is a non-negative integer. If 𝑛 ≡ 5(mod 12),  then 𝑛 ≡ 2(mod 3) and 𝑛 ≡ 1(mod 4). 

Proof. Assume that 𝑛 is a non-negative integer.  
Such that 𝑛 ≡ 5(mod 12), this means by definition of congruence: 𝑛 = 12𝑘 + 5  for some integer 𝑘. 
It follows that 𝑛 = 3(4𝑘 + 1) + 2 and 𝑛 = 4(3𝑘 + 1) + 1.  
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Thus, 𝑛 ≡ 2(mod 3) and 𝑛 ≡ 1(mod 4).            
Main Results  
Throughout our main results part, let 𝑝 be an odd prime and let 𝑛, 𝑥, 𝑦, 𝑧 be non-negative integers such that 
𝑛 ≡ 5(mod 12). We investigate the solutions of the Diophantine equation 𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2   

by considering various cases based on the values of 𝑝  and 𝑛𝑥. To ensure the logical continuity of the proofs, 
we present several supporting lemmas 4 and lemma 9 in this section, which will be used as auxiliary results in 
the main proofs that follow. 
Lemma 9.  If 𝑝 be an odd prime such that 𝑝 ≡ 1,5,7,11(mod 12). Then for any positive integer y, the following 
congruence holds (2𝑝 − 1)𝑦 ≡ 1(mod 12)  or , (2𝑝 − 1)𝑦 ≡ 9(mod 12). 

Proof.  Let us consider the possible congruence classes of odd primes modulo 12. Since  𝑝 is an odd prime, it 
cannot be divisible by 2 or 3, so the only possible values of 𝑝 (mod12) are 𝑝 ≡ 1,5,7,11(mod 12). 

We will compute 2𝑝 − 1 modulo 12 for each of these congruence classes. 
Case 1. 𝑝 ≡ 1(mod 12) then (2𝑝 − 1)𝑦 ≡ 1(mod 12). 

Case 2. 𝑝 ≡ 5(mod 12) then  (2𝑝 − 1)𝑦 ≡ 9𝑦 ≡ 9(mod 12). 

Case 3. 𝑝 ≡ 7(mod 12) then  (2𝑝 − 1)𝑦 ≡ 13𝑦 ≡ 1(mod 12). 

Case 4. 𝑝 ≡ 11(mod 12) then  (2𝑝 − 1)𝑦 ≡ 21𝑦 ≡ 9𝑦 ≡ 9(mod 12). For all 𝑦 ≥ 1 (this can be proved 
by induction, if 𝑦 = 𝑘, 9𝑦 = 9𝑘 ≡ 9(mod 12), then 9𝑘+1 ≡ 9 ∙ 9 ≡ 81 ≡ 9(mod 12)). 

In all four cases, (2𝑝 − 1)𝑦 ≡ 1(mod 12) or  (2𝑝 − 1)𝑦 ≡ 9𝑦 ≡ 9(mod 12). 

Thus, (2𝑝 − 1)𝑦 ≡ 1(mod 12) or (2𝑝 − 1)𝑦 ≡ 9𝑦 ≡ 9(mod 12). For all  y ∈ ℤ > 0,  

completing the proof.   
Lemma 10.  For any integer 𝐴 and non-negative integer 𝑛, the following congruence holds: 

(12𝐴 + 3)𝑥 ≡ {

 1(mod 12), 𝑥 = 0,                        
,        

3(mod 12), if 𝑥 is odd,               
,        

9(mod 12), if 𝑥 is even, 𝑥 ≥ 2 

 

Proof.  Since 12𝐴 + 3 ≡ 3(mod 12). 
Hence (12𝐴 + 3)𝑥 ≡ 3𝑥(mod 12), and it suffices to determine the residue of 3𝑥 modulo 12. 
For  𝑥 = 0, clearly 30 = 1 ≡ 1(mod 12). 

For  𝑥 = 1, we have 31 = 3 ≡ 3(mod 12), establishing the initial case. 
Assume now that for some 𝑛 ≥ 1,  

3𝑛 ≡ {
3(mod 12), 𝑛 is odd,

9(mod 12), 𝑛 is even.
 

Multiplying both sides by 3 gives 
3𝑛+1 ≡ 3 ∙ 3𝑛 (mod 12). 

If 𝑛 is odd, then 3𝑛 ≡ 3, so  3𝑛+1 ≡ 9 (mod 12), as required for an even exponent. 
If 𝑛 is even, then 3𝑛 ≡ 9, so  3𝑛+1 ≡ 27 ≡ 3(mod 12), as required for an odd exponent. 
Thus, the statement holds for 𝑛 + 1 whenever it holds for 𝑛. By the principle of mathematical induction, the 
claim is established for all 𝑥 ≥ 0.    
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Theorem 2. Let 𝑝 be prime number and let 𝑛, 𝑥, 𝑦, 𝑧 are non-negative integers, such that  𝑛 ≡ 5(mod 12) and 

gcd(𝑛, 2𝑝 − 1) = 1. Then the exponential Diophantine equation 𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2 has the unique solution 

(𝑛, 𝑝, 𝑥, 𝑦, 𝑧) = (𝑛, 2,0,1,2).   
Proof.  Let 𝑝 be a prime number and 𝑛, 𝑥, 𝑦, 𝑧 are non-negative integers, when 𝑛 ≡ 5(mod 12). 
We divide the proof into 4 cases: 

Case 1.  𝑥 = 0 and 𝑦 = 0, the equation becomes 𝑧2 = 2. It is impossible. 
Case 2.  𝑥 = 0 , 𝑦 ≥ 1. By Lemma 6, the solution to the equation (1) is (𝑛, 𝑝, 𝑥, 𝑦, 𝑧) = (𝑛, 2, 0, 1, 2). 

Case 3.  𝑦 = 0 and 𝑥 ≥ 1.  By Lemma 5, there is no solution.  
Case 4.  𝑥 ≥ 1 , 𝑦 ≥ 1.  

  Case 4.1  𝑥 is odd and y ≥ 1 

Let 𝑝 = 2. Then (2𝑝 − 1)𝑦 = 3𝑦. From Lemma 10, we know that for any integer 𝐴 and non-negative integer 𝑦. 

(12𝐴 + 3)𝑦 ≡ {
3 (mod 12), if y is odd,              

9 (mod 12), if y ≥ 2 and even.
 

Since 𝑛 ≡ 5(mod 12), by Lemma 4, we obtain 𝑛𝑥 ≡ 5(mod 12). 
Therefore, 𝑧2 = 𝑛𝑥 + 3𝑦 ≡ 5 + 3 = 8(mod 12) or 𝑧2 = 𝑛𝑥 + 3𝑦 ≡ 5 + 9 = 14 ≡ 2(mod 12). But from Lemma 
2, a square modulo 12 must be in the set {0, 1, 4, 9}. So 𝑧2 ≡ 8 or 2(mod 12) is a contradiction. 
Therefore, the equation admits no non-negative integer solution under these conditions. 

Case 4.2  𝑥 is even and  y ≥ 1 
Case 4.2.1 Let   𝑝 = 2,  

from equation (1), we have 𝑛𝑥 + 3𝑦 = 𝑧2. Suppose 𝑥 = 2𝑓,  where 𝑓 is a non-negative integer.  

Then  𝑛𝑥 = (𝑛𝑓)2.  We consider the Diophantine (𝑛𝑓)2 + 3𝑦 = 𝑧2. We can rewrite this as a difference of squares   
3𝑦 = 𝑧2 − (𝑛𝑓)2 = (𝑧 + 𝑛𝑓)(𝑧 − 𝑛𝑓). 

Let 3𝑦−ℎ = 𝑧 + 𝑛𝑓 and 3ℎ = 𝑧 − 𝑛𝑓, where 𝑦 > ℎ and 𝑦, ℎ are non-negative integers.   

This yields 3ℎ[3𝑦−2ℎ − 1] = 2 ∙ 𝑛𝑓 . Since 𝑦 > 2ℎ, it follows that 3𝑦−2ℎ − 1 is a positive integer.  
We now consider three cases for ℎ: 

   Case (i):  ℎ = 1.   
Therefore, 3 must divide 2𝑛𝑓 , i.e., 3|2𝑛𝑓 . 

However, sine gcd(𝑛, 3) = 1 and 1 and 3 does not divide 2 (because 2 is a prime number not divisble by 3),  
it follows that 3 ∤ 2nf.  Which is a contradiction and cannot hold. 
   Case (ii): ℎ ≥ 2. 

In this case, the equation becomes 3ℎ(3𝑦−2ℎ − 1) = 2𝑛𝑓 . 

Since ℎ ≥ 2, it follows that 32 = 9|3ℎ, and hence 3|2𝑛𝑓 . 

This implies that 3|2𝑛𝑓 , which is impossible because gcd(3, 2𝑛𝑓) = 1 under the assumption gcd(𝑛, 3) = 1. 

Therefore, this case leads to a contradiction. 
   Case (iii): ℎ = 0.  

The equation simplifies to 3𝑦 − 1 = 2𝑛𝑓 . 
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We analyze this congruence modulo 3. Note that: 
3𝑦 ≡ 0(mod 3), it follows that 3𝑦 − 1 ≡ −1(mod 3). 

Thus, 2𝑛𝑓 ≡ −1(mod 3),  Which implies that 3|2𝑛𝑓 + 1.  
However, since gcd(𝑛, 3) = 1, it follows that 3 ∤ 2nf, leading to a contradiction. 
Alternatively, if 𝑦 is even, then 3𝑦 ≡ 1(mod 4), so that 
3𝑦 − 1 ≡ 0(mod 4), which implies that 2𝑛𝑓 ≡ 0(mod 4). 

This implies 𝑛𝑓 ≡ 0(mod 2), i.e., 𝑛 is even.  
But this contradicts the assumption that 𝑛 is odd and gcd(𝑛, 2) = 1. 

Hence, no solution exists in the case either. 
Case 4.2.2 Let   𝑝 ≥ 3,  

from Lemma 9, (2𝑝 − 1)𝑦 ≡ 1(mod 12) or (2𝑝 − 1)𝑦 ≡ 9(mod 12), from Lemma 4, we have 𝑛𝑥 ≡ 1(mod 12). 

Thus,  𝑧2 = 𝑛𝑥 + (2𝑝 − 1)𝑦 ≡ 6(mod 12) or  𝑧2 ≡ 2(mod 12), which contradicts Lemma 2. Therefore, in this 
case, there is no solution.  
This completes the proof.   
Corollary 1.  Let 𝑛  be a positive number such that 𝑛 ≡ 5(mod 12) . Then the Diophantine equation 𝑛𝑥 +

(2𝑝 − 1)𝑦 = 𝑢2𝑤  has a unique solution (𝑛, 𝑝, 𝑥, 𝑦, 𝑢) = (𝑛, 2,0,1,2)  where 𝑝 be prime number and  𝑥, 𝑦, 𝑢, 𝑤 are 
non-negative integers. 
Proof. Let 𝑝 be an odd prime and 𝑥, 𝑦, 𝑢 are non-negative integers. Suppose that  𝑢2𝑤 = 𝑧2,  

Then Diophantine equation 𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑢2𝑤 = 𝑧2 has a unique solution (𝑛, 𝑝, 𝑥, 𝑦, 𝑢) = (𝑛, 2,0,1,2).   
By Theorem 2.   

Corollary 2.  The Diophantine equation 52𝑥 + 13𝑦 = 𝑧2 has no non-negative integer solutions, 
where 𝑥, 𝑦 and 𝑧 are non-negative integers.  
Proof. By Lemma 4, 52𝑥 ≡ 1(mod 12) and by Lemma 9, (2𝑝 − 1)𝑦 ≡ 1,9(mod 12). 

Therefore,  𝑧2 ≡ 2 ,10(mod 12), which contradicts Lemma 2. Hence, by Theorem 2, the Diophantine equation 
52𝑥 + 13𝑦 = 𝑧2 has no non-negative integer solution.        
Corollary 3.  The Diophantine equation 29𝑥 + (2𝑝 − 1)2𝑚+1 = 𝑘2𝑡+2 , where 𝑝 be prime, has no non-negative 
integer solution, where 𝑚, 𝑡, 𝑥, 𝑦 and 𝑘 are non-negative integers.  
Proof. Let 𝑝 be prime number. 
Suppose that  𝑦 = 2𝑚 + 1, 𝑧 = 𝑘𝑡+1 , so  29𝑥 + (2𝑝 − 1)𝑦 = 𝑘2𝑡+2 = 𝑧2.  From Theorem 2,  
Then the Diophantine equation  29𝑥 + (2𝑝 − 1)2𝑚+1 = 𝑘2𝑡+2 has no non-negative integer solutions.   
Corollary 4. The Diophantine equation  17𝑥 + (2𝑝 − 1)𝑦 = ℎ2𝑡 , where 𝑝 be prime, has no non-negative integer 
solution, where 𝑡, 𝑥, 𝑦 and ℎ are non-negative integers.  
Proof. Let 𝑝 be prime number. 
Suppose that   𝑧 = ℎ𝑡 , so  17𝑥 + (2𝑝 − 1)𝑦 = ℎ2𝑡 = 𝑧2.   From Theorem 2,  
then the Diophantine equation  17𝑥 + (2𝑝 − 1)𝑦 = ℎ2𝑡 has no non-negative integer solution.     
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Discussion 
 This study provides an in-depth analysis of the exponential Diophantine equation 

𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2, 
This study provides an in-depth analysis of the exponential. Diophantine equation  𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2, 
under the modular condition 𝑛 ≡ 5(mod12) and gcd(𝑛, 2𝑝 − 1) = 1. The results indicate that the the equation 
admits a single non-trivial solution when 𝑝 = 2, reflecting the rarity of non-negative integer solutions under 
these constraints. Moreover, it is confirmed that for other values of 𝑝, no non-negative integer solutions exist, 
and z cannot be a perfect square outside of this solution. These findings align with previous studies on related 
Diophantine equations. For instance, Kumar et al. [6] and Fernando [5] showed that certain non-linear 
Diophantine equations with prime parameters admit no positive integer solutions, while Viriyapong and Sroysang 
[9, 12] found that unique solutions exist under specific conditions. Despite these advances, several questions 
remain open regarding the behavior of such equations under broader conditions and more complex structures. 
To address these gaps, future research may focus on: 

1. Extending the analysis to other modular conditions, such as 𝑛 ≡ 1(mod 4)  or 𝑛 ≡ 3(mod 8),  to 
examine whether the uniqueness of solutions persists or varies under different arithmetic constraints. 

2. Exploring additional families of exponential Diophantine equations, particularly those involving 
multiple exponential terms or higher-degree exponents, to gain deeper insight into the general structure of 
solutions and to potentially formulate new theoretical conjectures. 

3. Investigating computational methods using modern mathematical software such as SageMath, Python 
(with SymPy or NumPy), or Mathematica to empirically verify the uniqueness of solutions over broader 
parameter ranges, especially in cases where theoretical proofs are difficult to obtain. 

Recommendations 
Based on the results and the scope of this study, the researcher offers several recommendations for 

future research and educational applications. 
1. Broaden the investigation of exponential Diophantine equations by exploring more diverse modular 

conditions and wider parameter ranges. This could help uncover new solution structures or unexpected 
behaviors. For instance, future studies may examine equations of the form 𝑎𝑥 + 𝑏𝑦 ≡ 𝑐(mod 𝑚) across varying 
values of mmm, to analyze patterns of solvability and periodicity under modular constraints. 

2. Utilize computational techniques to support theoretical work and explore related number-theoretic 
equations such as Pell-type equations or exponential forms involving recurrence relations. 
Performing exhaustive searches for small integer parameters (e.g., 𝑎, 𝑏, 𝑥, 𝑦 ≤ 1000) may reveal special or 
exceptional solutions that can guide the formulation of more general conjectures or proofs. 

3. Incorporate these methods into mathematics education, particularly in teaching number theory and 
problem-solving strategies. Computational tools, such as Python, PARI/GP, or SageMath, could be used to help 
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students visualize and analyze Diophantine equations, thereby strengthening logical reasoning and conceptual 
understanding through hands-on experimentation. 

Conclusions 
This study examined the exponential Diophantine equation 𝑛𝑥 + (2𝑝 − 1)𝑦 = 𝑧2, where 𝑝 is a prime 

number and 𝑛, 𝑥, 𝑦, 𝑧 are non-negative integers, under the conditions 𝑛 ≡ 5(mod12) and gcd(𝑛, 2𝑝 − 1) = 1.  
The analysis shows that the equation has a unique non-trivial solution given by 
(𝑛, 𝑝, 𝑥, 𝑦, 𝑧) = (𝑛, 2,0,1,2).  
No other prime numbers yield non-negative integer solutions, and 𝑧2cannot be a perfect square in any other 
case. These results highlight the rarity of solutions for this type of equation and provide a framework for exploring 
more complex cases. They also offer clear and illustrative examples for teaching number theory and Diophantine 
equations. 
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