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ABSTRACT 

In modern vehicles, intelligent suspension systems have been widely applied with complex 
control algorithms. The suspension design problem aims to achieve a good suspension providing a 
comfortable ride and good handling within a reasonable range of road-profile deflection. In this 
paper, the proportional-integral-derivative-accelerated (PIDA) controller design for the magnetically 
levitated (Maglev) vehicle suspension system by the Lévy-flight firefly algorithm (LFFA), one of the 
most powerful metaheuristic optimization searching techniques, is proposed. For comparison with 
LFFA-based design approach, the results obtained by the PIDA controller will be compared with 
those obtained by the PI, PD and PID controllers. Simulation results show that the LFFA can provide 
optimal PIDA controller for a given suspension system. The PIDA controller yielded very satisfactory 
response superior to PI, PD and PID, respectively. 

 
Keyword: PIDA controller, Maglev vehicle, suspension system, Lévy-flight firefly algorithm, modern 
optimization. 

 
1. Introduction 

In modern vehicles, a suspension system 
plays an important and imperative role in 
increasing the ride comfort. The main purpose of 
a suspension system is to provide a comfortable 
ride and good handling within a reasonable 
range of deflection or irregularity of road profile 
[1-3]. For high-speed transport links in modern 
economies, the magnetically levitated (Maglev) 
vehicles have been widely used in many 
countries. There are two most effective 
suspension methods, i.e electro-dynamic 
suspension (EDS) and electro-magnetic 
suspension (EMS) [4-6]. The former requires 
super-conducting materials to produce sufficient 
repulsive force to levitate a vehicle over a 

conducting track, while the later employs the 
attractive forces of sets of electromagnets acting 
upwards to levitate the vehicle towards the 
tracks [7-8]. Generally, the suspension system of 
the Maglev vehicles can be controlled by PD/PID 
controllers. Based on the modern optimization, 
designing of PD/PID controllers for Maglev 
vehicle suspension system by some potential 
metaheuristic algorithms has been developed, 
for example, by using genetic algorithm (GA) [9], 
evolutionary algorithm (EA) [10] and particle 
swarm optimization (PSO) [11]. 

In control theory, the proportional-integral-
derivative-accelerated (PIDA) controller was 
developed and proposed by Jung and Dorf in 
1996 [12]. It possesses three arbitrary zeros and 
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one pole at origin. This leads the PIDA more 
benefit than the classical PID controller for 
higher-order plants. Designing of the PIDA 
controller by well-known metaheuristic 
algorithms has been launched, for instance, by 
GA [13], PSO [14], cuckoo search (CS) [15] and 
spider monkey optimization (SMO) [16]. 

By literature reviews, the firefly algorithm 
(FA) was firstly proposed in 2008 by Yang [17-18] 
based on the flashing behavior of fireflies and 
uniform distribution for randomly generating the 
feasible solutions. As one of the most efficient 
population-based metaheuristic algorithms, the 
FA was applied to almost every area of sciences 
and engineering, including power systems [19], 
image processing [20], antenna design [21], civil 
engineering [22], robotics [23], semantic web 
[24], chemistry [25], meteorology [26], wireless 
sensor networks [27], control engineering [28-29] 
and so forth. 

In 2010, two years after the former version 
of the FA was initiated, the later version of FA 
named the Lévy-flight firefly algorithm (LFFA) 
was proposed by Yang [30]. The algorithm of 
LFFA was still based on the flashing behavior of 
fireflies, but Lévy-flight distribution is employed 
to randomly generate new solutions. The LFFA 
was tested against several nonlinear and 
multimodal standard test functions. Results 
obtained by the LFFA outperformed those by 
traditional algorithms including GA and PSO. The 
state-of-the-art and its applications of the LFFA 
have been reviewed and reported [31-32]. 

In this paper, the LFFA is applied to design 
an optimal PIDA controller for the Maglev 
vehicle suspension system. For comparison with 
LFFA-based design approach, the results 
obtained by the PIDA controller will be 
compared with those obtained by the PI, PD and 
PID controllers, respectively. After an 
introduction is provided in section 1, the 
remaining part of the paper is organized as 

follows. Modeling of Maglev suspension system 
is described in section 2. The LFFA-based PIDA 
design problem formulation is performed in 
section 3. Results and discussions are illustrated 
in section 4. Conclusions are given in section 5. 

 
2. Maglev Suspension Model 

The cross-section of a general Maglev 
vehicle is shown in Fig. 1(a), while its equivalent 
one-dimensional vehicle model with two-
degrees-of-freedom is represented in Fig. 1(b), 
consisting of two lumped masses mp and ms, 
two linear springs kp and ks, and two viscous 
dampings bp and bs, representing primary 
(chassis) and secondary (passenger cabin) 
suspensions, respectively [5-6]. 
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Fig. 1 Maglev vehicle suspension system 
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For the linear model, the equations of 

motion when the vehicle is at the equilibrium 
position are stated in (1) - (2). 
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From (1) and (2), the relation in (3) can be 

formulated, where yp and ys are positions of 
primary (chassis) and secondary (passenger 
cabin) suspensions, and yi is disturbance from 
guideway irregularity.  
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The s-domain transfer functions of primary 

suspension G1(s) and secondary suspension G2(s) 
once considering guideway disturbance yi as an 
input variable can be described in (4) and (5), 
respectively. 
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The Maglev vehicle suspension model can be 

represented by the block diagram as shown in 
Fig. 2. 

 
3. LFFA-Based PIDA Design Problem 

In this section, algorithms of the original FA 
and the LFFA are briefly reviewed. Then, the 
LFFA-based PIDA controller design approach is 
elaborately described. 

 
3.1 FA Algorithm 
The original firefly algorithm (FA) was firstly 

developed by Yang in 2008 by [17-18] based on 
the flashing behavior of fireflies. The flashing 
light of fireflies is produced by a process of 
bioluminescence to attract mating partners 
(communication) and to attract potential prey. 
The FA’s algorithm is developed from three 
idealized rules:  

(i)  fireflies are unisex so that one firefly will 
be attracted to other fireflies regardless of 
their sex;  

(ii) the attractiveness is proportional to the 
brightness, and they both decrease as 
their distance increases. Thus for any two 
flashing fireflies, the less brighter one will  

 

Fig. 2 Block diagram for two-degree-of-freedom Maglev vehicle model 
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 move towards the brighter one. If there is 

no brighter one than a particular firefly, it 
will move randomly;   

(iii) the brightness of a firefly is determined 
by the landscape of the objective 
function.  

Based on these rules, the FA’s algorithm can 
be summarized by the pseudo code shown in 
Fig. 3.  

In FA, there are two important issues: the 
variation of light intensity and formulation of the 
attractiveness. The attractiveness of a firefly is 
determined by its brightness which in turn is 
associated with the encoded objective function. 
Along the distance r, the light intensity I varies 
according to the inverse square law I(r) = Is/r

2, 
where Is is the intensity at the source. For a 
given medium with a fixed light absorption 
coefficient, the light intensity I varies with the 
distance r as stated in (6), where I0 is the original 
light intensity. 

 

 
Fig. 3 Pseudo code of FA 
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The attractiveness of a firefly observed by 

adjacent fireflies is proportional to the light 
intensity. This can define the variation of 
attractiveness  with the distance r as expressed 
in (7), where 0 is the attractiveness at r = 0. 
From parametric studies, 0 = 1 is suggested for 
most applications [17-18]. The scaling factor  in 
(6) and (7) is defined as the light absorption 
coefficient. In addition in (6) and (7), the distance 
rij between any two fireflies i and j at their 
locations xi and xj can be calculated by the 
Cartesian distance as expressed in (8), where xi,k 

is the kth component of the spatial coordinate xi 
of ith firefly. 

For an original FA, the movement of a firefly 
i is attracted to another more attractive (brighter) 
firefly j is determined by (9), where t is the 
randomization parameter, and i is a vector of 
random numbers drawn from a Gaussian 
distribution or uniform distribution at time t [6]. 
In addition, t can be controlled during 
iterations as stated in (10), where 0 is the initial 
randomness scaling factor, and  is a cooling 
factor. 
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3.2 LFFA Algorithm 
The Lévy-flight firefly algorithm (LFFA), the 

modified version of the FA, was proposed by 
Yang in 2010 [30]. Movement of a firefly i is 
attracted to another more attractive (brighter) 
firefly j is determined by (11), where the second 
term is due to the attraction while the third 
term is randomization via Lévy flights with  
being the randomization parameter. The product 
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 means entrywise multiplications. The 
sign[rand-1/2] where rand  [0, 1] 
essentially provides a random sign or direction 
while the random step length is drawn from a 
Lévy distribution having an infinite variance with 
an infinite mean. From (11), a symbol Lévy() 
represents the Lévy distribution as expressed in 
(12). The step length s can be calculated by (13), 
where u and v stand for normal distribution as 
stated in (14). Standard deviations of u and v are 
also expressed in (15). The algorithms of the 
LFFA can be represented by the pseudo code 
shown in Fig. 4. 

 
     )(

2

0
1 t

i
t
j

rt
i

t
i

ije xxxx      

               



 

2

1
randsign  Lévy() (11) 

 

      

Lévy = , (1 3)u t      (12)
 

                      
/1|| v

u
s   (13)

 
 

         

).0(),.0( 22
vu NvNu    (14) 

                

    

1,
2]2/)1[(

)2/sin()1(
/1

2/)1(


















 vu 







 (15) 

 

Fig. 4 Pseudo code of LFFA 

3.3  LFFA-Based PIDA Controller Design 
Regarding to the modern optimization, the 

LFFA-based optimal PIDA controller design for 
the Maglev vehicle suspension system can be 
represented by the block diagram in Fig. 5. The 
s-domain transfer functions of secondary 
suspension G2(s) in (5) will be used as a plant 
model Gp(s) in Fig. 5. The plant model 
parameters, i.e., masses mp and ms, stiffnesses kp 
and ks, and dampings bp and bs for primary and 
secondary suspensions, are summarized in Table 
1 [33-34]. 

 

Fig. 5 LFFA-based PIDA design framework 
 

Table 1 Maglev vehicle paramaters 
 

Paramaters Values 
Primary suspension mass mp 3.20104 kg 
Secondary suspension mass ms 2.92104 kg 
Primary suspension damping bp 1.13106 N-s/m 
Secondary suspension damping bs 8.80104 N-s/m 
Primary suspension stiffness kp 6.18107 N/m 
Secondary suspension stiffness ks 7.37105 N/m 

 

The PI, PD, PID and PIDA controller models 
are stated in (16), (17), (18) and (19), 
respectively, where Kp is the proportional gain, Ki 
is the integral gain, Kd is the derivative gain and 
Ka is the accelerated gains. The sum-squared 
errors between reference position, rj, and 
passenger cabin position, cj, are set as the 
objective function f() stated in (20). As the 
constrained optimization, the time-domain 
response specification, consisting of the rise time 
(tr), the maximum percent overshoot (Mp), the 
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settling time (ts) and the steady-state error (ess), 
is defined as the constrained functions as 
expressed in (21). Referring to Fig. 5, f() in (20) 
will be minimized by the LFFA in order to search 
for the appropriate values of Kp, Ki, Kd and Ka 
within their corresponding search spaces in (21). 
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4. Results and Discussions 

To design the PI, PD, PID and PIDA 
controllers for the Maglev vehicle suspension 
system, the LFFA algorithm was coded by 
MATLAB version 2018b (License No .#40637337). 
Search parameters of the LFFA are set according 
to Yang’s recommendations [30], i.e. the 
numbers of fireflies n = 30, 0 = 0.25, 0 = 1,  = 
1.50 and   = 1. In this work, 50 trails are 
searched to obtain the optimal PI, PD, PID and 
PIDA controllers. For all cases, the maximum 
generation (Max_Generation) = 200 is set as the 
termination criteria for each search trial. 

4.1  Case-I (PI Controller) 
In case of PI controller design with the LFFA-

based design approach, the values of Kd and Ka 
in (21) will be fixed at zero. When the search 
process terminated, the optimal PI controller for 
the Maglev vehicle suspension system is 
obtained by the LFFA as expressed in (22). Fig. 6 
shows the convergent rates of the objective 
function f() over 50 trials of the PI controller 
designed by the LFFA. The step responses of the 
Maglev vehicle suspension system without and 
with PI controller are depicted in Fig. 7. 
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Fig. 6 Convergent rates of PI controller  
designed by LFFA  

 

Fig. 7 Step responses of Maglev system without 
and with PI controller designed by LFFA 
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4.2  Case-II (PD Controller) 
For the PD controller design with the LFFA-

based design approach, the values of Ki and Ka 
in (21) will be fixed at zero. Once the search 
process stopped, the PD controller for the 
Maglev vehicle suspension system is optimized 
by the LFFA as stated in (23). The convergent 
rates of the objective function f() over 50 trials 
of the PD controller designed by the LFFA are 
plotted in Fig. 8. The step responses of the 
Maglev vehicle suspension system without and 
with PD controller are depicted in Fig. 9.  
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Fig. 8 Convergent rates of PD controller  
designed by LFFA  

 

Fig. 9 Step responses of Maglev system without 
and with PD controller designed by LFFA 

4.3  Case-III (PID Controller) 
In case of PID controller design with the 

LFFA-based design approach, Ka in (21) is thus 
fixed at zero. When the search process stopped, 
the PID controller for the Maglev vehicle 
suspension system is optimized by the LFFA as 
stated in (24). The convergent rates of the 
objective function f() over 50 trials of the PID 
controller proceeded by the LFFA are plotted in 
Fig. 10. The step responses of the Maglev 
vehicle suspension system without and with PID 
controller are depicted in Fig. 11.  
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Fig. 10 Convergent rates of PID controller  
designed by LFFA  

 

Fig. 11 Step responses of Maglev system without 
and with PID controller designed by LFFA 
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4.4  Case-IV (PIDA Controller) 
Finally, for the PIDA controller design with 

the LFFA-based design approach, Kp, Ki, Kd and 
Ka are varied within their corresponding 
boundaries as given in (21). The optimal PIDA 
controller for the Maglev vehicle suspension 
system is obtained by the LFFA as stated in (25). 
The convergent rates of the PIDA controller 
design are plotted in Fig. 12. The step responses 
of the system without and with PIDA controller 
are depicted in Fig. 13.  
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Fig. 12 Convergent rates of PIDA controller  
designed by LFFA  

 

Fig. 13 Step responses of Maglev system without 
and with PIDA controller designed by LFFA 

4.5  Result Comparison 
All obtained results are summarized in 

Table 2. The step response of the Maglev 
vehicle suspension system without controller 
and with PI, PD, PID and PID controllers designed 
by the LFFA are depicted in Fig. 14.  Referring to 
Table 2 and Fig. 14, it can be observed that the 
PI controller provides unacceptable response 
with slow and high overshoot and oscillation. 
The PD controller can improve transient 
responses, but it cannot eliminate the steady-
state error of the system response. The PID can 
improve transient better than PD, and can 
eliminate the steady-state error as the PI. The 
PIDA outperforms PID controller in that it can 
improve transient response better than PID with 
faster and smoother, and can completely 
eliminate the steady-state error. The PIDA 
controller designed by the LFFA is optimal 
because the proposed objective function f() in 
(20) is completely minimized and the Maglev 
system response with the obtained PIDA  
corresponds to all preset constraint functions 
and search spaces in (21).   

Fig. 15 shows the simulation results of the 
disturbance rejection of the Maglev system 
without and with PI, PD, PID and PIDA controller 
designed by LFFA. By comparison, it can be 
noticed that the effectiveness of the PIDA 
outperforms PI, PD and PID, respectively, due to 
the smallest and fastest disturbance rejection.    

 

Table 2 Step-responses of Maglev suspension  
controlled systems 

 

Controllers 
Step-responses 

tr (sec.) Mp (%) ts (sec.) ess (%) 

without 0.261 46.32 2.639 0.00 
PI 0.049 33.72 1.162 0.00 
PD 0.009 6.18 0.067 1.16 
PID 0.008 4.54 0.055 0.00 
PIDA 0.005 2.07 0.009 0.00 

C
on

ve
rg

en
t r

at
es

0 0.05 0.1 0.15 0.2 0.25
Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

without controller
with PIDA controller designed by LFFA



20    วารสารวิศวกรรมศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ 
   ปีที่ 14 ฉบับที่ 1 เดือน มกราคม – เมษายน พ.ศ. 2562 

 

 

Fig. 14 Step responses of Maglev system without 
and with PI, PD, PID and PIDA controllers 

 

Fig. 15 Disturbance rejection responses of 
Maglev system without and with PI, PD, PID and 

PIDA controllers 
 

5. Conclusions 
Obtaining an optimal PIDA controller for 

Maglev vehicle suspension system based on the 
modern optimization design approach has been 
presented in this paper. As one of the most 
powerful metaheuristic algorithms, the LFFA has 
been applied to design an optimal PIDA 
controller for the given Maglev suspension 
system. With LFFA-based design approach, the 
results obtained by the PIDA controller have 
been compared with those obtained by the PI, 
PD and PID controllers. From Table 2 and Fig. 14, 
it can be investigated that the PI controller 

provides unacceptable response with slow and 
high overshoot and oscillation. Although the PD 
controller could improve transient response, it 
cannot eliminate the steady-state error. The PID 
controller could improve transient better than 
PD, and can eliminate the steady-state error like 
PI controller. Among those controllers, the PIDA 
controller outperformed PI, PD and PID 
controllers, respectively. The PIDA could 
improve transient response with faster and 
smoother than others, and can completely 
eliminate the steady-state error of the Maglev 
suspension controlled system responses. With 
the LFFA-based, the effectiveness of the optimal 
PIDA over PI, PD and PID has been confirmed by 
the smoothest and fastest responses of both 
step response and disturbance rejection as 
depicted in Fig. 14 and 15. 
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