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ABSTRACT

In modern vehicles, intelligent suspension systems have been widely applied with complex
control algorithms. The suspension design problem aims to achieve a good suspension providing a
comfortable ride and g¢ood handling within a reasonable range of road-profile deflection. In this
paper, the proportional-integral-derivative-accelerated (PIDA) controller design for the magnetically
levitated (Maglev) vehicle suspension system by the Lévy-flight firefly algorithm (LFFA), one of the
most powerful metaheuristic optimization searching techniques, is proposed. For comparison with
LFFA-based design approach, the results obtained by the PIDA controller will be compared with
those obtained by the PI, PD and PID controllers. Simulation results show that the LFFA can provide
optimal PIDA controller for a given suspension system. The PIDA controller yielded very satisfactory
response superior to Pl, PD and PID, respectively.

Keyword: PIDA controller, Maglev vehicle, suspension system, Lévy-flisht firefly algorithm, modern
optimization.

1. Introduction conducting track, while the later employs the

In modern vehicles, a suspension system

plays an important and imperative role in
increasing the ride comfort. The main purpose of
a suspension system is to provide a comfortable
ride and good handling within a reasonable
range of deflection or irregularity of road profile
[1-3]. For high-speed transport links in modern

economies, the magnetically levitated (Maglev)

vehicles have been widely used in many
countries. There are two most effective
suspension  methods, ie  electro-dynamic
suspension  (EDS)  and  electro-magnetic

suspension (EMS) [4-6]. The former requires
super-conducting materials to produce sufficient

repulsive force to levitate a vehicle over a

attractive forces of sets of electromagnets acting
upwards to levitate the vehicle towards the
tracks [7-8]. Generally, the suspension system of
the Maglev vehicles can be controlled by PD/PID
controllers. Based on the modern optimization,
designing of PD/PID controllers for Maglev
vehicle suspension system by some potential
metaheuristic algorithms has been developed,
for example, by using genetic algorithm (GA) [9],
evolutionary algorithm (EA) [10] and particle
swarm optimization (PSO) [11].

In control theory, the proportional-integral-
(PIDA)

developed and proposed by Jung and Dorf in

derivative-accelerated controller was

1996 [12]. It possesses three arbitrary zeros and



NTATIAINTTUAIERNS UYNINSFUATUASUNTILTAI
U7 14 aTUN 1 HDU UNTIAY — LUWIYY N.A. 2562

one pole at origin. This leads the PIDA more
benefit than the classical PID controller for
Designing of the PIDA

well-known

higher-order plants.

controller by metaheuristic
algorithms has been launched, for instance, by
GA [13], PSO [14], cuckoo search (CS) [15] and
spider monkey optimization (SMO) [16].

By literature reviews, the firefly algorithm
(FA) was firstly proposed in 2008 by Yang [17-18]
based on the flashing behavior of fireflies and
uniform distribution for randomly generating the
feasible solutions. As one of the most efficient
population-based metaheuristic algorithms, the
FA was applied to almost every area of sciences
and engineering, including power systems [19],
image processing [20], antenna design [21], civil
engineering [22], robotics [23], semantic web
[24], chemistry [25], meteorology [26], wireless
sensor networks [27], control engineering [28-29]
and so forth.

In 2010, two years after the former version
of the FA was initiated, the later version of FA
named the Lévy-flisht firefly algorithm (LFFA)
was proposed by Yang [30]. The algorithm of
LFFA was still based on the flashing behavior of
fireflies, but Lévy-flight distribution is employed
to randomly generate new solutions. The LFFA
several nonlinear and

was tested against

standard test functions. Results
obtained by the LFFA outperformed those by
traditional algorithms including GA and PSO. The

state-of-the-art and its applications of the LFFA

multimodal

have been reviewed and reported [31-32].

In this paper, the LFFA is applied to design
an optimal PIDA controller for the Maglev
vehicle suspension system. For comparison with
LFFA-based design approach, the
obtained by the PIDA controller will be
compared with those obtained by the PI, PD and
After  an

section 1, the

results

PID  controllers, respectively.

introduction is provided in

remaining part of the paper is organized as
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follows. Modeling of Maglev suspension system
is described in section 2. The LFFA-based PIDA
design problem formulation is performed in
section 3. Results and discussions are illustrated

in section 4. Conclusions are given in section 5.

2. Maglev Suspension Model

The cross-section of a general Maglev
vehicle is shown in Fig. 1(a), while its equivalent
with

degrees-of-freedom is represented in Fig. 1(b),

one-dimensional vehicle model two-
consisting of two lumped masses m, and m,,
two linear springs k, and k;, and two viscous
and b,

secondary

dampings b, representing primary

(chassis) and (passenger  cabin)

suspensions, respectively [5-6].

passenger
cabin

I _ T
chassis

levitation
magnet

guidance
magnet

(a) cross-section

ys(t)

(b) equivalent diagram

Fig. 1 Maglev vehicle suspension system
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For the linear model, the equations of
motion when the vehicle is at the equilibrium

position are stated in (1) - (2).

mpyp+bp(Yp_Yi)+kp(yp_yi) (1)
_bs(ys _yp)_ks(ys_yp)zo

msys+bs(YS_Yp)+ks(ys_yp)zo (2)

From (1) and (2), the relation in (3) can be
formulated, where y, and y, are positions of
primary (chassis) and secondary (passenger
cabin) suspensions, and y; is disturbance from

guideway irregularity.

mpyp +msys +bp(Yp _Yi)+kp(yp _yi):O (3)

The s-domain transfer functions of primary
suspension G,(s) and secondary suspension Gy(s)
once considering guideway disturbance y; as an

input variable can be described in (4) and (5),

respectively.
Y, (s

G, (s)= ()
Yi(s)

myb,s® +(mgk , +bgb,)s’
+(bks +bok )+ Kok,
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Ys(s)
G,(s)==2
’ Yi(s)
(bsbys? + (b ks +bgk )+ kek,

~(mgmys® +[m b, +mq (b, +b)Js* )

+[m kg +mg(k, +kg) +bgb,1s?
+ (b ks +bgk s +kek,

The Maglev vehicle suspension model can be
represented by the block diagram as shown in
Fig. 2.

3. LFFA-Based PIDA Design Problem

In this section, algorithms of the original FA
and the LFFA are briefly reviewed. Then, the
LFFA-based PIDA controller design approach is
elaborately described.

3.1 FA Algorithm

The original firefly algorithm (FA) was firstly
developed by Yang in 2008 by [17-18] based on
the flashing behavior of fireflies. The flashing
light of fireflies is produced by a process of
bioluminescence to attract mating partners
(communication) and to attract potential prey.
The FA’s algorithm is developed from three
idealized rules:

(i) fireflies are unisex so that one firefly will

_ (4) .
msmps4 +[m,b, +m (b, +b, )]53 be attracted to other fireflies regardless of
" K +k)ebb.Ts? their sex;
+[m ks +m +ko)+ s
[Mpks + Mg (K +ks) +boby (i) the attractiveness is proportional to the
+ (Bpks +bokp)s +ksky brightness, and they both decrease as
their distance increases. Thus for any two
flashing fireflies, the less brighter one will
Y(s) Y 1 Y,(s) | Y(s)
bystk, > bysth, > . >
+ mp,s + M

Fig. 2 Block diagram for two-degree-of-freedom Maglev vehicle model



NTATIAINTTUAIERNS UYNINSFUATUASUNTILTAI
U7 14 aTUN 1 HDU UNTIAY — LUWIYY N.A. 2562

move towards the brighter one. If there is
no brighter one than a particular firefly, it
will move randomly;

(i) the brightness of a firefly is determined
by the
function.

landscape of the objective

Based on these rules, the FA’s algorithm can
be summarized by the pseudo code shown in
Fig. 3.

In FA, there are two important issues: the
variation of light intensity and formulation of the
attractiveness. The attractiveness of a firefly is
determined by its brightness which in turn is
associated with the encoded objective function.
Along the distance r, the light intensity / varies
according to the inverse square law r) = /s/rz,
where [, is the intensity at the source. For a
given medium with a fixed light absorption
coefficient, the light intensity / varies with the
distance r as stated in (6), where /, is the original

light intensity.

Objective function f(x), x = (x1,...,x5)"
Generate initial population of fireflies x;= (i = 1, 2,...,n)
Light intensity /; at x;is determined by fx;)
Define light absorption coefficient y
while (1 < Max_Generation)
for i =1 : n all n fireflies
for j =1 : i all n fireflies
if (1> 1)
- Move firefly / towards j in d-dimension via
uniformly distributed random
end if
- Attractiveness varies with distance r via exp[-]
- Evaluate new solutions and update light intensity
end for j
end for i
- Rank the fireflies and find the current best x*
end while
Report the best solution found

Fig. 3 Pseudo code of FA

=1 (6)

B=pe (7)
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=i x| =

The attractiveness of a firefly observed by
adjacent fireflies is proportional to the light
intensity. This can define the variation of
attractiveness pwith the distance r as expressed
in (7), where f, is the attractiveness at r = 0.
From parametric studies, £, = 1 is suggested for
most applications [17-18]. The scaling factor yin
(6) and (7)is defined as the light absorption
coefficient. In addition in (6) and (7), the distance
rybetween any two fireflies iand jat their
locations x; and x; can be calculated by the
Cartesian distance as expressed in (8), where x;,
is the k" component of the spatial coordinate x;
of i firefly.

For an original FA, the movement of a firefly
i is attracted to another more attractive (brighter)
firefly j is determined by (9), where ¢ is the
randomization parameter, and g is a vector of
random numbers drawn from a Gaussian
distribution or uniform distribution at time t [6].
In addition, o can be controlled during
iterations as stated in (10), where « is the initial
randomness scaling factor, and & is a cooling

factor.

2
X = b+ e (x} = x}) + el 9)

o =ays', (0<8<1) (10)

3.2 LFFA Algorithm

The Lévy-flight firefly algorithm (LFFA), the
modified version of the FA, was proposed by
Yang in 2010 [30]. Movement of a firefly i is
attracted to another more attractive (brighter)
firefly j is determined by (11), where the second
term is due to the attraction while the third
term is randomization via Lévy flights with «

being the randomization parameter. The product
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® means entrywise multiplications. The
rand € [0, 1]

essentially provides a random sign or direction

signirand-12)  where
while the random step length is drawn from a
Lévy distribution having an infinite variance with
an infinite mean. From (11), a symbol Lévy(4)
represents the Lévy distribution as expressed in
(12). The step length s can be calculated by (13),
where u and v stand for normal distribution as
stated in (14). Standard deviations of u and v are
also expressed in (15). The algorithms of the
LFFA can be represented by the pseudo code
shown in Fig. 4.

—2
X =+ foe ™ (- x))

+ asign{rand —ﬂ @ Lévyh (11)

Lévy~u=t"*, (1<A<3) (12)
u

SZW (13)

uxN(0.062), v~N(0.02) (14)

=1 (15

<

o _| T p)sin(zpI2) Y/
Yolras pyr21p2tuz|

Objective function flx), x = 1, xa)”
Generate initial population of fireflies x;= (i = 1, 2,...,n)
Light intensity /; at x;is determined by f{x;)
Define light absorption coefficient y
while (+ <Max_Generation)
for i =1 : n all n fireflies
for j =1 : i all n fireflies
if (;> 1)
- Move firefly i towards j in d-dimension via
Lévy-flight distributed random
end if
- Attractiveness varies with distance r via exp[-r]
- Evaluate new solutions and update light intensity
end for
end for /
- Rank the fireflies and find the current best x*
end while
Report the best solution found

Fig. 4 Pseudo code of LFFA
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3.3 LFFA-Based PIDA Controller Design

Regarding to the modern optimization, the
LFFA-based optimal PIDA controller design for
the Maglev vehicle suspension system can be
represented by the block diagram in Fig. 5. The
s-domain transfer functions of secondary
suspension Gy(s) in (5) will be used as a plant
model Gys) in Fig. 5. The plant model
parameters, i.e., masses m, and m,, stiffnesses k,
and k,, and dampings b, and b, for primary and
secondary suspensions, are summarized in Table

1 [33-34].

---» LFFA
I
7 i K, K Kld and K, D(s)
| v 4
R(s) . U(s) C(s)
PIDA Maglev >
+K_E)
GC(S) G,,(S)

Fig. 5 LFFA-based PIDA design framework

Table 1 Maglev vehicle paramaters

Paramaters Values
Primary suspension mass m,, 3.20><1OL1 ke
Secondary suspension mass m; 2.92><104 kg

1.13%10° N-s/m
8.80X10° N-s/m

Primary suspension damping b,

Secondary suspension damping b;
6.18%10' N/m
7.37X10° N/m

Primary suspension stiffness k,

Secondary suspension stiffness k,

The PI, PD, PID and PIDA controller models
are stated in (16), (17), (18) and (19),
respectively, where K, is the proportional gain, K;
is the integral gain, Ky is the derivative gain and
K, is the accelerated gains. The sum-squared
between

errors reference position, r, and

J
passenger cabin position, ¢, are set as the

objective function f(-) stated in (20). As the

constrained  optimization, the time-domain
response specification, consisting of the rise time

(t), the maximum percent overshoot (M,), the
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settling time (t,) and the steady-state error (e,,),
is defined as the constrained functions as
expressed in (21). Referring to Fig. 5, fi*) in (20)
will be minimized by the LFFA in order to search
K, Ky and K,

within their corresponding search spaces in (21).

for the appropriate values of K,

K.
Ge(s)p =Ko = (16)
G(8)pp = Kp +Kgs (17)
K.
Ge(S)|pip =Kp+T'+ Kgys (18)

K:
Go(S)pipn = Kp+ -+ Kas+Kgs® - (19)

N
Minimize (K, K;, Kq,K,)= Z(rj —¢;)? (20
j=1

Subject to  t, <0.05 sec,
M, <10%,
ty <0.10 sec,
e < 0.01%, 1)
0<K, <100,
0 < K; <200,
0< Ky <10,
0<K, <01

4. Results and Discussions

To design the PI, PD, PID and PIDA
controllers for the Maglev vehicle suspension
system, the LFFA algorithm was coded by
MATLAB version 2018b (License No.#40637337).
Search parameters of the LFFA are set according
to  Yang’s [30], i.e.the
numbers of fireflies n = 30, a, = 0.25, fy=1, 1 =
1.50 and y =1.In this work, 50 trails are
searched to obtain the optimal PI, PD, PID and

PIDA controllers. For all cases, the maximum

recommendations

generation (Max_Generation) = 200 is set as the

termination criteria for each search trial.
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4.1 Case-l (PI Controller)

In case of PI controller design with the LFFA-
based design approach, the values of K; and K,
in (21) will be fixed at zero. When the search
process terminated, the optimal Pl controller for
the Maglev vehicle
obtained by the LFFA as expressed in (22). Fig. 6

shows the convergent rates of the objective

suspension  system s

function fl*) over 50 trials of the PI controller
designed by the LFFA. The step responses of the
Maglev vehicle suspension system without and

with Pl controller are depicted in Fig. 7.

14.9844

G (s)],, =9.7012+ (22)

@w w
@ ©
“‘_jj‘

@w w @w w
[+ ~

Convergent rates

w

0 50 100 150 200
Generations

Fig. 6 Convergent rates of Pl controller
designed by LFFA
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Fig. 7 Step responses of Maglev system without
and with PI controller designed by LFFA
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4.2 Case-ll (PD Controller)

For the PD controller design with the LFFA-
based design approach, the values of K; and K,
in (21) will be fixed at zero. Once the search
process stopped, the PD controller for the
Maglev vehicle suspension system is optimized
by the LFFA as stated in (23). The convergent
rates of the objective function f{-) over 50 trials
of the PD controller designed by the LFFA are
plotted in Fig. 8. The step responses of the
Maglev vehicle suspension system without and

with PD controller are depicted in Fig. 9.

G (5)|pp = 64.9937 +3.0121s (23)

Convergent rates
(]
s

0 50 100 150 200
Generations

Fig. 8 Convergent rates of PD controller
designed by LFFA

08} o

0.6 e

Normalized suspension position

s —-—- without controller
e = with PD controller designed by LFFA
O = - L L 1 L
0 0.05 0.1 0.15 0.2 0.25
Time (sec)

Fig. 9 Step responses of Maglev system without
and with PD controller designed by LFFA
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4.3 Case-lll (PID Controller)

In case of PID controller design with the
LFFA-based design approach, K, in (21) is thus
fixed at zero. When the search process stopped,
the PID controller for the Maglev vehicle
suspension system is optimized by the LFFA as
stated in (24). The convergent rates of the
objective function f{-) over 50 trials of the PID
controller proceeded by the LFFA are plotted in
Fig. 10. The step responses of the Maglev
vehicle suspension system without and with PID

controller are depicted in Fig. 11.

169.3762
S

Ge(9)]pp = 64.8045+ +2.9871s  (24)

Convergent rates

0 50 100 150 200
Generations

Fig. 10 Convergent rates of PID controller
designed by LFFA
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Fig. 11 Step responses of Maglev system without
and with PID controller designed by LFFA



NTATIAINTTUAIERNS UYNINSFUATUASUNTILTAI
U7 14 aTUN 1 HDU UNTIAY — LUWIYY N.A. 2562

4.4 Case-1V (PIDA Controller)

Finally, for the PIDA controller design with
the LFFA-based design approach, K,, K, Ky and
their
boundaries as given in (21). The optimal PIDA

K, are varied within corresponding
controller for the Maglev vehicle suspension
system is obtained by the LFFA as stated in (25).
The convergent rates of the PIDA controller
design are plotted in Fig. 12. The step responses
of the system without and with PIDA controller

are depicted in Fig. 13.

179.1016
G (5)| oy = 65.1404 + — 25)
+5.7612s + 0.0002s°
0418‘
0.17 F

Convergent rates
o
=

°
o

0 50 100 150 200
Generations

Fig. 12 Convergent rates of PIDA controller
designed by LFFA
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Fig. 13 Step responses of Maglev system without
and with PIDA controller designed by LFFA
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4.5 Result Comparison
All  obtained
Table 2. The step response of the Maglev

results are summarized in

vehicle suspension system without controller
and with PI, PD, PID and PID controllers designed
by the LFFA are depicted in Fig. 14. Referring to
Table 2 and Fig. 14, it can be observed that the
Pl controller provides unacceptable response
with slow and high overshoot and oscillation.
The PD

responses, but it cannot eliminate the steady-

controller can improve transient
state error of the system response. The PID can
improve transient better than PD, and can
eliminate the steady-state error as the PI. The
PIDA outperforms PID controller in that it can
improve transient response better than PID with
faster and smoother, and can completely
The PIDA

controller designed by the LFFA is optimal

eliminate the steady-state error.

because the proposed objective function f(*) in
(20) is completely minimized and the Maglev
system response with the obtained PIDA
corresponds to all preset constraint functions
and search spaces in (21).

Fig. 15 shows the simulation results of the
disturbance rejection of the Maglev system
without and with PI, PD, PID and PIDA controller
designed by LFFA. By comparison, it can be
noticed that the effectiveness of the PIDA
outperforms PI, PD and PID, respectively, due to

the smallest and fastest disturbance rejection.

Table 2 Step-responses of Maglev suspension

controlled systems

Step-responses
Controllers
t, (sec.) M, (%) t, (sec.) e, (%)

without 0.261 46.32 2.639 0.00
PI 0.049 33.72 1.162 0.00

PD 0.009 6.18 0.067 1.16

PID 0.008 4.54 0.055 0.00
PIDA 0.005 2.07 0.009 0.00
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—-—- without controller
—— with PI controller designed by LFFA
-------- with PD controller designed by LFFA
02+ ====with PID controller designed by LFFA
= with PIDA controller designed by LFFA

Normalized suspension position

0.4 . . . .
0 0.05 0.1 0.15 0.2 0.25

Time (sec)

Fig. 14 Step responses of Maglev system without
and with PI, PD, PID and PIDA controllers
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g — with Pl controller designed by LFFA
% 012 H with PD controller designed by LFFA
9] —===with PID controller designed by LFFA
c = with PIDA controller designed by LFFA
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Fig. 15 Disturbance rejection responses of
Maglev system without and with PI, PD, PID and
PIDA controllers

5. Conclusions

Obtaining an optimal PIDA controller for
Maglev vehicle suspension system based on the
modern optimization design approach has been
presented in this paper. As one of the most
powerful metaheuristic algorithms, the LFFA has
PIDA

controller for the given Maglev suspension

been applied to design an optimal

system. With LFFA-based design approach, the
results obtained by the PIDA controller have
been compared with those obtained by the PI,
PD and PID controllers. From Table 2 and Fig. 14,

it can be investigated that the Pl controller
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provides unacceptable response with slow and
high overshoot and oscillation. Although the PD
controller could improve transient response, it
cannot eliminate the steady-state error. The PID
controller could improve transient better than
PD, and can eliminate the steady-state error like
Pl controller. Among those controllers, the PIDA
outperformed PI, PD and PID
PIDA

improve transient response with faster and

controller

controllers,  respectively. The could
smoother than others, and can completely
eliminate the steady-state error of the Maglev
suspension controlled system responses. With
the LFFA-based, the effectiveness of the optimal
PIDA over PI, PD and PID has been confirmed by
the smoothest and fastest responses of both
step response and disturbance rejection as

depicted in Fig. 14 and 15.
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