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ABSTRACT

This paper proposes the use of artificial neural network (ANN) for the effectiveness and
overall heat transfer coefficient using water as working fluid. The experiments are performed using the
average inlet hot water temperature between 40 - 50 °C, the average inlet cold water temperature
between 20 - 30 °C, the average mass flow rate of hot water between 0.0273 - 0.0444 kg/s and the
average mass flow rate of cold water is 0.0196 kg/s. For the ANN model, a single hidden layer
structure is chosen and various learning algorithms are applied to adjust errors for obtaining the
optimal ANN model. From the experimental results show that the 5 hidden neurons and Levenberg-
Marquardt backpropagation learning algorithms is the optimal ANN model. The predicted results are
verified with the experimental data and gives R for effectiveness and overall heat transfer coefficient

are equal to 0.99631 and 0.98469, respectively.
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