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บทคัดย่อ 
 งานวิจัยน้ีนําเสนอการใช้โครงข่ายประสาทเทียมในการวิเคราะห์ค่าประสิทธิผลและสัมประสิทธ์ิการถ่ายเทความ

ร้อนรวมของอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นท่ีใช้นํ้าเป็นสารทํางาน ในการทดลองกําหนดอุณหภูมิขาเข้านํ้าร้อน
เฉล่ีย 40 - 50 องศาเซลเซียส อุณหภูมิขาเข้านํ้าเย็นเฉล่ีย 20 - 30 องศาเซลเซียส ใช้อัตราการไหลเชิงมวลของน้ําร้อนเฉล่ีย 
0.0273 - 0.0444 กิโลกรัมต่อวินาที และ อัตราการไหลเชิงมวลของนํ้าเย็นเฉล่ีย 0.0196 กิโลกรัมต่อวินาที การสร้าง
แบบจําลองโครงข่ายประสาทเทียมจะใช้โครงสร้างท่ีมีหน่ึงช้ันซ่อน โดยสอนแบบจําลองให้เกิดการเรียนรู้ด้วยอัลกอริทึม
ต่างๆเพ่ือหาค่าท่ีดีท่ีสุด จากการทดลองพบว่าจํานวนนิวรอนในช้ันซ่อนเท่ากับ 5 นิวรอน ด้วยอัลกอริทึมการเรียนรู้ 
Levenberg-Marquardt backpropagation learning เป็นโครงสร้างของโครงข่ายประสาทเทียมท่ีดีท่ีสุด โดยให้ผลการ
ทํานายท่ีมีค่า R ของค่าประสิทธิผลและสัมประสิทธิ์การถ่ายเทความร้อนรวมเท่ากับ 0.99631 และ 0.98469 ตามลําดับ 

 
คําสําคัญ: โครงข่ายประสาทเทียม สมรรถนะเชิงความร้อน อุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น 

 
ABSTRACT 

 This paper proposes the use of artificial neural network (ANN) for the effectiveness and 
overall heat transfer coefficient using water as working fluid. The experiments are performed using the 
average inlet hot water temperature between 40 – 50 oC, the average inlet cold water temperature 
between 20 – 30 oC, the average mass flow rate of hot water between 0.0273 - 0.0444 kg/s and the 
average mass flow rate of cold water is 0.0196 kg/s. For the ANN model, a single hidden layer 
structure is chosen and various learning algorithms are applied to adjust errors for obtaining the 
optimal ANN model. From the experimental results show that the 5 hidden neurons and Levenberg-
Marquardt backpropagation learning algorithms is the optimal ANN model. The predicted results are 
verified with the experimental data and gives R for effectiveness and overall heat transfer coefficient 
are equal to 0.99631 and 0.98469, respectively. 
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1. บทนํา 

อุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น (Plate heat 
exchanger) คือ  อุปกรณ์ แลกเป ล่ียนความ ร้อน ท่ี มี
ประสิทธิภาพการถ่ายเทความร้อนท่ีดีมากเมื่อเทียบกับ
ขนาดของตั วอุปกรณ์ เอง [1 ] จึ งมี การนํ าอุปกรณ์
แลกเปล่ียนความร้อนชนิดนี้มาใช้กันอย่างกว้างขวางใน
อุตสาหกรรม เช่น อุตสาหกรรมทางด้านเคมีและพลังงาน
เป็นต้น [2] เนื่องจากความสําคัญของอุปกรณ์แลกเปล่ียน
ความร้อนแบบแผ่นในอุตสาหกรรมจึงมีการวิจัยและ
ทดลองเพ่ือสร้างแบบจําลองและหาค่าตัวแปรต่างๆท่ี
เหมาะสมในการใช้งานของอุปกรณ์แลกเปล่ียนความร้อน
ชนิดน้ี เช่น การทํานายความต้านทานการถ่ายเทความ
ร้อนท่ี เกิดจากความสกปรก  (Fouling resistance) ท่ี
เกิดข้ึนภายในอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นด้วย
การทดลอง [3-4] การหาสัมประสิทธิ์การถ่ายเทความร้อน 
[5] การหาค่าท่ีเหมาะสมของตัวแปรต่างๆภายในอุปกรณ์
แลกเป ล่ียนความ ร้อนแบบแผ่นด้ วย วิ ธี จําลองบน
คอมพิวเตอร์ [6-7] และการสร้างแบบจําลองอุปกรณ์
แลกเปล่ียนความร้อนแบบแผ่นด้วยวิธีตัวแปรสเตท [8] 
เป็นต้น ในการสร้างแบบจําลองเพื่อทํานายค่าตัวแปรท่ี
เกี่ยวข้องกับอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นโดย
ส่วนใหญ่จะใช้สมการการถ่ายเทความร้อน (Thermal 
transfer equation) และ  สม ก ารสม ดุ ลค วาม ร้ อ น 
(Thermal balance equation) เป็ น ห ลั ก ใน ก ารห า
แบบจําลอง [9-11] ซ่ึงจากผลการทดลองจะพบว่าค่าตัว
แปรท่ีทํานายได้ยังไม่ถูกต้องแม่นยํานักเน่ืองจากความ
ซับ ซ้อนของกระบ วนการถ่ าย เทความ ร้อน ทํ าให้
ก ร ะ บ ว น ก า ร มี ค ว า ม ไม่ เป็ น เ ชิ ง เ ส้ น สู ง  อี ก ท้ั ง
ค่ าพ ารามิ เตอ ร์ ท่ี นํ าม าใช้ ในแบบ จําลองก็ เป็ น ค่ า
โดยประมาณเท่าน้ัน เพื่อแก้ไขปัญหาท่ีเกิดขึ้นจึงมีการนํา
เทคนิคระบบอัจฉริยะ (Intelligent system) มาใช้ในการ
สร้างแบบจําลองของอุปกรณ์แลกเปล่ียนความร้อน เช่น 
ก าร ใ ช้ โค ร งข่ ายป ระส าท เที ยม  (Artificial neural 

network, ANN) ในการประมาณค่าอุณหภูมิของน้ํามัน
หลังจากออกจากอุปกรณ์แลกเปล่ียนความร้อนชนิดเชลล์
และท่อ  (Shell and tube heat exchanger) [12] ซ่ึ ง
จากผลการทดลองพบว่าการใช้โครงข่ายประสาทเทียม
สามารถให้ผลการประมาณค่าได้ดีกว่าแบบจําลองท่ีสร้าง
จากสมการการถ่ายเทความร้อน การนําโครงข่ายประสาท
เทียมมาใช้ในการทํานายสมรรถนะทางความร้อนของ
ระบบทําความเย็นโดยใช้ข้อมูลจากผู้ผลิตมาให้โครงข่าย
ประสาทเทียมเรียนรู้ [13] จากผลการทดลองพบว่า
สามารถทํานายสมรรถนะทางความร้อนของระบบทํา
ความ เย็น ได้อ ย่างถูกต้ อง การใช้ วิธี เชิ งพั น ธุกรรม 
(Genetic algorithm - GA) เพ่ือหาค่าท่ีเหมาะสมท่ีสุด
ของตัวแปรในอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น 
[14] ซ่ึงวิธีเชิงพันธุกรรมจะเหมาะสําหรับการหาค่าท่ี
เหมาะสมท่ีสุดจากกลุ่มข้อมูลท่ีมีอยู่ ในขณะท่ีโครงข่าย
ประสาทเทียมจะใช้ในการทํานายค่าท่ีจะเกิดขึ้นจากตัว
แปรท่ีเกี่ยวข้อง การใช้โครงข่ายประสาทเทียมในการ
ทํานายค่าสมรรถนะทางความร้อนของอุปกรณ์แลกเปล่ียน
ความร้อนแบบท่อมีครีบ (Fin-tube heat exchanger) 
โดยเปรียบเทียบกับการทํานายโดยใช้แบบจําลองด้วยวิธี
ประมาณค่าแบบถดถอยไม่ เป็นเชิงเส้น  (Non-linear 
regression model) [15] จากการทดลองพบว่าโครงข่าย
ประสาทเทียมให้ผลการทํานายท่ีดีกว่าเป็นอย่างมาก 
รวมถึงมีการนําโครงข่ายประสาทเทียมไปใช้วิเคราะห์
ทางด้านความร้อนของอุปกรณ์แลกเปล่ียนความร้อนชนิด
อื่นๆ [16-20] แต่จากงานวิจัยที่ผ่านมาจะพบว่ายังขาด
ข้อมูลของการนําโครงข่ายประสาทเทียมมาใช้ในการสร้าง
แบบจําลองของอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น
เพ่ือใช้วิเคราะห์ค่าสมรรถนะทางความร้อน 

ดังน้ันงานวิจัยน้ีจึงนําเสนอการใช้โครงข่ายประสาท
เทียมในการวิเคราะห์ค่าสมรรถนะทางความร้อนของ
อุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น เพื่อให้ได้ผลการ
วิเคราะห์ท่ีแม่นยําและเป็นข้อมูลสําหรับการออกแบบ
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อุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นต่อไปในอนาคตได้
เป็นอย่างดี                        

 
2. ชุดทดลองและวิธีการทดลอง 

ไดอะแกรมการทํางานของชุดทดลองสามารถแสดงได้
ดังรูปท่ี 1 โดยส่วนทําน้ําร้อนประกอบด้วยถังนํ้าร้อนซ่ึงนํ้า
ถูกทําให้ร้อนด้วยฮีตเตอร์ (H2) และ ใช้ใบกวนเพื่อให้
อุณหภูมินํ้าสม่ําเสมอ ควบคุมอัตราการไหลด้วยวาล์ว
ควบคุมการไหลแบบไฟฟ้า (CVL) และ วัดอัตราการไหล
ด้วยอุปกรณ์วัดอัตราการไหลแบบสนามแม่เหล็ก (F1) เมื่อ
นํ้าร้อนไหลผ่านอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นท่ี
ใช้ทดลอง (PHE1) ซ่ึงเป็นของบริษัท SWEP รุ่น B8 ก็จะ
ไหลกลับมายังถังนํ้าร้อนเดิม ส่วนทํานํ้าเย็นประกอบด้วย
ถังนํ้าเย็นท่ีถูกทําให้เย็นด้วยการนํานํ้าไปแลกเปล่ียนความ
ร้อนกับสารทําความเย็นท่ีอุปกรณ์แลกเปล่ียนความร้อน
แบบแผ่น (PHE2) และ ควบคุมอุณหภูมิของน้ําเย็นด้วย
ฮีตเตอร์ (H1) ควบคุมอัตราการไหลของน้ําเย็นด้วยแฮนด์
วาล์ว (HV2) และ ทําการวัดอัตราการไหลของน้ําเย็นด้วย
โรตามิเตอร์ (F2) หลังจากนํ้าเย็นไหลผ่านผ่านอุปกรณ์
แลกเปล่ียนความร้อนแบบแผ่นท่ีใช้ทดลอง (PHE1) ก็จะ
ไหลกลับมายังถังนํ้าเย็นเดิม มีการติดตั้งเทอร์โมคัปเปิล
ชนิด T บริเวณทางเข้าออกของน้ําร้อนและนํ้าเย็น (T1 – 
T4) ท่ีอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นที่ใช้ทดลอง 
(PHE1) โดยเก็บข้อมูลของอุณหภูมิท้ังหมดด้วยอุปกรณ์
บันทึกข้อมูล (Data logger) ของบริษัท YOKOGAWA รุ่น 
MW100 ซ่ึงมีความละเอียดในการอ่านอุณหภูมิ 0.1 องศา
เซลเซียส และ ความแม่นยําในการวัดเท่ากับ ±(0.05% of 
rdg + 0.5oC) ส่วนลักษณะและคุณสมบัติของอุปกรณ์
แลกเป ล่ียนความร้อนแบบแผ่นท่ีใช้ทดลอง (PHE1) 
สามารถแสดงได้ดังรูปท่ี 2 และ ตารางท่ี 1 ตามลําดับ 

ในการทดลองกําหนดอุณหภูมิขาเข้าน้ําร้อนเฉล่ียอยู่ท่ี 
40 - 50 องศาเซลเซียส อุณหภูมิขาเข้านํ้าเย็นเฉล่ียอยู่ท่ี 
20 - 30 องศาเซลเซียส ใช้อัตราการไหลเชิงมวลของนํ้า
ร้อนเฉล่ียอยู่ท่ี 0.0273 - 0.0444 กิโลกรัมต่อวินาที และ 
อัตราการไหลเชิงมวลของนํ้าเย็นเฉล่ียอยู่ ท่ี  0.0196 

กิโลกรัมต่อวินาที โดยจะเก็บข้อมูลเมื่ออุณหภูมิขาออก
ของนํ้าร้อนและนํ้าเย็นเข้าสู่สภาวะคงตัว ส่วนรูปท่ี 3 
แสดงชุดทดลองท่ีใช้ในงานวิจัยน้ี 
 
ตารางท่ี 1 คุณสมบัติของอุปกรณ์แลกเปล่ียนความร้อน
แบบแผ่นท่ีใช้ทดลอง 

คุณสมบัติ ข้อมูล 
จํานวนแผ่นแลกเปล่ียนความร้อน 30 
ความยาวระหว่างช่องทางเข้าออก 278 mm 
ความยาวสําหรับการถ่ายเทความร้อน 259 mm 
ความกว้างของอุปกรณ์ 72 mm 
ช่องว่างระหว่างแผ่น 2 mm 
ความหนาของแผ่น 0.4 mm 
มุมเอียงของแผ่น (Chevron angle) 60o 

 
3. การวิเคราะห์สมรรถนะเชิงความร้อน 

สมรรถนะเชิงความร้อนของอุปกรณ์แลกเปล่ียนความ
ร้อนแบบแผ่นในงานวิจัยน้ีจะพิจารณาจากประสิทธิผล 
(Effectiveness) และ สัมประสิทธิ์การถ่ายเทความร้อน
รวม (Overall heat transfer coefficient) ซ่ึงสามารถ
หาได้ดังน้ี 

3.1 ประสิทธิผล (Effectiveness) 
 

maxQ

Qavg   (1) 

โดย  
       คือ ประสิทธิผล (Effectiveness) 

avgQ  คือ อัตราการถ่ายเทความร้อนเฉล่ียของนํ้า
ร้อนและน้ําเย็น (W) 

maxQ  คือ อัตราการถ่ายเทความร้อนสูงสุด (W) 
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รูปท่ี 1 ไดอะแกรมการทํางานของชุดทดลอง 

 

 
รูปท่ี 2 ลักษณะและขนาดของอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่นท่ีใช้ทดลอง 

 

 
 

รูปท่ี 3 ชุดทดลองการวิเคราะห์สมรรถนะเชิงความร้อนของอุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น 
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3.2 สั ม ป ระ สิ ท ธิ์ ก ารถ่ าย เท ค วาม ร้อน รวม 

(Overall heat transfer coefficient) 
 

avg

LMTD

Q

T

UA




1     (2) 

โดย  
      UA  คือ สัมประสิทธ์ิการถ่ายเทความร้อนรวม 

(Overall heat transfer coefficient) (W/oC) 
LMTDT  คื อ  ผล ต่ างของอุณ ห ภูมิ เฉ ล่ี ยแบบ

ลอการิทึม (oC) 
ในการทดลองจะใช้อุณหภูมิของนํ้าท่ีไหลเข้าออก

อุปกรณ์แลกเปล่ียนความร้อนแบบแผ่น ณ สภาวะคงตัว 
(T1 - T4) มาคํานวณหาค่าตัวแปรในสมการที่ 1 และ 2  

 
4. แบบจําลองโครงข่ายประสาทเทียม 

จากสมการท่ี 1 และ 2 รวมถึงเง่ือนไขการทดลองจะ
พบว่าประสิทธิผลและสัมประสิทธ์ิการถ่ายเทความร้อน
รวม จะขึ้นอยู่กับ อุณหภูมิขาเข้านํ้าร้อน )( hiT อุณหภูมิ
ขาเข้านํ้าเย็น )( ciT  และ อัตราการไหลเชิงมวลของนํ้า
ร้อน )( hm  ดังน้ันจะสามารถสร้างแบบจําลองโครงข่าย
ประสาทเทียมที่มีโครงสร้างหน่ึงช้ันซ่อนสําหรับทํานาย
สมรรถนะเชิงความร้อนของอุปกรณ์แลกเปล่ียนความร้อน
แบบแผ่นได้ดังรูปท่ี 4 โดยกําหนดให้ฟังก์ชันถ่ายโอนในช้ัน
ซ่อนเป็นฟังก์ชันแทนเจนต์ซิกมอยด์ (Tangent sigmoid 
transfer function) และ ฟังก์ชันถ่ายโอนในช้ันขาออก 
(Output Layer) เป็นฟังก์ชันเชิงเส้น (Linear transfer 
function)  

4.1 กระบวนการส ร้างแบบ จําลองโครงข่ าย
ประสาทเทียม 

จากรูปท่ี 4 ตัวแปรในช้ันขาเข้า (Input layer) ซ่ึงมี
ข้อมูลจํานวน 3 ตัวแปร จะถูกแบ่งออกเป็น 2 ส่วนคือ 
ข้อมูลสําหรับการเรียนรู้ (Training data) จํานวน 80 
เปอร์เซ็นต์ของข้อมูลท้ังหมด และ ข้อมูลสําหรับการ
ทดสอบ (Testing data) จํานวน 20 เปอร์เซ็นต์ของข้อมูล
ท้ังหมด ส่วนการหาจํานวนนิวรอน (Neuron) ในช้ันซ่อน 
(Hidden layer) ท่ี เหมาะสมจะทดลองโดยใช้วิ ธีเพ่ิม

จํานวนนิวรอนขึ้นทีละหน่ึงและปรับค่านํ้าหนัก (Weights) 
โดยใช้ อัลกอริทึมการเรียนรู้แบบแพร่กระจายกลับ 
(Backpropagation learning) ต่ อ ไ ป น้ี  Levenberg-
Marquardt (LMB), Scaled conjugate gradient 
(SCGB), Bayesian regulation (BRB) แ ล ะ  Resilient 
(RB) [21] เพ่ือเปรียบเทียบหาอัลกอริทึมท่ีให้ผลการ
ทํานายดีท่ีสุด โดยแต่ละอัลกอริทึมจะทําซํ้าจํานวน 60 
คร้ัง แล้วเลือกครั้งท่ีให้ผลดีท่ีสุด  

 

 
 

รูปที่ 4 แบบจําลองโครงข่ายประสาทเทียม 
 

4.2 การหาประสิทธิภาพของแบบจําลองโครงข่าย
ประสาทเทียม 

ประสิทธิภาพของแบบจําลองโครงข่ายประสาทเทียม
สามารถทําการประเมินโดยวัดจากค่าความผิดพลาดกําลัง
ส อ ง เฉ ล่ี ย  (Mean squared error: MSE) แ ล ะ  ค่ า
สัมประสิทธ์ิสหสัมพันธ์ (Correlation coefficient: R) 
ดังต่อไปน้ี [21]  
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 iy  คือ ค่าท่ีได้จากการทดลอง 
 iy  คือ ค่าท่ีได้จากการทํานาย 
 N  คือ จํานวนข้อมูล 
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โดย 
 ix , iy   คือ ค่าของชุดข้อมูล 
 ix , iy   คือ ค่าเฉล่ียของชุดข้อมูล 
        N  คือ จํานวนข้อมูล 
 

ซ่ึงแบบจําลองโครงข่ายประสาทเทียมท่ีดีจะให้ค่า 
ความผิดพลาดกําลังสองเฉ ล่ีย  (MSE) ท่ีต่ํ า และ ค่า
สัมประสิทธิ์สหสัมพันธ์ (R) ใกล้เคียงหน่ึง 
 
5. ผลการทดลองและการวิเคราะห์ 

5.1 ผลการทดลองสมรรถนะเชิงความร้อน 
เพ่ือแสดงให้เห็นถึงผลกระทบของตัวแปรขาเข้าใน

แบบจําลองโครงข่ายประสาทเทียมต่อสมรรถนะเชิงความ
ร้อน จึงขอยกตัวอย่างผลการทดลองกรณีอุณหภูมิขาเข้า
นํ้าร้อนเฉล่ีย 45 องศาเซลเซียส อุณหภูมิขาเข้านํ้าเย็น
เฉล่ีย 20 - 30 องศาเซลเซียส และ อัตราการไหลเชิงมวล
ของนํ้าเย็นเฉล่ีย 0.0196 กิโลกรัมต่อวินาที ดังรูปท่ี 5–6 
ซ่ึงจะพบว่าประสิทธิผลและการถ่ายเทความร้อนรวมจะ
เพิ่มขึ้นเมื่ออัตราการไหลเชิงมวลของน้ําร้อนเพิ่มข้ึนและ
อุณหภูมิขาเข้านํ้าเย็นสูงข้ึน ส่วนผลการทดลองในกรณี
อื่นๆก็ให้ผลไปในทํานองเดียวกัน 

5.2 ผลการทดลองการหาแบบจําลองโครงข่าย
ประสาทเทียม 

ผลการทดลองหาแบบจําลองโครงข่ายประสาทเทียม
ท่ีเหมาะสมท่ีสุดสามารถแสดงได้ดังรูปท่ี 7-8 ส่วนตารางท่ี 

2 แสดงถึงประสิทธิภาพของแบบจําลองโครงข่ายประสาท
เทียมท่ีใช้อัลกอริทึมการเรียนรู้แบบต่างๆ เกณฑ์ในการ
เลือกแบบจําลองนั้นจะดูจากค่า MSE และ R ของข้อมูล
สําหรับการเรียนรู้ (Training data) และ ข้อมูลสําหรับ
การทดสอบ (Testing data) ประกอบกัน 

 
 

รูปท่ี 5 ความสัมพันธ์ระหว่างประสิทธิผลกับอัตราการไหล
เชิงมวลของน้ําร้อน 

 
 

รูปท่ี 6 ความสัมพันธ์ระหว่างการถ่ายเทความร้อนรวมกับ
อัตราการไหลเชิงมวลของน้ําร้อน 
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ตารางท่ี 2 ประสิทธิภาพของแบบจําลองโครงข่ายประสาทเทียมท่ีใช้อัลกอริทึมการเรียนรู้แบบต่างๆ 

 

 
 

รูปท่ี 7 ความสัมพันธ์ระหว่างค่าความผิดพลาดกําลังสองเฉล่ีย (MSE) กับจํานวนนิวรอนในช้ันซ่อน  
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Training 
Algorithm 

Number 
of 

Hidden 
Neurons 

MSE (All) MSE (Train) MSE (Test) R (All) R (Train) R (Test) 

LMB  5 0.0000110 0.000001700 0.0000480 0.99984 0.99997 0.99937 
SCGB  6 0.0000132 0.000001681 0.0000592 0.99980 0.99998 0.99910 
RB  6 0.0000177 0.000005366 0.0000673 0.99974 0.99992 0.99914 
BRB  9 0.0000179 0.000000019 0.0000892 0.99972 1.00000 0.99876 
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รูปท่ี 8 ความสัมพันธ์ระหว่างค่าค่าสัมประสิทธิ์สหสัมพันธ์ (R) กับจํานวนนิวรอนในช้ันซ่อน  
 

จากรูปท่ี 7 จะพบว่าค่า MSE ของข้อมูลสําหรับการ
เรียนรู้ (Training data) ทุกอัลกอริทึมมีแนวโน้มลดลงเมื่อ
จํานวนนิวรอนในช้ันซ่อนเพิ่มมากขึ้น ในขณะท่ีค่า MSE 
ของข้ อมู ล สํ าห รับ การทดสอบ  (Testing data) ทุ ก
อัลกอริทึมก็มีแนวโน้มลดลงเมื่อจํานวนนิวรอนในช้ันซ่อน
เพ่ิมมากข้ึนแต่จะลดลงถึงจุดหน่ึงแล้วก็จะเพ่ิมข้ึน สาเหตุท่ี
เป็นเช่นน้ีเพราะโครงข่ายประสาทเทียมเกิดการเรียนรู้เกิน
ขอบสมควร (Overfitting) ซ่ึงจะส่งผลให้การทํานายมี
ความผิดพลาดสูงเมื่อโครงข่ายประสาทเทียมรับข้อมูลท่ีไม่
เคยเรียนรู้มาก่อน ดังน้ันเพื่อหลีกเล่ียงการเกิดการเรียนรู้
เกินขอบสมควร จึงเลือกจํานวนนิวรอนในช้ันซ่อนโดยดู
จากค่า MSE ของข้อมูลสําหรับการทดสอบเป็นหลักแล้ว
เลือกจํานวนนิวรอนท่ี ให้ ค่า MSE น้อยท่ี สุดจากทุก
อัลกอริทึม ซ่ึงจะพบว่าอัลกอริทึม LMB ท่ีมีจํานวนนิวรอน
เท่ากับ 5 น้ันให้ค่า MSE น้อยที่สุด  

จากรูปท่ี 8 จะพบว่าค่า R ของข้อมูลสําหรับการ
เรียนรู้ (Training data) ทุกอัลกอริทึมมีแนวโน้มเข้าหาค่า 
1 เมื่อจํานวนนิวรอนในช้ันซ่อนเพิ่มมากขึ้น ในขณะท่ีค่า R  
ของข้ อมู ล สํ าห รับ การทดสอบ  (Testing data) ทุ ก
อัลกอริทึมก็มีแนวโน้มสูงขึ้นเมื่อจํานวนนิวรอนในชั้นซ่อน

เพิ่มมากข้ึนแต่จะสูงข้ึนถึงจุดหน่ึงแล้วก็จะลดลง สาเหตุท่ี
เป็นเช่นน้ีเพราะโครงข่ายประสาทเทียมเกิดการเรียนรู้เกิน
ขอบสมควร (Overfitting) เช่นเดียวกับกรณี ค่า MSE 
ดังน้ันเพื่อหลีกเล่ียงการเกิดการเรียนรู้เกินขอบสมควร จึง
เลือกจํานวนนิวรอนในช้ันซ่อนโดยดูจากค่า R ของข้อมูล
สําหรับการทดสอบเป็นหลักแล้วเลือกจํานวนนิวรอนที่ให้
ค่า R มากท่ีสุดจากทุกอัลกอริทึม ซ่ึงจะพบว่าอัลกอริทึม 
LMB ท่ีมีจํานวนนิวรอนเท่ากับ 5 น้ันให้ค่า R มากท่ีสุด  

ข้อมูลเชิงตัวเลขของค่า MSE และ R ในทุกอัลกอริทึม
สามารถแสดงได้ดังตารางที่ 1 ซ่ึงจะพบว่าอัลกอริทึมการ
เรียนรู้ท่ีเหมาะสมท่ีสุดของแบบจําลองโครงข่ายประสาท
เทียมคือ LMB โดยใช้จํานวนนิวรอนในช้ันซ่อนเท่ากับ 5 

5.3 ผลการทํานายสมรรถนะเชิงความร้อน 
เมื่อนําแบบจําลองโครงข่ายประสาทเทียมท่ีสร้าง

ขึ้นมาทํานายค่าสมรรถนะเชิงความร้อนจากข้อมูลการ
ทดลองท้ังหมด ผลท่ีได้สามารถแสดงได้ดังรูปท่ี 9-10 โดย 
จะพบว่าค่า R ของการทํานายประสิทธิผลมีค่าเท่ากับ 
0.99631 และ ค่า R ของการทํานายสัมประสิทธิ์การ
ถ่ายเทความร้อนรวมมีค่าเท่ากับ 0.98469 ซ่ึงค่า R ท่ี
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ได้มาท้ังหมดมีค่าใกล้เคียง 1 นั่นหมายความว่าผลการ
ทํานายออกมาดีมาก 

Experimental Effectiveness
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รูปท่ี 9 การเปรียบเทียบค่าประสิทธิผลท่ีได้จากการ
ทดลองกับการทํานายด้วยโครงข่ายประสาทเทียม 
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รูปท่ี 10 การเปรียบเทียบค่าสัมประสิทธิ์การถ่ายเทความ
ร้อนรวมที่ได้จากการทดลองกับการทํานายด้วยโครงข่าย

ประสาทเทียม 
     
6. สรุปผลการทดลอง 

แบบจําลองโครงข่ายประสาทเทียมท่ีเหมาะสมท่ีสุด
สําหรับการทํานายค่าประสิทธิผลและสัมประสิทธิ์การ
ถ่ายเทความร้อนรวมของอุปกรณ์แลกเปล่ียนความร้อน
แบบแผ่นท่ีมีโครงสร้างหน่ึงช้ันซ่อนคือแบบจําลองท่ีมี 
จํานวนนิวรอนในชั้นซ่อนเท่ากับ 5 และ ใช้อัลกอริทึมการ
เ รี ย น รู้  Levenberg-Marquardt backpropagation 
learning โดยให้ค่า R ของค่าประสิทธิผลและสัมประสิทธ์ิ
การถ่ายเทความร้อนรวมเท่ากับ 0.99631 และ 0.98469 

ตามลําดับ ค่าสมรรถนะเชิงความร้อนท่ีทํานายได้จาก
แบบจําลองโครงข่ายประสาทเทียมท่ีสร้างขึ้นสามารถ
นําไปศึกษาพฤติกรรมของอุปกรณ์แลกเปล่ียนความร้อน
แบบแผ่นหรือใช้สําหรับเป็นข้อมูลในการออกแบบระบบ
แลกเปล่ียนความร้อนได้เป็นอย่างดี 
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