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บทคัดย่อ 

 แบตเตอรี่เป็นแหล่งเก็บพลังงานที่สำคัญสำหรับยานยนต์ไฟฟ้าในปัจจุบัน ซ่ึงประสิทธิภาพและอายุการใช้งานของ
แบตเตอรี่จะสูงขึ้นเมื่อมีการรักษาอุณหภูมิขณะใช้งานให้อยู่ในช่วงการใช้งานที่ 15 - 40 องศาเซลเซียส โดยความรอ้นที่
เกิดขึ้นภายในแบตเตอรี่นั้นมาจากการใช้งาน การอัดประจุกลับ การถูกกระทำทางกายภาพเช่นการอัด บด ทิ่มแทงจาก
อุบัติเหตุ รวมถึงปัญหาทางระบบไฟฟ้า-เคมีของแบตเตอรี่ ปัญหาทางความร้อนน้ีหากอุณหภูมิสูงเกินไปอาจจะส่งผลให้
แบตเตอรี่เกิดการระเบิดจากปรากฎการณ์เทอร์มอลรันอเวย์ ดังนั้นการจัดการความร้อนในแบตเตอรี่ที่เกิดขึ้นนั้นจึงมี
ความสำคัญ และได้มีการศึกษาการแก้ปัญหาดังกล่าวด้วยวิธีการออกแบบระบบระบายความร้อนแบบตา่งๆ เช่น โดยการใช้
อากาศ ของเหลว รวมถึงการใช้ระบบผสมระหว่างอากาศร่วมกับของเหลวเป็นสารหล่อเย็น ซึ่งระบบการหล่อเย็นจะมี
รูปแบบหรือลักษณะแตกต่างกัน ผลที่ได้ระบบหล่อเย็นโดยใช้ของเหลวเป็นสารหล่อเย็นมีประสิทธิภาพดีสุด แต่อย่างไรก็
ตามระบบระบายความร้อนทั้ง 3 แบบนั้นสามารถรักษาอุณหภูมิให้มีอุณหภูมิสูงสุดไม่เกิน 40 องศาเซลเซียสได้ และ
สามารถนำระบบที่ปรับปรุงไปใช้ในรถยนต์ไฟฟ้าเพื่อยืดอายุการใช้งานและเพิ่มความปลอดภัยได้อีกด้วย  

 
คำสำคัญ: เทอร์มอลรันอเวย์ ยานยนต์ไฟฟ้า แบตเตอรี่ลิเทียม การจัดการความร้อนในแบตเตอรี่ 

 
ABSTRACT 

At the present, batteries are essential energy storage for electrical vehicles. The efficiency and 
lifetime of the battery can be extended by keeping the working temperature about 15°C - 40°C. The 
generated heat inside the batteries can be generated by the charging, discharging, physical actions such 
as compression crushing or piercing from an accident including the electrical-chemical system problems 
of the battery. The thermal problem, the high temperature causes the battery overheating and 
explosion due to the thermal runaway phenomenon. Therefore, the thermal management systems are 
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essential for cooling the battery system, and have been designed with different cooling techniques; air, 
liquid, and hybrid coolants. From the review process, it is found that the cooling technique with liquid 
as coolant gives the highest thermal efficiency. However, the operating temperatures obtained from 
three cooling techniques are less than 40oC. The cooling techniques can be used to design and apply 
for developing electric vehicle battery system with high lifetime and more safety too. 

 
Keyword:  Thermal Runaway, Electrical Vehicles, Lithium Batteries, Battery Thermal Management 
System. 

 
1. บทนำ 

ในปัจจุบันเทคโนโลยีด้านยานยนต์ไฟฟ้าที่ใช้พลังงาน
จากแบตเตอรี่ เริ่มมีบทบาทมากขึ้น และในอนาคตอาจจะ
เป็นเทคโนโลยีที่มาแทนที่ยานยนต์ระบบเชื้อเพลิงท ี่ ใช้
น้ำมัน ซึ่งได้มีมีการพัฒนาด้านระบบไฟฟ้าอย่างต่อเนื่อง 
ไม่ว่าจะเป็นการสำรองไฟฟ้า ระบบขับแคลื่อน ระบบอัด
ประจุเพื่อการใช้งานใหม่อีกครั้ง โดยเทคโนโลยีดังกล่าว
เม่ือใช้งานไปนานๆ อุปกรณ์ต่างๆ จะเริ่มเสื่อมตามสภาพ
การใช้งาน แต่การเสื่อมสะภาพน้ันจะเร็วหรือช้า ขึ้นอยู่กับ
การดูแลรักษา และการตรวจสภาพของอุปกรณ์ และ
แบตเตอรี่เป็นอุปกรณ์ที ่ผู้ใช้มักจะขาดการดูแลรักษาที่
ถูกต้อง เน่ืองจากระบบของแบตเตอรี่นั้นมีความซับซ้อน 
และสายไฟเป็นจำนวนมาก หรือใช้งานจนเกิดป ัญหา
เกี ่ยวกับการเก็บประจุไม่ได ้ของแบตเตอรี ่แล้วเข ้าสู่
กระบวนการเปลี่ยนแบตเตอรี่ แต่หากรู้วิธีการดูแลรักษาที่
ด ีพอแล้ว จะช่วยเรื ่องของการยืดอายุการใช ้งานของ
แบตเตอรี ่ซึ ่งเป็นการช่วยลดค่าใช้จ่ายในการเปลี ่ยน
แบตเตอรี่ใหม่ อีกทั้งแบตเตอรี่ที่ถูกเปลี่ยนจะส่งผลต่อ
สิ่งแวดล้อมค่อนข้างมาก เน่ืองจากเป็นวัตถุอันตราย และ
จากปัญหาของแบตเตอรี่ที่พบกรณีแบตเตอรี่ระเบิดน้ัน มา
จะสภาวะที่อุณหภูมิสูงขึ้นอย่างเฉียบพลันหรือที่เรียกว่า 
Thermal Runaway (TR) ซึ่งเป็นปรากฎการที ่จะพบใน
แบตเตอรี่กลุ่มลิเทียม โดยมีปัจจัยการเกิดปรากฏการณ์น้ี
อยู่ประมาณ 3 แบบ คือ ปัจจัยทางกล ปัจจัยทางไฟฟ้า 
และปัจจัยทางความร้อน 

 

2. แบตเตอรี่ 
แบตเตอรี่ถือได้ว่าเป็นแหล่งพลังงานหลักที่นิยมใช้ใน

อุปกรณ์ไฟฟ้าที ่สามารถเคลื ่อนที ่ได้ และยังเป็นแหล่ง
พลังงานไฟฟ้าสำรองสำหรับงานบางประเภท ซ่ึงแบตเตอรี่
นั ้นแบ่งเป็น 2 ประเภทตามรูปแบบของการใช้งานคือ
แบตเตอรี่ปฐมภูมิ หรือที่เรียกกันว่าแบตเตอรี่ใช้แล้วทิ้ง 
กับอีกแบบคือแบตเตอรี่ทุติยภูมิที่สามารถนำและในส่วน
ของรถไฟฟ้าที่ใช้ในปัจจุบันนั้น อาศัยพลังงานหลักจาก
แบตเตอรี ่ชนิดลิเทียม เพราะเป็นแบตเตอรี ่ที ่มีความ
ทนทาน และความจุในการเก็บพลังงานที่สูงมาก  

2.1. พัฒนาการของแบตเตอรี่ 
แบตเตอรี่มีการใช้งานมาอย่างยาวนานมาก จากยุค

ช่วงแรกมาจนถึงปัจจุบันได้มีการพัฒนามาอย่างต่อเนื่อง 
และด ้วยเทคโนโลยีท ี ่ป ัจจุบ ันมีความทันสมัย ทำให้
แบตเตอรี่ ถูกพัฒนาอย่างก้าวกระโดด อีกทั ้งยังได้รับ
ความนิยมในการใช้งานที่หลากหลาย ซ่ึงสามารถทำให้เกิด
นวัตกรรมใหม่ๆ ได้อีกมากมาย แบตเตอรี่เริ่มเกิดขึ้นในปี 
ค.ศ. 1747 (พ.ศ. 2291) โดย Benjamin Franklin และ
ได้ถูกพัฒนามาเป็นแบตเตอรี่ตะกั่วกรดในปี 1859 (พ.ศ. 
2402) โดย Gaston Plante จนในปัจจุบันแบตเตอรี่ได้ถูก
พัฒนามาจนเป็นแบตเตอรี่ลิเทียม [1] ซ่ึงแบตเตอรี่ลิเทียม
นั้น ถือว่าเป็นเทคโนโลยีด้านแบตเตอรี่ที่ดีที่สุดในเวลาน้ี 
และยังมีการคาดการณ์องค์ประกอบร่วมในแบตเตอรี่
ลิเทียมต่อไปอีก ดังรูปที่ 1  
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รูปที่ 1 กราฟแสดงแนวโน้มของแบตเตอรี่แต่ละชนิด [2] 

 
จากรูปที่ 1 แบตเตอรี่ได้ถูกพัฒนาตั้งแต่กรดตะก่ัว มา

เป็นแบตเตอรี่นิกเกิล จนในปัจจุบันแบตเตอรี่ลิเทียมได้ถูก
นำมาใช้งาน ซึ่งในอนาคตนั ้น ยังมีการพัฒนาแบตเตอรี่
ชนิด ล ิเท ียม-ออกซิเจน อีกทั ้งการพัฒนาเพื ่ อเพิ่ม
ประสิทธิภาพ อายุการใช้งาน และความปลอดภัยเม่ือ
นำมาใช้ในรถยนต์ไฟฟ้าอีกด้วย [3] 

2.2 เคมีไฟฟ้าของแบตเตอรี่ลิเทียม 
ปัจจุบันแบตเตอรี่ลิเทียมนั้นจะมีองค์ประกอบของ

ธาตุต่างๆ รวมอยู่ด้วยเพื่อประสิทธิภาพการใช้งาน โดย
ส่วนมากจะแตกต่างกันที ่ขั้วแคโทด เช่นลิเทียมโคบอล 
(LCO), ลิเทียมแมงกานีส (LMO), ลิเทียมฟอสเฟส (LFP), 
ลิเทียมนิกเกิลแมงกานีสโคบอลออกไซด์ (NMC), ลิเทียม
นิกเกิลโคบอลอลูมินั่มออกไซด์ (NCA), และลิเทียมไททา
เนต  (LTO) โดยท ี ่  LMO ผสมรวมก ับ NMC เพ ื ่อให้
ประสิทธิภาพดียิ่งขึ้น [2] และได้มีนักวิจัยทำการทดลอง
เปรียบเทียมแบตเตอรี่ลิเทียมชนิด LiCoO2 และ LiMn2O4 

ขนาดแบตเตอรี่ที่ทดลองมีลักษณะทรงกระบอกขนาดเส้น
ผ่านศูนย์กลางขนาด 18 มิลลิเมตร ยาว 65 มิลลิเมตร 
หร ือแบตเตอรี ่ 18650 โดยทดลองให ้ความร้อนจาก
ภายนอก และความร้อนจากภายใน ภายใต้สถานะประจุที่
เท่ากัน (SOC เท่ากัน) พบว่า LiMn2O4 มีอุณหภูมิที ่ มี
ความเสถียรมากกว่า LiCoO2 [4] นอกจากค่า SOC ที่
เท่ากันแล้ว ยังมีงานวิจัยที่ทดลองภายใต้การเปลี่ยนแปลง
ของ SOC ไม่ว่าจะเป็นการทดลองโดยการเพิ ่มขึ ้นของ 
SOC (การอัดประจุไฟฟ้าหรือการชาร์จ : Charge) หรือ
การลดลงของ SOC (การคายประจุไฟฟ้าหรือการดิสชาร์จ: 
Discharge) ดังรูปที่ 2 

 
รูปที่ 2 แสดงกราฟการอัดและการคายประจุ [2] 

 
จากรูปที่ 2 ในการใช้งานแบตเตอรี่นั้นควรให้ประจุ

ไฟในแบตเตอรี่ (SOC) อยู่ในช่วงระหว่าง 20% ถึง 90% 
โดยอุณหภูมิของแบตเตอรี่ลิเทียมช่วงที่มีการอัดประจุน้ัน
จะมีอุณหภูมิอยู่ที่ 0 ถึง 45 องศาเซลเซียส และอุณหภูมิ
ช่วงคายประจุอยู่ที่ -20 ถึง 60 องศาเซลเซียส และถ้า
แบตเตอรี่ลิเทียมถูกใช้งานไปมากกว่า 500 รอบ [5] จะ
เกิดความสูญเสียประจุไฟฟ้าในแบตเตอรี่ไป 12.9% โดย
วิเคราะห์จาก XRD, SEM, EIS และ CV และได้ผลดังแสดง
ในตารางที่ 1 

 
ตารางที่ 1 เปอร์เซ็นต์เศษส่วนมวลของธาตุองค์ประกอบ
ลดลงหลังจากรอบการใช้งานแบตเตอรี่ผ่านไป 500 รอบ 

ขั้ว รอบ 
เปอรเ์ซ็นต์เศษส่วนมวลของธาตุองค์ประกอบ 

C O F P Mn Co Ni 

แคโทด 
0 37 30 8 - 7.51 5 12.4 

500 36 32. 8 - 7.37 4.6 11.8 

แอโนด 
0 88 6 5 0.49 - - - 

500 83 8 8.8 0.54 - - - 

 
จากตารางที่ 1 พบว่าเปอร์เซ็นต์เศษส่วนมวลของธาตุ

องค์ประกอบลดลงหลังจากที่มีการใช้งานแบตเตอรี่ผ่านไป 
500 รอบ ส่วนความสัมพันธ์ของค่าสถานะประจุของ
แบตเตอรี่ SOC และระยะเวลาที่เหลือในการคายประจุ 
RDT แบตเตอรี่ลิเทียม และถ้าหากกระบวนการคายประจุ
ของแบตเตอรี่ไม่ได้เป็นเชิงเส้นอาจจะทำให้การวิเคราะห์
ถ ึงระยะเวลาที ่ ใช ้ผ ิดพลาดได ้ และการพิจารณาที่
แรงดันไฟฟ้าเพื่อวิเคราะห์มาเป็นระดับประจุในแบตเตอรี่ 
จึงได้ทดลองทางวงจรไฟฟ้าแบบวงจรเปิด โดยทดสอบทั้ง
แบบสถิตศาสตร์และพลศาสตร์ และได้สรุปว่าแรงดันใน
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สถานะประจุของแบตเตอรี่ที่ระดับต่างๆ สามารถวิเคราะห์
ถึงระยะเวลาที่จะใช้ในการคายประจุที่เหลือได้ [6] 

2.3 คุณสมบัติ และประสิทธิภาพของแบตเตอรี่
ลิเทียม 

แบตเตอรี่ที่มีขนาด 18650 น้ัน มีการทดลองโดยการ
จำลองแบตเตอรี่ที่มีขนาดเท่ากัน โดยอาศัยแผ่นแสตนเลส
และแผ่นไมก้าสลับกัน ซึ่งเมื่อวัดคุณสมบัติของแบตเตอรี่
จำลองน้ีได้ความหนาแน่นวัดได้ 1,593 ± 30 kg/m3 ความ
จุความร้อน 727 ± 18 J/kg-K การนำความร้อนคำนวณ
ได้ 5.1 ± 0.6 W/m-K การแผ่ความร้อนได้จากการทดลอง
และการวิเคราะห์ผล จากการเพิ่มความจุความร้อนเป็น 
805 ± 23 J/kg-K พบว่าการแผ่ความร้อนอยู ่ระหว่าง 
0.12 และ 0.197 W/m-K ความร้อนที่แผ่ได้ของแบตเตอรี่
จำลองอยู่ที่ 43-71 องศาเซลเซียส และสรุปว่าแบตเตอรี่
จำลองนี้มีความร้อนที่ใกล้เคียงกันกับแบตเตอรี่ 18650 
[7] ซึ่งสามารถนำแบตเตอรี่จำลองนี้ไปทำการทดสอบใน
ด้านต่างๆ ต่อไปได้ นอกจากนั้นยังมีการทดลองการวัด
ความร้อนเอนนิโซโทรปิก การนำความร้อน และความจุ
ความร้อน ของแบตเตอรี่ลิเทียม LiFePO4 ขนาด 26650 
และ 18650 และวิเคราะห์ผลการทดลองของรัศมีของ
ความร้อนด้วยวิธีทางไฟไนท์อิลิเมนต์ได้ค่าน้อยสุดช่วง 
0.15-0.2 W m-1K-1 สำหรับขนาด 26650 และ 18650 
โดยกล่าวอีกว่าการทดลองนี้จะทำให้เข้าใจรูปแบบการ
เคลื่อนที่ของความร้อนที่เกิดขึ้น อาจจะนำไปสู่รูปแบบการ
เพิ่มประสิทธิภาพ และความปลอดภัยได้ [8] 

ในปัจจุบันเทคโนโลยีของแบตเตอรี่ลิเทียมนั้น มีการ
ทดลองการอัดประจุแบบไว ที ่ เร ียกกันว่าควิกชาร์จ 
(Quick Charge) หรือฟาสชาร์จ (Fast Charge) การอัด
ประจุไฟฟ้าแบบไว เพ ื ่อเพ ิ ่มแนวทางการตลาดของ
แบตเตอรี่ลิเทียม โดยทำการทดลองหาพารามิเตอร์การ
ชาร์จเร็วสูงสุดน้ันเป็นเท่าไหร่ และต้องปลอดภัยด้วย โดย
ทดลองกับแบตเตอรี่ชนิดทรงกระบอก 18650 ซ่ึงมีกระแส 
3 แอมป์แปร์ และทดลองพบว่าการอัดประจุแบบไวน้ัน
ปลอดภัยที ่กระแสสูงสุด 6A หรือ 2C [9] และการอัด
ประจุ และคายประจุก ับเซลแบตเตอร ี ่ล ิ เท ียมขนาด 

18650 ชนิด NMC-811/SiC และ NMC-111/graphite 
ด้วยวิธี p2D โดยในการทดลองนั้นแสดงให้เห็นว่าระดับ
การอัดเก็บประจุไฟฟ้าเกินกว่า 60% สามารถทำได้น้อย
กว่า 18 นาที [10] ซึ่งได้มีการทดลองการชาร์จแบบเร็ว
ของแบตเตอรี่ ว่าหากมีกำลังไฟสูง หรือมีพลังงานที่สูง ถุง
หรือภาชนะที่บรรจุแบตเตอรี่ลิเทียมจะเป็นอย่างไร ซ่ึงใช้
แบบจำลองทางอุณหภูมิแบบ 3 มิติ และแบ่งการทดลอง
เป็น 2 แบบ คือแบบกระแสและแรงดันไฟฟ้าคงที่ (CC-
CV) และแบบสัญญาณพัลส์ติดลบของกระแสและแรงดัน 
(CCNP-CV) ดังรูปที่ 2 

 

 
รูปที่ 2 แสดงกราฟของกระแส และแรงดันไฟฟ้า [11] 

 
จากการทดสอบแบตเตอรี่ที่อุณหภูมิ 10, 25 และ 45 

องศาเซลเซียส โดยทดสอบกับแบตเตอรี ่ลิเทียมนิกเกิล
แมงกานีสโคลบอลออกไซด์ (LiNi0.33Mn0.33CoO2: NMC) 
และลิเทียมไททาเนต (Li1.33Ti1.67O4: LTO) และวิเคราะห์
ผลโดย CFD และได้สรุปผลการชาร์ตประจุแบบเร็วหรือที่
เรียกว่าควิกชาร์ตน้ันทำให้อุณหภูมิเพิ่มขึ้นไม่เกิน 3 องศา
เซลเซียส และจากแบบจำลองทางอุณหภูมิแบบ 3 มิติ
พบว่า NMC ให้พลังงานสูง ส่วน LTO ให้กำลังสูง [11] 
การอัดประจุไฟฟ้าแบบไว หรืออัดประจุแบบรวมเร็วของ
แบตเตอรี่ลิเทียม ผู้คนจะให้ความสำคัญเรื่องความร้อนที่
เกิดขึ้นในแบตเตอรี่เพื่อเลี่ยงการเกิดความร้อนที่สูงแบบ
เฉียบพลัน และหาผลที่เกิดขึ้นจากการชาร์จประจุแบบไว
จากพฤติกรรมความร้อนที ่เกิด และประสิทธิภาพทาง
พลังงานของแบตเตอรี่ลิเทียม โดยทดลอง 30 นาที ถึ ง
ความจุ 80% และชาร ์จด ้วยกระแสคงที ่แบบผสม 2 
กร ะ แส  (two-stage constant current: 2SCC) โ ด ย
ทดสอบแบบ กระแสสูง-กระแสต่ำ กระแสต่ำ-กระแสสูง 
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และแบบกระแสแบบเดียวคงที ่ ผลการทดลองสรุปว่า
กระแสสูงช่วงแรกและกระแสต่ำช่วงหลังอุณหภูมิต่ำและ
ประสิทธิภาพทางพลังงานสูงกว่าอีก 2 แบบ [12]  

เทคโนโลยีปัจจุบันที่ใช้งานแบตเตอรี่ลิเทียมเป็นหลัก 
และใช้ในปริมาณมาก และเป็นที่แพร่หลายในตลาดของ
แบตเตอรี่ก็จะมีด้านรถยนต์ไฟฟ้า กับระบบเก็บไฟฟ้าจาก
พลังงานทางเลือกอ่ืนๆ โดยในที่น่ีจะขอกล่าวถึงการใช้งาน
ของรถยนต์ไฟฟ้า และปัญหาใหญ่ที่นักวิจัยให้ความสำคัญ
กันมากในช่วงน้ีคือเรื่องความปลอดภัย เพราะอบัติเหตทุี่
เกิดจากแบตเตอรี ่นั ้นสามารถสร้างความเสียหายอย่าง
รุนแรง โดยเฉพาะแบตเตอรี ่หากขาดการดูแลที่ดี และ
ปล่อยให้อยู ่ในสภาวะที่แบตเตอรี่มีอุณหภูมิสูงกว่า 80 
องศาเซลเซียสจะเสี ่ยงต่อการเกิดปรากฏการณ์ TR ได้ 
และในการจัดการความร้อนของแบตเตอรี่ ได้มีนักวิจัยทำ
การทดลองโดยใช้ระบบต่างๆ ไม่ว่าจะเป็นน้ำ/ไกลคอล, 
น้ำมัน, ของไหลนาโน, โลหะเหลวและไอร้อนโลหะ [13] 
รวมถึงท่อระบายความร้อน ซ่ึงสามารถทำการทดลองและ
เปรียบเทียบกับการวิเคราะห์โดยโปรแกรม CFD ท่อที่ใช้
ในการทดลองและวิเคราะห์เป็นท่อขนาดเล็กระดับไมโคร 
(ultra-thin micro heat pipe: UMHP) และ ใช ้ โมเดล
ความร้อนแบบ 3 มิติ แบบแยกส่วน เพราะมีทั้งตัวแปร
ต่างๆ เกี่ยวกับความร้อนในท่อ รวมถึงเงื่อนไขของโมเดล
ทางความร้อน ซ่ึงภายในท่อขนาดเล็กน้ันพิจารณาการพา
ความร้อนแบบธรรมชาติและแบบบังคับ โดยผลลัพธ์จาก
การวิเคราะห์โดยโปรแกรมเหมือนกับการทดลอง  [14] 
เท่ากับการทดลองบางกรณีท ี ่มีความเสี ่ยงสูงนั ้น จะ
สามารถวิ เคราะห์โดยโปรแกรมเพื ่อหาสมการทาง
คณิตศาสตร์ในการออกแบบ ก่อนการทดลองจริงได้ ทั้งน้ี
เทคโนโลยีแบตเตอรี่ลิเทียมที่เป็นแบตเตอรี่ที่ได้รับความ
นิยมอย่างมากจากพลังงาน และการนำกลับมาใช้ได้ใหม่ 
ซึ่งจำเป็นต้องอยู่บนความปลอดภัยในการใช้งาน อีกทั้ง
การแข่งขันทางการตลาด จะทำให้ในอนาคตของแบตเตอรี่
มีราคาที่ถูกลง ประสิทธิภาพสูงขึ้น อายุการใช้งานเพิ่มมาก
ขึ้น อัตราการเก็บประจุ และการคายประจุจะดีขึ้น [15] 

 

3. การจัดการด้านความร้อนของแบตเตอรี่ 
ในการจัดการทางความร้อนนั้น เป็นการใช้วิธีต่างๆ 

เพื่อการควบคุมอุณหภูมิที่เกิดขึ้น ไม่ให้สูงจนถึงจุดวิกฤต 
เพื ่อเป็นการเลี ่ยงความเสียหายที ่ร ุนแรง จากการเกิด
ปรากฏการณ์อุณหภูมิสูงขึ้นแบบเฉียบพลัน หรือที่เรียกว่า 
Thermal Runaway (TR) โดยการจัดการความร้อนของ
แบตเตอรี่ (BTMS) มีการค้นคว้าการระบายความร้อนด้วย
วิธีต่างๆ เช่น การใช้อากาศ การใช้ของเหลว การใช้ไอ
ระเหย ท่อความร้อน รวมถึงการใช้วัสดุที่เปลี่ยนสถานะได้ 
(PCM) ในการระบายความร้อน และการระบายความร้อน
แบบทางตรง ทางอ้อม ซึ่งในการจัดการด้านความร ้อน
ขึ้นอยู่กับการใช้งาน โดยการจัดการที ่ดีนั้นจะช่วยเพิ่ม
ประสิทธิภาพของแบตเตอรี่ของรถยนต์ไฟฟ้าได้อ ีกด ้วย 
[16] ซึ่งความร้อนของรถยนต์ไฟฟ้า (EVTMS) โดยระบบ
ระบายความร้อน และความร้อนเหลือทิ้งนั้นทำให้การทำ
ความเย็นลดลง 26.30-32.10% และความร้อนเหลือทิ้ง
อยู่ระหว่าง 18.73-45.17% และ COP อยู่ระหว่าง 0.68-
21.05% ในการทดลองภายใต ้สภาวะการขับข ี ่แบบ
เดียวกัน อุณหภูมิที่เกิดขึ้นกับแบตเตอรี่ถูกตรวจสอบความ
จุจากผลกระทบนี้พบว่า SOC ลดลง10.60% และ COP 
ให้ความร้อนเพิ่มขึ้น 25.55% เม่ือเทียบกับความร้อน PTC 
พบว่าระบบ EVTMS น้ันดีกว่า 31.71% [17] 

3.1 Thermal Runaway (TR) 
การเกิด TR นั้นมักจะสร้างความเสียหายเป็นอย่าง

มากต่อรถยนต์ไฟฟ้า ซ่ึงมาจากการจัดการความร้อนที่ไม่ดี 
การระบายความร้อนที่ไม่ดี การลัดวงจรภายในที่มาจาก
วงจรไฟฟ้าหรือปฏิกิริยาทางเคมี และได้มีนักวิจัยทดลอง
ใช้วัสดุด้านแคโทดเป็น LiFePO4เป็นวัสดุที่ราคาถูกและมี
ความปลอดภัยสูง และการควบคุมไม่ให้อุณหภูมิสูงกว่า 
110 องศาเซลเซียส จะช่วยป้องกันการเกิด TR ได้ [18] 

ในการเกิด TR ส่วนใหญ่เกิดจากปัจจัยอยู่ 3 ระดับ 
คือ ระดับทางกลเช่นอุบัติเหตุที่ส่งผลต่อแบตเตอรี่ไม่ว่าจะ
เป็นการบดหรือถูกเจาะ ซ่ึงอาจจะส่งผลถึงระดับถัดมาคือ
การลัดของวงจรไฟฟ้าของแบตเตอรี่โดยมีโอกาสเกิดได้ทั้ง
กรณีภายในแบตเตอรี่คือวงจรภายในเกิดการลัดวงจร หรือ
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กรณีภายนอกแบตเตอรี่เช่นการชาร์ตประจุเกิน และใน
ระด ับนี ้จะพบเป็นสาเหต ุหลักหรือป ัญหาหลักที ่ เจอ
โดยทั่วไป และอาจจะส่งผลต่อระดับถัดมาคือด้านความ
ร้อน ซึ่งอาจจะส่งผลให้เกิดควัน ไฟ หรือการระเบิดของ
แบตเตอรี่ได้ [19] ดังรูปที่ 3 

 

 
รูปที่ 3 ภาพสรุปการเกิด TR [19] 

 
ในการเกิดปรากฏการณ์ TR นั้นมีนักวิจัยได้ทำการ

ทดสอบการเก ิด TR โดยการนำ แบตเตอร ี ่ล ิ เท ียม 
(Graphite-LiCoO2) โดยเก็บที่อุณหภูมิ 60 องศาเซลเซียส 
แล้วจึงทดสอบให้ความร้อน 300 องศาเซลเซียส เป็นเวลา 
1 นาที ผลที่ได้คือแบตเตอรี่ลิเทียมจะเกิด TR ที่อุณหภูมิ
ประมาณ 190 องศาเซลเซียส [20] และยังมีนักวิจัยทำ
การทดสอบโดยเร ิ ่มจากการทดสอบแบบแยกส่วน 
( Differential Scanning Calorimetry: DSC) โ ด ย มี
องค ์ประกอบ 3 ต ัวค ือ Cathode (Cat), Anode (An) 
และ Electrolyte (Ele) จากนั ้นทดสอบ TR โดยความ
ร้อนของเตาเริ่มต้นที่ 130 องศาเซลเซียส และ 150 องศา
เซลเซียส เพื่อให้ความร้อนแก่แบตเตอรี่ และเพิ่มอุณหภูมิ
ขึ้นทีละ 4 องศาเซลเซียส เป็นเวลา 30 นาที แล้วทำการ
ลดอุณหภูมิ โดยผลของการทดลองของแบตเตอรี ่จาก
อุณหภูมิเตาเริ่มต้นที่ 130 องศาเซลเซียส สามารถทำให้
แบตเตอรี่มีอุณหภูมิสูงสุดที่ 185.84 องศาเซลเซียส จาก
การคำนวณ ซึ่งสอดคล้องกับผลการทดลองที่ได้อุณหภูมิ 
179.43 องศาเซลเซียส ส่วนที่เตาอุณหภูมิเริ่มต้นที่ 150 
องศาเซลเซียส นั้น มีอุณหภูมิขึ้นสูงสุดถึง 857.74 องศา
เซลเซียส [21] ซ่ึงมีกระบวนการทดลองดังรูปที่ 4 

 

 
รูปที่ 4 แสดงกระบวนการทดลอง [21] 

 
ซ่ึงการทดลองแบบแยกส่วน (Differential Scanning 

Calorimetry: DSC) น้ันมีผลการทดลองได้ดังตารางที่ 2 
 
ตารางที่ 2 แสดงค่าการทดลองแบบแยกส่วน [21] 

 
 
 อีกทั้งมีนักวิจัยได้ทำการทดลองหาการเกิด TR ของ

แบตเตอรี่ 18650 โดยเงื่อนไขการทดลองการบีบอัดทั้ง 4 
แบบ ได้แก่ Rod, Circular punch, three-point bend 
และ flat ที่อัตราประจุภายในแบตเตอรี่ต ่างกัน ดังการ
ทดลองรูปที่ 5 

 

 
รูปที่ 5 การทดลองรูปแบบทางกายภาพแบบต่างๆ 

เพื่อให้เกิด TR [22] 
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จากรูปที่ 5 การทดลองในรูปแบบต่างๆ ได้ผลการ
ทดลอง และวิเคราะห์ความเสียหายทางกายภาพที่นำไปสู่
การเปลี่ยนแปลงทางอุณหภูมิ ด้วยวิธีทางไฟไนต์อิลิเมนต์ 
และในการทดลองระยะการบีบอัด และเวลาใช้ในการบีบ
อัดของแบตเตอรี่น้ัน พบว่าอุณหภูมิของแบตเตอรี่สูงขึ้นถึง 
700 องศาเซลเซียส และยังพบว่าแรงดันไฟฟ้าตกลงอย่า
ฉับพลัน ซึ่งเป็นผลมาจากการลัดวงจรภายในแบตเตอรี่ 
[22]  

ในการทดลองการเกิด TR ยังได้มีกลุ่มนักวิจัยได้ทำ
การทดสอบกับแบตเตอรี่แพ็คที่ต่อไว้แบบขนาน 4 ก้อน 
และนำมาต่ออนุกรม 10 ชุด (10s4p) รวม 2.85 Ah และ
ทดสอบโดยการเจาะแบตเตอรี่ด้วยตะปู และระบบที่ใช้ใน
การควบคุมอุณหภูม ิน ั ้นจะทดสอบด้วยระบบ phase 
change composite materials (PCC™) แ ล ะ
เปรียบเทียบกับกรณีไม่มีระบบนี้ และศึกษาผลกระทบที่
เก ิดข ึ ้นเม ื ่อเซลล์แบตเตอร ี ่ เก ิด TR [23] ส่วนถ้านำ
แบตเตอรี่ลิเทียมชนิด LiCoO2 มาทำการทดสอบภายใต้
อุณหภูมิ 80 องศาเซลเซียส และมีการเปลี่ยนแปลงค่า
สถานะประจุ ในระดับต่างๆ พบว่าแบตเตอรี่ 100% SOC 
มีอัตราการเกิด TR ต่ำที่สุด [24] อีกทั้งแบตเตอรี่ลิเทียมที่
เสื่อมสภาพ หรือเสียแล้วก็ยังมีโอกาสที่จะเกิด TR ได้อยู่ 
การเกิด TR น้ันมักจะเกิดที่แกนของแบตเตอรี่ [25] ดังน้ัน
ขนาดของแบตเตอรี่ที่พิจารณาย้อนกลับการการนำความ
ร้อน จะทำให้ทราบถึงอุณหภูมิจริงๆ ที่เกิด TR จากแกน
ของแบตเตอรี่ และด้วยพื้นฐานการเกิด TR ที่อธิบายจะ
สามารถนำมาพิจารณาการพัฒนาอุปกรณ์ที่ช่วยลดการ
เกิด TR ลงได้ ส่วนแบตเตอรี่ชนิด LiNixCoyMnzO2 ได้มี
นักวิจัยทดสอบที่ขนาด 25 Ah โดยในการทดลองน้ันได้ใช้
แบตเตอรี่ที่มีประจุเต็ม ต่อพ่วงกัน 6 ก้อน และทดลองให้
เกิด TR ซ่ึงผลที่ได้คือ TR เกิดที่อุณหภูมิสูงกว่า 469 องศา
เซลเซียส พลังงานไฟฟ้าลดลง 75% หรือน้อยกว่า ซ่ึงเป็น
ค่ามาตรฐาน และเกิดการกระจายความร้อนสูงกว่า 70 W 
m-2 K-1 โดย ความร้อนระหว่างแบตเตอรี่ที่มีความหนา 1 
มิลลิเมตร มีค่าการนำความร้อนน้อยกว่า 0.2 W m-2 K-1 
[26] 

ในการเกิด TR จะเหมือนปฏิกิริยาลูกโซ่ ที่ความร้อน
จะส่งต่อไปยังแบตเตอรี ่ข ้างเคียง โดยได้มีนักวิจัยอีก
จำนวนหนึ ่งที ่ออกแบบอุปกรณ์ป้องกันเพื ่อยับยั ้งการ
ลุกลามของปรากฏการณ์ TR โดยได้ทำระบบท่อระบาย
ความร ้ อนขนาด เล ็ ก  (minichannel cooling)  โดย
วิเคราะห์จากแบบจำลอง the conjugate heat transfer 
model และ the reaction kinetics model ซ่ึงสามารถ
ป้องกันการลุกลามของ TR กับเซลล์แบตเตอรี่อ่ืนๆ แต่ไม่
สามารถป้องกันการเกิด TR กับแบตเตอรี่เซลล์ตัวมันเอง
ได้ [27] และยังมีนักวิจัยทำการทดลองวัสดุคั่นระหว่าง
แบตเตอรี่ของรถยนต์ไฟฟ้าชนิด 18650 ที่จำลองโมดูลมา
จำนวนหน่ึง โดยวัสดุที่ใช้ต้องสามารถป้องกันความร้อนแผ่
ไปยังแบตเตอรี่ข้างเคียงเมื่อเกิด TR โดยได้ผลว่าแผ่นคอม
โพสิตกราไฟท์ และอลูมิเนียมเอกซ์ทรูดสามารถป้องกัน
ความร้อนที่จะส่งผลให้แบตเตอรี่ข้างเคียงจนนำไปสู่การ
เกิด TR [28] 

การจัดการความร้อนของแบตเตอรี ่ลิเทียมนั ้น มี
ความจำเป็นอย่างมากเพื่อให้แบตเตอรี่ทำงานในสภาวะที่
เหมาะสม และเกิดประสิทธิภาพสูงสุด อีกทั้งยังเป็นการ
ยืดอายุการใช้งานได้อีกด้วย ซ่ึงการควบคุมอุณหภูมิให้อยู่
ในช่วงการใช้งานที่ดีนั้นสามารถทำได้ด้วยวิธีการระบาย
ความร้อนออกจากแบตเตอรี่ ซึ่งสามารถทำได้หลายวิ ธี 
โดยอาศัยตัวกลางที่ดึงความร้อนจากแบตเตอรี่เพื่อปล่อยสู่
สิ่งแวดล้อม ไม่ว่าจะเป็นอากาศ หรือของเหลว 

3.2 ระบบการระบายความร้อนด้วยอากาศ 
การระบายความร้อนด้วยอากาศ เป็นวิธีการระบาย

ความร้อนวิธีหน่ึง ที่สามารถกำหนดทิศทางการไหลของ
อากาศได้จากอุปกรณ์ทดลอง และแหล่งจ่ายบังคับทิศทาง 
ซึ่งได้มีนักวิจัยที่ทำการออกแบบชุดระบายความร้อนดว้ย
อากาศ โดยการบังคับอากาศให้ไหลผ่านช่องว่างด ้วย
เงื่อนไขต่างๆ เช่นมุมทางเข้าของอากาศ มุมทางออกของ
อากาศ ขนาดช่องทางเข้าของอากาศ ขนาดช่องทางออก
ของอากาศ ลักษณะรูปแบบอากาศที่ไหลผ่าน ช่องว่าง
ระหว่างแบตเตอรี่กับแบตเตอรี่ที่อากาศสามารถไหลผ่าน
ได้ ดังรูปที่ 6 [29]-[37]  
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รูปที่ 6 โมเดลการระบายความร้อน 

ด้วยอากาศแบบบังคับ [34] 
 
รวมถึงท่อที่ใช้สำหรับบังคับอากาศซึ่งมีการวิจัยถึง

ขนาดความยาวของท่อ เส้นผ่านศูนย์กลางท่อ ช่องว่าง
ระหว่างท่อกับแบตเตอรี ่ จำนวนท่อและการจัดเร ียง
รูปแบบของท่อดังรูปที่ 7 [30], [31], [34]-[35], [38]-[40]  

 

 

 
รูปที่ 7 แสดงโมเดลการจัดเรียงแบตเตอรี่  

ช่องว่างระหว่างแบตเตอรี่และท่ออากาศที่ใช้ [40] 

โดยการปรับความเร็ว อัตราการไหล และปริมาณ
มวลอากาศที่ป้อนเข้าในระบบ [32], [38]-[42] รวมถึงการ
ทดสอบผลกระทบทางไฟฟ้าโดยการกำหนดแรงดันทาง
ไฟฟ้า กระแสที่ใช้ในการทดสอบ C-Rate การอัดประจุ 
Charge การค ายปร ะจ ุ  Discharge ร วมถ ึ ง ส ั ง เ กตุ
พฤติกรรมด้านความร้อนของแบตเตอรี่ในแต่ละช่วงของ
ปริมาณพลังงาน SOC [33]-[34], [43] รวมถึงการศึกษา
เพื่อให้ได้ต้นทุนที่ต่ำ และสามารถนำมาใช้ในการระบาย
ความร้อนของรถยนต์ไฟฟ้าได้ [44] 

ในการระบายความร้อนด้วยอากาศน้ันผู้วิจัยส่วนใหญ่
มุ่งการประสิทธิภาพในการจัดการความร้อนโดยการหา
อุณหภูมิสูงสุด Tmax ผลต่างของอุณหภูมิ ∆T อุณหภูมิ
เฉลี ่ยและความสม่ำเสมอของอุณหภูมิ โดยการทดลอง
ร่วมกับวิธีวิเคราะห์ทางพลศาสตร์ของไหลเชิงตัวเลข CFD 
และผลที่ได้น้ันพบว่ามุมทางเข้าออกที่ดีที่สุดคือ 25 องศา 
โดยทางเข้าและทางออกควรมีขนาดเท่ากัน การไหลแบบ
ตัว U ช่วยให้ความต่างของอุณหภูมิลดลงได้ถึง 70% และ
การปรับรูปแบบที ่เหมาะสม สามารถควบคุมอุณหภูมิ
สูงสุดไม่ให้เกิน 40 องศาเซลเซียสได้และพลังงานที่ใช้
น้อยลงรวมถึงต้นทุนที่ลดลงด้วย 

3.3 ระบบการระบายความร้อนด้วยของเหลว 
นอกจากการระบายความร้อนด้วยอากาศดังที่กล่าว

ในข้างต้น ยังมีการระบายความร้อนด้วยของเหลว ไม่ว่าจะ
เป็นการให้ของเหลวไหลผ่านท่อ หรือช่องทางการไหลเพื่อ
ระบายความร้อน ซึ ่งเป็นวิธีที ่สามารถพาความร้อนได้
ดีกว่าการระบายความร้อนด้วยอากาศ โดยในการระบาย
ความร้อนด้วยของเหลวนั้นได้มีกลุ่มนักวิจัยออกแบบการ
ทดลองจากวัสดุวัสดุเสริม หรืออุปกรณ์ที ่ทำขึ ้นมาเป็น
โมเดลที่มีทั้งแบตเตอรี่และช่องทางการไหลของของเหลว 
โดยวัสดุที่ใช้น้ันได้มีนักวิจัยได้ทดลองใช้อลูมิเนียมบล็อก ที่
ทำขึ้นมาเฉพาะการทดลองน้ันๆ [45] หรือได้มีการทดลอง
ใช้อล ูม ิ เน ียมท ี ่ม ีความพร ุน  [46 ] รวมถ ึงการนำท่อ
อลูมิเนียมมาทดลองร่วมกับวัสดุกราไฟท์แบบยืดหยุ่น ดัง
รูปที่ 8 [47] หรือคอมโพสิตคาร์บอนไฟเบอร์ [48] พร้อม
กับทดสอบทางไฟฟ้าที่แรงดันทางไฟฟ้า กระแสทางไฟฟ้า 
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C-Rate ที่อัตราต่างๆ [49]-[51] ร่วมกับการปรับตัวแปร
ทางกลได้แก่ อัตราการไหลหรืออัตราการไหลเชิงมวลดัง
รูปที่ 9 [45], [49], [52]-[54] 

 

 
รูปที่ 8 โมเดลการระบายความร้อนโดยใช้ท่ออลูมิเนียม 

ร่วมกับกราไฟท์ชนิดยืดหยุ่น [47] 
 

 
รูปที่ 9 ระบบการระบายความร้อนด้วยน้ำ [50] 
 
พื้นที่ผิวสัมผัสของท่อหรือพื้นที่แลกเปลี่ยนความร้อน

ของท่อตามความยาวของท่อ [37], [45], [53] จำนวนท่อ 
[47 ], [52 ]-[53 ] ขนาดของท ่ อ  [48 ], [52 ]-[53 ], [55 ] 
รวมถึงการใช้ท่อขนาดเล็กในการระบายความร้อนดังรูปที่ 
10 [48], [55]  

 

 
รูปที่ 10 ระบบระบายความร้อนที่ทำจากคอมโพสิต

คาร์บอนไฟเบอร์ที่มีช่องระบายความร้อนขนาดเล็ก [48] 

การใช้ครีบระบายความร้อน [37], [46] หรือการใช้
เทคนิคการไหลสวนทางเพื่อเพิ่มประสิทธิภาพการระบาย
ความร้อนดังรูปที่ 11 [56] 

 

 
รูปที่ 11 ระบบการระบายความร้อนของแบตเตอรี่ 

ที่ไหลแบบสวนทาง [56] 
 
ในการศึกษาการระบายความร้อนด้วยของเหลวน้ัน มี

นักวิจัยทำการศึกษาหาอุณหภูมิสูงสุด Tmax ผลต่างของ
อุณหภูม ิ ∆T อุณหภูม ิเฉลี ่ยและความสม่ำเสมอของ
อุณหภูมิ ความดันตกคร่อม โดยการทดลองร่วมกับวิธี
วิเคราะห์ทางพลศาสตร์ของไหลเชิงตัวเลข CFD และผลที่
ได้นั้นพบว่าหากกระแสไฟฟ้า C-Rate ยิ่งสูงมากค่าความ
ร้อนที่เกิดขึ้นในแบตเตอรี่ก็สูงตามโดยมีการทดลองดังรูปที่ 
12 ส่วนการใช้ท่อขนาดเล็กน้ันจะต้องใช้กำลังของปั๊มเพิ่ม
มากขึ้น และการใช้ท่อแบบแผ่นที ่มีอุณหภูมิ 30 องศา
เซลเซียสนั้นจะช่วยรักษาอุณหภูมิสูงสุดไว้ที่ 40 องศา
เซลเซียสได้ 

 
รูปที่ 12 ระบบระบายความร้อนด้วยของเหลวเย็น 
ที่มีลักษณะเป็นแผ่นแลกเปลี่ยนความร้อน [51] 
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ในส่วนประสิทธิภาพการระบายความร้อนน้ัน จำนวน
ท่อระบายความร้อนจะมีผลต่ออุณหภูมิสูงสุดมากที ่สุด 
รองลงมาคืออัตราการไหล ถัดมาคือความยาวท่อ และ
ขนาดท่อมีผลน้อยที่สุด 

นอกจากการระบายความร้อนด้วยอากาศ และด้วย
ของเหลวยังมีการนำระบบทั้ง 2 มาทำงานร่วมกันอย่าง
เชียงนัน ฟวัง และคณะ [57] ได้ทำการออกแบบอุปกรณ์
สำหรับการระบายความร้อนของแบตเตอรี่ โดยอาศัยการ
ระบายความร้อนด้วยก๊าซเย็นไหลแบบยังคับ ร่วมกับ
ของเหลวเย็น และวิเคราะห์จากวิธีเชิงตัวเลขพลศาสตร์
การไหลเชิงคำนวณเพื่อหาก๊าซเย็นที่ไหลแบบบังคับ โดย
ความปั่นป่วนของก๊าซเย็นจะส่งผลต่อประสิทธิภาพในการ
ระบายความร้อน พร้อมกับเทียบวิธีระบายความร้อนแบบ
สุญญากาศ โดยแบตเตอรี่น้ันได้สร้างความร้อนภาพรวมไว้
ที่ 576 วัตต์ และระบบดังกล่าวสามารถทำให้อุณหภูมิ
สูงสุดลดลงได้ 3.45 องศาเคลวิน และอุณหภูมิมีความ
แตกต่าง 3.88 องศาเคลวิน ในขณะที ่อ ุณหภูม ิของ
แบตเตอรี่เพิ่มขึ้น 2.46 องศาเคลวิน ผลของการวิเคราะห์
แสดงให ้เห ็นว่าการระบายความร ้อนนี ้สามารถเพิ่ม
ประสิทธิภาพการระบายความร้อนของแบตเตอรี่ได้เป็น
อย่างดีดังรูปที่ 13 

 

 
รูปที่ 13 โมเดลการระบายความร้อนด้วยอากาศเย็น

ร่วมกับของเหลวเย็นในการระบายความร้อน [57] 
 
ในการระบายความร้อนด้วยอากาศน้ันจะใช้พลังงาน

มากกว่าแบบการระบายความร้อนด้วยของเหลว 2 ถึง 3 
เท่า ส่วนแบบครีบระบายความร้อน จะทำให้ระบบการ
ระบายความร้อนมีน้ำหนักเพิ่มขึ้น 40% ส่วนการระบาย
ความร้อนด้วยของเหลวทางอ้อมสามารถลดอุณหภูมิสูงสุด
ได้ดีที่สุด แม้ว่าประสิทธิภาพการระบายความร้อนจะน้อย

กว่าแบบระบายด้วยของเหลวทางตรง แต่ก็น้อยกว่าเพียง
เล็กน้อยซ่ึงการระบายความร้อนด้วยของเหลวทางอ้อมได้
เสนอว่าสามารถนำไปใช้งานจริงได้ [37] ในการระบาย
ความร้อนด้วยของเหลวนั้นยังสามารถเพิ่มประสิทธิภาพ
ของของไหลได ้ ด ้ วยการ เต ิ มสารนาโน เพ ื ่ อ เพิ่ ม
ประสิทธิภาพการแลกเปลี่ยนความร้อน [56] 

 
4. สรุป 

จากการทบทวนวรรณกรรมนั ้น พบว่าปัญหาของ
แบตเตอร ี ่ล ิ เท ี ่ยมที ่น ักวิจ ัยกล่าวถ ึงนั ้น  ได ้แก่ความ
ปลอดภัยจากความร้อนที่เกิดจากการอัดประจุ การคาย
ประจุ รวมถึงอุบัติเหตุต่างๆ จนเกิด TR หรือความร้อนที่
เกินกว่าช่วงอุณหภูมิทำงานที่ 25 – 40 องศาเซลเซียส 
และอายุการใช้งานของแบตเตอรี ่ โดยในการควบคุม
อุณหภูมิน้ันสามารถใช้อากาศ หรือของเหลวในการระบาย
ความร้อน ด้วยตัวแปรอัตราการไหล มุมทิศทางการไหล 
ความยาวท่อ หน้าตัดท่อ จำนวนท่อ วัสดุที่ใช้ ขนาดปั๊ม
หรือพัดลม รวมถึงการใช้ครีบระบายความร้อนช่วย และ
ทำการทดลอง ร่วมกับการวิเคราะห์ด้วยโปรแกรมทาง
พลศาสตร์ของไหลเชิงตัวเลข CFD เพื่อหาประสิทธิภาพ
การระบายความร้อน อุณหภูมิสูงสุดของแบตเตอรี่ ผลต่าง
และค่าเฉลี ่ยของอุณหภูม ิ ความดันตกคร ่อมในกรณี
ของเหลว ส่วนการพัฒนาโมดูลของแบตเตอรี่น้ันอยู่ที่การ
ใช้งานจากแรงดันไฟฟ้า กระแสไฟฟ้า ซ่ึงอาจจะมีทั้งขนาด
ใหญ่ หรือขนาดเล็กอยู่กับขนาดของแบตเตอรี่ที่ใช้ จำนวน
แบตเตอรี่เพื่อให้ได้แรงดันและกระแสไฟฟ้า รวมถึงระบบ
การระบายความร้อน 

 
5. กิตติกรรมประกาศ 

ขอบคุณบุคลากรทุกท่านในห้องปฏิบัติการเทอร์โม-
ของไหลและการเพิ ่มการถ่ายเทความร ้อน. (TFHT) 
ภาควิชาวิศวกรรมเคร ื ่องกล คณะวิศวกรรมศาสตร์ 
มหาวิทยาลัยศรีนครินทรวิโรฒ ในการสนับสนุนสถานที่
และอุปกรณ์เพื่อการวิจัย 
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