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ABSTRACT

The purpose of this research was to study the factor analysis process on the overlapped data sets with the
dynamic feature selection (DFS) method with application of the feature selection and clustering analysis processes.
The data for this research were obtained from the activities in the e-Learning system, by focusing on factors that
directly affect student's achievement.

The results showed that the overall efficiency of the factor analysis with the dynamic feature selection (DFS)
method had the highest accuracy of 45.17% with the use of three variables. By contrast, the factor analysis process

with the calculation of the information gain and the gain rafio had the highest accuracy of 44.80% with the use

90



of seven variables. The research results can be conclude that the dynamic feature selection (DFS) algorithm had

higher accuracy and required fewer variables than the information gain and the gain ratio algorithm.

KEYWORDS : Factor analysis, Overlopped data sets, Dynamic feature selection (DFS)
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