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ABSTRACT

This research work, a model for semantic decision making is aimed at providing an adaptive neuro-fuzzy
combined with ontology for blood diagnosis. The neuro-fuzzy ontology was designed with nine input fields and three
output fields. The input variables are FBS, BUN, Creatinine, Uric acid, Cholesterol, Triglyceride, ALP, ALT and AST. The
output fields were results of interpretation of laboratory blood diagnosis, diagnosis of disease and risk levels of disease
which are classified intfo fuzzy linguistic variable. The data set used neural network modeled to make it appropriate
for the training, in diagnostic rule then the initial fuzzy structure was generated, the semantic rules base was learned
with the set of training data after which was tested and validated with the set of testing data. In this paper, we

presented an implementation of this ontology in Protégé using OWL and SWRL rule that  can be inferred to blood
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diagnosis results from an existing semantic knowledge-based. The efficiency in providing accuracy for blood diagnosis

of the proposed model was evaluated by precision (98.2%), recall (97.4%) and F-measure (95.1%) measurement,

KEYWORDS: Ontology, Semantic Decision Making, Adaptive Neuro-Fuzzy, Blood Diagnosis
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(Hierarchy) THULAAITNANLELIISTZMINULIAN (Concept)
ﬁﬁﬁ’]ﬁty (Keyword)

4)  Formalization tun"9UNUUIAA ANENALY
m%’mnzﬁu‘lugmmmmﬁhﬁmmm (Synonym) Auila
(Translated Term) LazAED (Acronym) tneiEiavanAugIY
AVIUININTUNNE UMLS (Unified Medical Language
System) LLSZﬁ’]LLHZﬁ’W’]ﬂQL%ﬂT}J’]QJ

5  Implementation uAuAALANTINA L
Aldianununaseouinias Taellsunsy Protege OWL
editor

& Evaluation NsUsziliupugNABdvas

TAssas1ennulnlaa



7 Documentation tunisiuintaya
n9asne mMaguasnm uazmatihifldfuesesulnlad
2. WaguazmAaudsn1w (Linguistic Variable)
ipuuuWagatunsalsre e b lunisagune
Aaaaiautls Wy Kansessitnealudesldsne i
T lduaneE s fninmaludon Tunneghls
anunsodeulaily szitimaludenn fuilesse
snsthmaiTusuLlsnn Linguistic Varidole) ailuitnin
fardmunlusssnzuuuiad MUl imusuuin
ANNATLS wardayaduaunudlusauinlas mulsnimn
ﬂhﬂﬁ’mumm'ﬁsuaﬁqﬁ%@%ma%ﬂugﬂ@mmwimﬂﬁw'aﬁmm
(Linguistic Term) wazlugtiunm Tnaldieidunnuu
AUNTN (Membership Function) Aaaginemulsddnsnl
A sednienaludan SAwatinsnily (very Low, Low,
Normal, High, Very Highy #1i1 iasiirsutsiivanias s
Aulsidenaar Wanduanuduaunan ((0.60), (61,70),
(71.110), (111200), (201,400 31l 3 uansfoEis
R a9t haaluEen

Very Low  Low Normal  High

D80S

0 - 110 140 200 .. 400

Very High

—

Truth value

FBS mg/dl

AN 3 uansmutlsnnen aawrzautanalulGen

3. N19ATNNYGIIIAMUNUNE
I dl q o s o 4'

ngidudiun danudrAglunisyrinaun e
nsayuilvinansfnaula ngiisanuvinetingrasiad
dJ v v
unlAlugtluuuaasng IFTHEN Rules Tvanunsnaiaungln
188 Ny TwAarNHazLuNISUINANIIATIAEDANINIEN
Ufisnisuanansun edladulsanazainuidsslu
mafintsa Tnautngeanidungu 5 nqu lhun nquauia
UnArasszathemaluden mmtnUnAveanisyinuaess

mfamamﬂﬂa‘umni:@ﬂua:ﬁ’]@, AunaUnFAuadluilu@en

uazANURALNAvBINIINIITENRL Matenglunguues

a a o &
mmmmﬂﬂmm\‘lq AN

ng n:
If AmsavdunmiiszaLtmaludaniniiy 105
mg/dl
= s 9: 5 I 1 a
Then  ulanadanszauiimnaludenatluting
uazlunwuanu@aalunisaiialsaiunmanu
ng 2:
If HMTI9ETNINAITTAL BUN WL 30 mgy/dl uas
13261 Creatinine WAL 1.5 mg/dl
= o a a = ql
Then  uwilatai@annisvinaruuadlanalng uasiianuides
Naziinlsnln
ng 3
If HAATI9AUNNAITTAL Uric acid Wil 10 mgy/dl
= = % a = | a
Then  ulanaldandszaunsassaludangininngun
- 4 A4 - o .
waziianudesnaziinlsaiingig
ng 4
If HMTI9ATNNAITTAL Cholesterol 11111 230
mg/dl wazlszmy Triglyceride WML 250 mgydl
Then uilanadeniiszavluduluidongeniminsidntes
- 4 A4 A -
uazdAnuldssnazinadlanasianniaan
ng &
If AMTINETNTNAITTAL ALP 1111 200 U/L wae
T32MI ALT WAL 250 U/L WALsyel AST WL
250 U/L
= = s « s = | a
Then utlanadaniszauiaulmianduludenginantng
NNFYNUADIAURRUNG  LazliAUIAENNALIRA

TsafeniuAuas

) - Va ! -

4. wuus1aaannsisaugilaNadaaulnlad
wuuanaastrlstadeaulniadinugiunanues
19851l UNITYINULeIN GTana nAdNWITN LAY
(Fuzzification) WagauLWaLsud (Fuzzy Inference) Uac

= a s e R Y o a kK = Vv
alTiAdL (Defuzzfication) 19 danaaulunisiFausuuy

TAsetnelsvanmiauLULASUNSEaUNAY (Backpropagation)
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lunrsasunarnisUfulsaingiianununesasaaulnlad
Tuduuasdayadunn (Antecedent) waznisiiimasludu

YDINAANTURINGT (consequent) AILAASIUNINA 4

Training Data

Adaptive
Fuzzy Rule Base

<

188 rules

Neuro-Fuzzy

Testing Data J

dl = Vv a S a
AINN 4 mmﬂugLLuumTa*VTsﬁsﬁaau'Ime

5. Tumamfi@ﬂué' (learning Pattern Model)
WlunsaeussulnladlviinsFeugineldnguiaadassne
Uszannifieunnsifauiuuuilgany (Supervised Leaming)
ImﬂiﬁﬂyjaﬁliﬁﬁﬁmsLm?ﬂm”lﬁl,t,ﬁﬂ%auﬁLﬂuﬂ;mmsaau
tinasuiueaulnlad tnslfinatianisGaudueddasaans
Usz@ M MNEULULLNT EUNAY (Back-propagation
Leamning Algorithm) iudnaausaulnladliiianisEaug
lgndayadmiunisaaugunadnliludiseing waod
msﬁﬂ%’mgm?{ﬂul,t,ﬂmmLﬁummﬁmﬂimm (Linguistic
Variable) wazwanduanuduaundin (Membership
Function) ludaudiuaasdayadunm (Antecedent) waz
W10 LADT A IUUDINAA NG VI TE (Consequent)
'fmﬂ’hm'ﬁNaé’wéﬂjawmgmﬂgﬁmmgﬁﬁmaéiuﬁﬁﬁﬂam*ﬁlﬁ
M?\ammmamuﬁlurﬁfﬁwmqmﬁwm@aammuimqﬂhﬂﬁ

aaulnla’a Aauandluning 5
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Training Data
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Training Data Adaptive
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1. aaulnlaanisitaaalsmnanuansiaiaan

NNMILBIAANLT B LIIAUBINIEATIAITAE
el fiiRnsnanisunng nasutlanansiaden uaz
nsatiadalsasnnuansiaden uimundugiuaug
saulnladdaelilsunsn Protégé 3.4.4 aaulnlaifle
132nNaUATE 8 AANANAN (super-class) AR laboratory
Interpretation, Laboratory Method, Laboratory Process,
Laboratory Result, Laboratory Test, Laboratory Quality,
Personal Status WAz Specimen Type Wazilsznavumas
AANatiaE (sub class) TunnAATaVAN MatnduadAaIALeE
994 laboratory Interpretation Usznavllmaiemanatas
Diagnosis, Disease, Recommendation a2 Risk Degree

AauanslunIng 6
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AN 6 uanalasiassaInang

Anudunusrevasuinladdsznavulum e
AMUAUNUSWULLLY is-a WAY part-of lUauLa9
mmé’mﬁuéﬁﬁmumﬁumqﬁv’qgﬂmemmmé’uﬁuéﬁzmﬂw
AANANLAANA (Object property) WAZAMUALNUEIZIING
AANENUANB UALAUA (Datatype property) M28E74
ANUALIUSITMINARANLAANA 1AL hasTest, hasDiagnosis,
hasRisk_Degree, hasDisease WURY LaZAIa819U8a
ANUAUNUSTZNINNABIANLAIDUALAUE LU hasFBS,
hasBUN, hasCreatinin, hasUric_acid, hasCholesterol,
hasTriglyceride, hasALP, hasALT, hasAST wWunu
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U ANRUALALATRIAANA Risk Degree isznaulilaiean
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Urmaludenluniny 7 wunisldwadaudsnisdly

dutlsznauand Aana ANUALTUS LLa:éauSﬁmﬂaEuaLLmué

WatinAuasalunsanaulalving

(Vo A
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@ N

= - = p| Very High
Sl
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AN 7 Mmasalad saudsnnnluasulnla’

2. msysunemMsiadaainlunisiliaungidie
AUNUNE

NN9ATNNHLIIAMUNLNE (SWRL) el
vuguaugeaulnlainisiidadulsnainuansiaiien
a$19LL SWRLTab fauanslunind 8 uazldngnissindla

TNANUMLNEMIYAL 188 Ng) AILAAIAIDEINATLAN

X aloi=
Be B8 Busc QA By (e Do e Gl b
el ¢80 i SEE 4p ~f€pmeg£
[P T R T TR T T P
T ke AERRs0
s - Exresson
[ep— Crmmezry_Toud_Profler) » hatAl[%, o o r-lunw PL T P T e —— e
0 et Gasconn FeskTe) » S, 2 (1, M) s, ) haon e, ) = st
D e} um_rmm.mmﬁw.m_n e T, Nn s e a7 1) 5 Pk
O e Casoon foet M, . M)A AL
I el Cacase_TerT) o haof S0, T o haaeenarel Ty, hasCuagrener . T ek m-.-v._m M’*M"In| b
DM it w_r.qm.umﬁw..—:_u.m maiCoagrean s, Wi il Py, 111) 4 Fert g T 7y, ) = Pl |
T ik Ccnnn_Tes) o aafBS7s, T 4 hacCionstalTy, ) & hasCiagrone s, Wi, vt Thany, J000) A hasftel,Degrea’s, ) < sqert|
Cond_pae? Ure_ad Seet )+ s s, Tus) & heeCioeme ™, ) 8 ) 2, i ies Thanan, B Ayt Thar s, 7] 4l
G} Ure_Acad Seet) « bl sl s, Pum) A heeCiomunn s 781} & heeCuagross . ] 2 pertines Than( . 10) A sert grester Than v, 1) & |
oo Ui B o P s, o) bneCimmen B, P} '-iq—’\k‘ﬂamn Phariion, T) o hueites, Doy, ¥) = 9|
ek s B hasie s, P, e} , 10 4 ik Dogree s, ] - |
Ll et Vot testw) Sty 0 L 50 actmema, ) |
Lgs_ruet) o) P hestens s, S 1 s rghvcomcel 5, ) & r—ty—n-ommum-umwm i |
L et Lo Toet w1 wa . 20 » et |
Lt _puert 2 Lot Test g} % WA " [chal, X0 = woelt ot |
Lt _pubert ) Lot et ) 5 " ¥ 0 A 5 T & et groster |
Lo i Lot _teew) %, 0 300 gt 25 e
Lt et S Lot . ehe) , 20 - 50 & pe et |
ey Lo S o ¥ =0 p——
ey Lo St v, 20 st 500 » sk ot |
Ll _puetd Lo Tutr ) el ™, ’hu 1 e, 4] o s Tha. |
Lt ety Lot et 0. il 430) « percrester |
L_rued .wi.q-.um__-:hum .-hp_nn, \-u Mmhﬁh!tlnmm"ﬂwmlﬁﬂyﬂ- {
Lt i) ] 250 S pe——.
Lt Vos_tstw) trighy t‘-' w2507 et 430 o et o |
L 22 Lo tee ) et i) henel, 430 [, 140 & et £ |
I L e} Lot Testrp) 3 o ) & o a 41 o puetiestth ¥

NN 8 LARINgLIEULL SWRL Tab

9 7 unsay - sunAw 2558 B5

Ozk



ngatadalsAluInIIY
ngﬁ-]: Blood test (?1) A hasFBS (71, ?s) A swrib:lessThan
(?s, 60) A hasRisk_Degree (?t, ?r) A hasDiagnosis (?t,

?2d) A haosDisease (?t, ?ds ) —> sqwrliselect (7s, ?d, ?ds, ?r)

ngﬁ-z: Blood test (?1) A hasFBS (?t, ?s) A swrlb:lessThan
(?s, 70) N\ swrlb:greaterThan (?s, 59) A hasRisk_Degree
(?t, ?r) A hasDiagnosis (?t, ?d ) A hasDisease (?f, ?ds)

—> sqwrliselect (?s, ?d, ?ds, ?r)

ngﬁ-s: Blood test (?1) A hasFBS (71, ?s) A swrlb:lessThan
(?s, 111) A swrlb:greaterThan (7s, 69) A hasRisk_Degree
(?t, ?r) A hasDiagnosis (?t, ?d ) A hasDisease (?f, ?ds)

—> sqwrliselect (?s, ?d,?ds,?n)

n{]ﬁ-n: Blood test (?t) A hasFBS (?t, ?s) A swrlo:
greaterThan (?s, 201) A hasRisk_Degree (?t, ?r)
A hasDiagnosis (?t, ?2d ) A hasDisease (?f, ?ds ) —>

sqwrl:iselect (?s, ?d, ?ds, ?r)

Aadelsaion

n{];‘]l-l: Blood test (?t) A hasUric_acid (?t, ?ua) A
swrlb:lessThan (?ua, 3) A haosRisk_Degree (?1, 71 A
hasDiagnosis (?t, ?d ) A hasDisease (?t, ?ds ) —>

sqwrliselect (?ua, ?d, ?ds, ?r)

ngﬁ-2: Blood test (?t) A hasUric_acid (?t, ?ua) A
swrlb:lessThan (?ua, 7.1) A swrlb:greaterThan (?ua, 2.9)
A hosRisk_Degree (?t, ?r) A hasDiagnosis (?t, ?d )

hasDisease (?t, ?ds ) — sqwrliselect (?ua, ?d, ?ds, ?r)

ngﬁ-s: Blood test (?t) A hasUric_acid (?t, ?ua) A
swrlb:lessThan (?ua, 10.1) A swrlb:greaterThan (?ua, 7.0)
A hasRisk_ Degree (?t, ?r) A hasDiagnosis (?t, ?2d) A

hasDisease (?t, ?ds ) — sqwrl:iselect (?ua, ?d, ?ds, ?r)

56

ﬂgﬁ-n: Blood test (?t) A hasUric_acid (?t, ?ua) A
swrlb:greaterThan (?ua, 10.0) A hasRisk_Degree (?t, ?r)
A hasDiagnosis (?t, ?d ) A hasDisease (?t, ?7ds ) —

sqwrl:select (?ua, ?d, ?ds, ?r)

EDCLURLEVERE IR TR

ﬂ{]ﬁl-l: Blood fest (?t) A hasBUN (?t, ?b) A
hasCreatinine (?t, ?c) A swrlbilessThan (?b, 22) A
swrlb:greaterThan (?b, 8) A swrlb:lessThan (?c, 1.2) A
swrlb:greaterThan (?c, 0.8) A hasRisk_Degree (?t, 7r) A
hasDiagnosis (?t, ?d ) A hasDisease (?t, ?ds ) —

sqwrl:select (?b,?c, ?d.,?ds,?r)

ﬂ{]"?%—2: Blood test (?1) A hasBUN(?t, ?b) A hasCreatinine
(?t, ?2¢) A swrlbilessThan (?b, 31) A swrlb:greaterThan
(?b, 22) A swrlb:lessThan (?c, 1,6) A swrlb:greaterThan
(?c, 1.2) N haosRisk_Degree (?t, ?r) A hasDiagnosis (71,
?d ) A hasDisease (?f, ?ds ) —> sqwrl:select (?b, ?c,

?d, ?ds, 7

ﬂ{]ﬁl-s: Blood fest (?t) A hasBUN (?t, ?b) A
hasCreatinine (?t, ?c) A swrlbilessThan (?b, 41) A
swrlb:greaterThan (?b, 30) A swrlb:lessThan (?c, 3.0) A
swrlo:greaterThan (?c, 1.5) A hasRisk_Degree (?t, 7r) A
hasDiagnosis (?t, ?d ) A hasDisease (?t, ?ds ) —

sqwrliselect (?b ,?c, ?d, ?ds, ?r)

ﬂ{]‘?ll-n: Blood test (?1) A hasBUN (?t, ?b) A hasCreatinine
(?t, ?¢) A swrlb:greaterThan (?b, 40) A swrlb:greaterThan
(?c, 3.0) A hasRisk_Degree ((?t, ?r) A hasDiagnosis
(?t, ?2d ) A hasDisease (?t, ?ds ) — sqwrl:iselect (?b,

?c, ?d, ?ds, ?n)



2adrgraulutuluipan

ﬂ{]“?ll-h Blood fest (?f) A hasCholesterol (?t, ?7¢c) A
hastriglyceride (?t, ?tg) A swrlb:lessThan (?c, 200) A
swrlb:lessThan (?tg, 200) A hasRisk_Degree (?t, ?7r) A
hasDiagnosis (?t, ?d ) A hasDisease (?t, ?ds) —>

sqwrl:select (?c, ?tg, ?d, ?ds, ?r)

ﬂ{]“?ll-2: Blood test (?1) A hasCholesterol (?1, ?c) A

hastriglyceride (?t, ?tg) A swrlb:lessThan (?c, 241) A
swrlb:greaterThan (?c, 200) A swrlb:lessThan (?tg, 241)
A swrlb:greaterThan (?tg, 200) A hasRisk_Degree (71,
?n A hasDiagnosis (?t, 7d ) A hasDisease (?f, ?ds) —>

sqwrl:select (?c, ?tg, ?d, ?ds, ?r)

ﬂ{]“?ll-s: Blood test (?1) A hasCholesterol (?1, ?c) A

hastriglyceride (?t, ?tg) A swrlb:lessThan (?c, 401)
swrlb:greaterthan (?c, 140) A swrlb:lessThan (?tg, 401)
swrlb:greaterThan (?tg, 140) A hasRisk_Degree (?t, ?n)
hasDiagnosis (?t, ?d ) A hasDisease (?t, ?7ds ) —

sqwrl:select (?c, ?tg, ?d, ?ds, ?r)

m’ﬁ‘;-n: Blood test (?1) A hasCholesterol (?t, ?¢c) A

hasTriglyceride (?t, ?tg) A swrlb:greaterThan (?c, 400)
A swrlb:greaterThan (?tg, 400) A hasRisk_Degree (?1,
20 A hasDiagnosis (?t, ?d) A hasDisease (?t, ?7ds) —>

sqwrl:select (?c, ?tg, ?d, ?ds, ?r)

2UAQEN19N1NUARIA U

ﬂgﬁ-]: Blood test (?1) A hasALP (?t, ?a) A hasALT (?t,
?al) A hasAS T(?t, ?as) A swrlbilessThan (?a, 101) A
swrlb:greaterThan (?a, 34) A swrlb:lessThan (?al, 37) A
swrlb:greaterThan (?al, 0) A swrlb:lessThan (?as, 36) A
swrlb:greaterThan (?as, 5) A hasRisk_Degree (?t, ?r) A
hasDiagnosis (?t, ?d) A hasDisease (?t, ?ds) —>

sqwrl:select (?a, ?al, ?as, ?d, ?ds, 7

ﬂ{]“?ll-2: Blood test (?H) A hasALP(?t, ?a) A hasALT
?t, ?2al) A hasAST(?t, ?as) A swrlb:lessThan (?a, 301)
A swrlb:greaterThan (?a, 100) A swrlb:lessThan (?al, 301)
A swrlb:greaterThan (?al, 100) A swrlb:lessThan (?as, 301)
A swrlb:greaterThan (?as, 100) A hasRisk_Degree (?t, 71
A hasDiagnosis (?t, ?d) A hasDisease (?f, ?ds ) —>

sgwrliselect (?a, ?al, ?as, ?d, ?ds, ?r)

m’ﬁ‘;-n: Blood test (?1) A hasALP (?f, ?a) A hasALT
?t, ?2al) A hasAST (?t, ?as) A swrlb:greaterThan
(?a, 500) A swrlb:greaterThan (?al, 500) A
swrlb:greaterThan (?as, 500) A hasRisk_Degree (?t, ?r)
A hasDiagnosis (?t, ?d) A hasDisease (?f, ?ds) —>

sgwrliselect (?a, ?al, ?as, ?d, ?ds, ?r)

3. wan1siFausuazliudalaaaing
NN9FEUTURINGY (Semantic Rule Training) 31N
nsthdayadrausnunilnliesulnladludiuaaingd
= Vv 4‘ L% a s = zﬁ ] v
neiFeug eliunsiimesvaaingiad niludiuuasdaya
AIUTN1ENURIANBUALAUE LavAIunINanTUNTII Y
AUNTN NN 9 LLammaﬂ’ﬁﬂ?uﬂg\ﬂuéaummﬁfaLLﬂﬁm‘m

2BINYNNTATIRUIPALULEDA

—{ Low, Normal, High

Adaptive !
a B

N
[ Very Low. Low. Normal, High.

Very High )
—{ [0.70]. [71.110]. [111.500]
Adaptive v
%

[0.60]. [61.70]. [71.110].
[111.300]. [301.500].

A 9 NslfuAmAMULsNENRINgIINNTEELS
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NuansaEan nasandnisiieeulnlasidnisieug
LLa:ﬂ%’uﬂqqngwﬁmmmg]ﬂﬁawmmﬂmamammmaam
uaznsitasslsaluldmuandvung SaAin1smaaay
ff«mﬂﬂ;mﬂﬁauﬂamimaauiﬁm Precision, Recall a2 F-mea-

sure AdLAAIlUAITIN 1
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Precision 982 %
Recall 97.4 %
F-measure 95.1 %
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