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Abstract  
 This study proposes a semi-supervised learning framework for left atrium (LA) segmentation 

from three-dimensional cardiac Magnetic Resonance Imaging (MRI) using pseudo-labeling.                           

The objective is to improve segmentation performance under limited labeled-data conditions.                   

The proposed method integrates a 3D U-Net architecture with an iterative training pipeline and 

dynamic confidence-based pseudo-label refinement. Using the Medical Segmentation Decathlon 

dataset, experiments demonstrate that the semi-supervised model achieves a mean Dice Coefficient 

(DSC) of 0.9066 ± 0.0043 and a mean Average Hausdorff Distance (AHD) of 2.2409 ± 0.3661, surpassing 

the fully supervised baseline (DSC: 0.8519 ± 0.0395; AHD: 4.7696 ± 1.3128). Qualitative evaluation 

further confirms reduced false positives and enhanced anatomical precision. The results indicate 

that the proposed approach effectively leverages unlabeled data to achieve high segmentation 

accuracy with minimal manual annotation, providing a practical solution for clinical management of 

atrial fibrillation (AF). 
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Introduction 
AF is a significant global public health concern. While the age-adjusted prevalence of AF has 

remained relatively stable between 1990 and 2019, the numbers of affected individuals and 

Disability-Adjusted Life Years (DALYs) have increased significantly. This rise is primarily attributed to 

population aging and growth (Roth et al., 2020). Recent studies in the United States have reported 

an AF prevalence as high as 3.89%, exceeding previous estimations, with variations across 

demographic groups. For instance, men are more prone to AF than women, while non-Hispanic 

Whites exhibit a higher prevalence compared with other groups (Oltman et al., 2024). In Thailand, 

community-based screening among adults aged ≥ 65 years showed an AF prevalence of 2.8% 

(Suwanwela et al., 2021), and among hypertensive patients, the prevalence was 3.46% (Krittayaphong 

et al., 2016). These findings highlight a heightened burden in high-risk populations such as the elderly 

and those with cardiovascular comorbidities, underscoring the need for effective screening and 

diagnostic methods. 

A detailed understanding of the LA structure is crucial for AF management. LA imaging using 

MRI provides highly accurate structural information, serving as a vital tool for optimal treatment 

planning. Deep learning—particularly convolutional neural networks (CNNs)—has emerged as a 

powerful technique for medical image segmentation due to its ability to automatically extract 

hierarchical and spatial features. This enables more accurate, robust, and scalable segmentation 

compared with traditional methods that rely on handcrafted features or manual rules. In the context 

of LA segmentation, deep learning models can better capture complex anatomical variations, which 

is critical for clinical decision-making. Although deep learning techniques for MRI analysis and 

segmentation can yield promising results, many rely on fully supervised learning, which requires 

large amounts of accurately labeled data. This requirement poses a significant challenge, as acquiring 

expert-annotated medical images is costly and time-consuming. In contrast, semi-supervised learning 

approaches aim to reduce dependency on labeled data by leveraging both labeled and unlabeled 

datasets. These methods strike a balance between performance and annotation efficiency, and they 

have recently gained attention as a promising direction in medical imaging. For instance, a recent 

study demonstrated that semi-supervised learning techniques achieved significantly improved 

segmentation performance for brain metastases on multicenter MRI data, especially in low-label 

scenarios (Ottesen et al., 2024). Their findings underscore the robustness and generalizability of semi-

supervised approaches across heterogeneous datasets, highlighting their potential in real-world 

clinical applications where annotated data is limited. Therefore, integrating deep learning with semi-

supervised techniques offers a practical solution to enhance the utilization of available data while 

reducing the reliance on extensive manual annotation by medical experts (Wang et al., 2022). 
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In practice, deep learning models for MRI-based segmentation typically require a substantial 

amount of annotated data to achieve robust and generalizable performance. The effectiveness of 

these models has been shown to improve with increases in both the number of labeled training 

samples and the spatial resolution of the input data, reflecting the importance of data volume and 

structural detail in complex anatomical segmentation tasks (Yang et al., 2024). Similarly, a study 

evaluating U-Net performance in organ segmentation found that the DSC started at 0.424 with just 

eight labeled cases and increased substantially to 0.858 with 160 cases, reaching 0.867 when trained 

with 320 cases. This trend underscores the strong dependency of segmentation accuracy on the 

availability of sufficient annotated data (Bardis et al., 2020). These observations reinforce the notion 

that high-quality labeled datasets—often comprising tens to hundreds of annotated cases—remain 

critical factors in the success of supervised deep learning methods for MRI segmentation. 

Despite the clear benefits of using large annotated datasets, assembling such datasets 

remains a formidable challenge. An analysis of Medical Image Computing and Computer Assisted 

Intervention (MICCAI) publications between 2011 and 2019 revealed that the geometric mean of 

dataset sizes grew at annual rates of approximately 21% for MRI, 24% for Computed Tomography 

(CT), and 31% for functional MRI (fMRI), reflecting increasing community expectations for larger 

datasets in medical image analysis (Kiryati and Landau, 2021). In a more tangible exemplar, 

segmentation of multi-organ CT volumes in the AbdomenAtlas project estimated that a trained 

annotator might spend 30–60 minutes per CT volume under manual annotation, and completing all 

8,448 CT volumes by conventional means would require on the order of 1,600 weeks (~30.8 years) 

of continuous effort (Qu et al., 2023). Such formidable time and labor demands underline the 

infeasibility of relying solely on fully annotated datasets, motivating approaches such as semi-

supervised learning, active learning, pre-annotation, and annotation-correction guidance to alleviate 

annotation burden. 

This research employs semi-supervised learning to address the limited labeled data 

challenge in LA segmentation from MRI images. In this study, we intentionally adopt an extreme 

low-data scenario as the labeled set while leveraging additional unlabeled images via pseudo-

labeling. This constraint is chosen to simulate real-world clinical settings where expert-annotated 

data are scarce. The proposed method will be benchmarked against a fully supervised baseline 

under identical data conditions to evaluate how much semi-supervised learning can mitigate 

performance degradation due to the low sample size. 
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Research Objectives 
1.  To develop a semi-supervised learning framework for LA segmentation in 3D cardiac MRI 

using pseudo-labeling. 

2. To benchmark the proposed method against a fully supervised baseline under limited 

labeled-data conditions. 

 

Literature Review 
Conventional LA segmentation often employs CNNs in conjunction with supervised learning 

techniques. For instance, Zhang et al. (2021) presented a CNN model integrated with Bayesian 

filtering for LA segmentation from MRI, achieving a DSC of 94.1% for 2-chamber, 3-chamber, and                

4-chamber views. Similarly, Aryan et al. (2022) utilized U-Net with ground-truth MRI data, reporting a 

DSC of 0.94. However, traditional CNN-based approaches are limited by their reliance on large 

amounts of labeled data, which can be a significant obstacle in medical applications where such 

data are scarce. To address this limitation, Swetha et al. (2023) proposed an improved U-Net 

architecture incorporating skip connections to enhance LA segmentation accuracy while reducing 

the dependence on extensive labeled data. Furthermore, Uslu et al. (2021) introduced LA-Net, which 

employs cross-attention modules (CAMs) and enhanced decoder modules (EDMs) for LA 

segmentation without requiring post-processing, demonstrating advancements in techniques that are 

less reliant on labeled data. 

The DSC has become a widely adopted metric for evaluating segmentation performance in 

medical imaging, particularly in tasks involving small and irregular structures like the LA. According 

to Taha and Hanbury (2015), DSC provides a robust and intuitive measure of spatial overlap between 

predicted and reference segmentations, making it especially suitable for 3D image analysis. However, 

DSC, being overlap-based, may not fully capture spatial discrepancies, and it therefore should be 

considered alongside other evaluation metrics in some cases. Similarly, Müller et al. (2022) proposed 

practical guidelines for selecting evaluation metrics in medical image segmentation, recommending 

DSC as a primary metric due to its interpretability, while also encouraging the use of complementary 

measures—such as the AHD and sensitivity—to gain a more comprehensive understanding of model 

performance, especially in the presence of class imbalance. 

To mitigate the limitations associated with extensive labeled data requirements, semi-

supervised learning has gained attention for LA segmentation, leveraging unlabeled data in 

conjunction with a limited amount of labeled data. For example, Wang et al. (2022) presented a 

Dual-Consistency technique using only 20% labeled data and 80% unlabeled data, employing 

model-level perturbations and structure-level spatial contextual perturbations to improve LA 
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segmentation accuracy. Likewise, Shi et al. (2024) employed a Multi-Level Consistency technique 

emphasizing consistency across multiple levels, including the use of virtual adversarial training to 

enhance unlabeled data utilization, achieving a DSC of 91.69%. Additionally, Liu et al. (2022) 

proposed a semi-supervised framework comprising a segmentation model and a classification model 

with a contrastive consistency loss to facilitate better discrimination between labeled and unlabeled 

data, achieving a DSC of 89.81%. More recently, Xu et al. (2024) introduced SAMatch, which utilizes 

a SAM-guided match-based framework to generate pseudo-labels from unlabeled data, 

demonstrating excellent results in LA segmentation even with limited labeled data, such as achieving 

a DSC of 89.36% on the Automated Cardiac Diagnosis Challenge (ACDC) cardiac MRI dataset. These 

techniques demonstrate the potential of semi-supervised learning to improve LA segmentation 

performance without necessitating large labeled datasets. 

While supervised learning can achieve satisfactory results in LA segmentation, it remains 

dependent on substantial labeled data, which can be a constraint in medical contexts due to the 

limited availability of such data. Conversely, semi-supervised learning techniques can leverage 

unlabeled data alongside a small amount of labeled data to enhance LA segmentation performance 

without excessive reliance on labeled data. Therefore, this research compares the performance of 

semi-supervised learning against supervised learning to evaluate which technique achieves superior 

LA segmentation accuracy in limited labeled-data scenarios. 

 

Research Methodology 
This study proposes a semi-supervised learning framework for LA segmentation in three-

dimensional cardiac MRI, aiming to overcome the challenge of limited annotated data. The proposed 

method integrates a 3D U-Net architecture with a confidence-based pseudo-labeling strategy and an 

iterative training pipeline. The methodology comprises four main components: dataset preparation, 

model architecture, pseudo-labeling strategy, and training procedure. 

1) Dataset Preparation  

Experiments were conducted using the Medical Segmentation Decathlon (MSD) Task 0 2: 

Heart dataset (Antonelli et al., 2022), which consists of 30 cardiac MRI volumes—20 labeled and 10 

unlabeled. Two dataset configurations were prepared for different experimental settings: 

- Baseline Set: This configuration uses only the labeled data. Ten labeled volumes were 

used for training and five for validation. The remaining five labeled volumes were excluded from 

both training and validation, and no unlabeled data were used. This setup serves as the baseline for 

fully supervised training. 
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- Semi-Supervised Set: This configuration includes both labeled and unlabeled data. 

The same ten labeled volumes were used for training and five for validation. The remaining five 

labeled volumes were reassigned as unlabeled, combining with the ten original unlabeled volumes 

to form a pool of fifteen unlabeled samples. To enhance the diversity of unlabeled data, 

augmentation techniques such as random rotation and zoom were applied, resulting in thirty 

unlabeled samples used for pseudo-label generation. 

The configurations of both sets are summarized in Table 1. 

 

Table 1 Dataset Configurations 

Configuration 
Training 

(Labeled) 

Unlabeled 

(Original) 

Unlabeled 

(Augmented) 

Validation 

(Labeled) 
Total 

Baseline Set 10 0 0 5 15 

Semi-Supervised Set 10 15 15 5 45 

 

2) Model Architecture 

The segmentation model is based on a 3D U-Net architecture, implemented using the MONAI 

framework due to its optimized support for 3D medical imaging and integration with PyTorch. The 

architecture comprises an encoder–decoder structure with skip connections and residual units, 

facilitating the preservation of spatial and contextual information throughout the network. All models 

were trained using the Adam optimizer with a learning rate of 0.0005, a batch size of 2, and a weight 

decay of 0.0001. To ensure a fair comparison, these hyperparameters were held constant across 

both supervised and semi-supervised training regimes. All experiments were executed on an NVIDIA 

Tesla P100 Graphics Processing Unit (GPU) with 15 GB of Video Random Access Memory (VRAM). 

3) Pseudo-Labeling Strategy  

To leverage unlabeled data, a confidence-aware pseudo-labeling mechanism was employed. 

During each training iteration, the current model was used to generate segmentation predictions for 

the unlabeled volumes. Voxel-wise confidence scores were obtained from softmax probabilities, and 

only predictions that exceeded a dynamically adjusted confidence threshold were retained as 

pseudo-labels. The threshold was initialized at 70% and incrementally increased up to 90%, based 

on the model’s validation performance. As the validation DSC improved, the threshold was raised 

to filter out low-confidence predictions, thereby ensuring the quality of the pseudo-labels. This 

dynamic adjustment helped reduce the propagation of noisy or unreliable labels into subsequent 

training stages.  
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These threshold values (0.70–0.90) were selected based on empirical observations. In our 

experiments, when the threshold was set below 0.6, the validation DSC often fluctuated significantly, 

suggesting the inclusion of noisy predictions. Setting the initial threshold (the starting point) at 0.7 

helped stabilize training, while increasing the threshold toward 0.9 as the model improved avoided 

overly strict filtering that would discard useful information. 

The total training loss was defined as a weighted sum of two components: a supervised loss 

from ground-truth annotations and an unsupervised loss from pseudo-labeled data. Initially, the 

pseudo-label loss was assigned a low weight (0.01) to minimize the influence of potential noise. This 

weight was gradually increased—up to a maximum of 0.4—according to model performance. This 

adaptive weighting strategy mitigated confirmation bias and enhanced training stability. 

The selected range of 0.01–0.4 for the pseudo-label loss weight was also based on extensive 

experiments. Fixed weights ranging from 0.1 to 1.0 were initially tested, and the best DSC values 

were consistently observed when the weight was between 0.2 and 0.4. We then explored adaptive 

schemes across several ranges (e.g., 0.1–0.3, 0.1–0.5) and found that a dynamic range of 0.01–0.4 

yielded the most stable and high-performing results. Starting from 0.01 allowed the model to 

cautiously incorporate pseudo-labels, while increasing the weight as performance improved enabled 

better utilization of unlabeled data. 

It should be noted that these values were empirically tuned for this specific dataset. When 

applying the method to other datasets, re-tuning these thresholds and weights is recommended. 

4) Training Pipeline 

The semi-supervised training follows a four-stage iterative pipeline designed to progressively 

refine segmentation performance (Figure 1): 

1. Initial Training: The base 3D U-Net is trained for 100 epochs using the 10 labeled 

training volumes to establish baseline segmentation. 

2. Pseudo-Label Generation: The trained model generates pseudo-labels for all 30 

unlabeled volumes. A dynamic confidence threshold (70%–90%), determined by the validation DSC, 

filters predictions to retain only high-confidence labels. 

3. Training with Pseudo-Labels: The model is trained for 300 epochs on the combined 

labeled and pseudo-labeled data. Supervised and unsupervised losses are calculated separately, 

with the pseudo-label loss weight gradually increasing from 0.01 to 0.4 to mitigate the impact of 

label noise. Pseudo-labels are regenerated iteratively as model performance improves. 

4. Fine-Tuning: After multiple refinement cycles, the model is fine-tuned for 100 epochs 

using only the original labeled data with a reduced learning rate to stabilize performance and 

mitigate residual noise effects. 
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(1) 

Early stopping is employed throughout training, terminating if the validation loss fails to 

improve for 20 consecutive epochs. Evaluations are conducted every two epochs to prevent 

overfitting and optimize computational resources. 

All stages use early stopping (20-epoch patience), evaluated every 2 epochs. 

Figure 1 Training pipeline 

  

 5) Evaluation Metrics 

 To evaluate segmentation performance, two standard metrics are used: the DSC and the 

AHD. These metrics assess the overlap quality and boundary accuracy between predicted and 

ground truth segmentations. 

1. Dice Similarity Coefficient (DSC) The DSC quantifies the overlap between the 

predicted segmentation and the ground truth. It is defined as: 

𝐷𝐷𝐷𝐷𝐷𝐷 =  
2|𝑃𝑃 ∩ 𝐺𝐺|
|𝑃𝑃| + |𝐺𝐺| 
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(2) 

where: 

P = set of predicted voxels  

G = set of ground truth voxels 

A DSC value ranges from 0 to 1, where 1 indicates perfect overlap and 0 indicates no 

overlap. This metric is particularly useful for evaluating the segmentation accuracy of anatomical 

structures. 

2. Average Hausdorff Distance (AHD) The AHD measures how closely the boundary of 

the predicted segmentation aligns with that of the ground truth. It is defined as the symmetric 

average of the distances from all points on one boundary to the closest point on the other boundary: 

𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴,𝐵𝐵) =  max �
1

|𝐴𝐴|�min
𝑏𝑏∈𝐵𝐵

‖𝑎𝑎 − 𝑏𝑏‖,
𝑎𝑎∈𝐴𝐴

1
|𝐵𝐵|�min

𝑎𝑎∈𝐴𝐴
‖𝑏𝑏 − 𝑎𝑎‖

𝑏𝑏∈𝐵𝐵

� 

where: 

A = set of boundary points from the predicted segmentation 

B = set of boundary points from the ground truth segmentation 

This metric computes the average of the minimum distances between boundary points of 

both segmentations. A lower AHD value indicates better boundary alignment and, consequently, 

higher segmentation accuracy—particularly important in applications involving fine or complex 

anatomical structures. 

 

Findings 
To evaluate the effectiveness of the proposed semi-supervised segmentation framework, a 

series of experiments were conducted to compare different training strategies: (1) fully supervised 

learning; (2) a vanilla semi-supervised variant excluding several key components (no confidence 

thresholding, no pseudo-label weighting, no iterative pseudo-label generation, and no fine-tuning); 

(3) semi-supervised learning without fine-tuning; and (4) semi-supervised learning with the full 

configuration. All experiments were performed under identical settings, including consistent dataset 

splits, hyperparameters, and computational resources. 

1. Quantitative Results 

Table 2 presents the quantitative results of segmentation accuracy and training time for all 

models. The full configuration semi-supervised model achieved the best performance, yielding a 

mean DSC of 0.9066 ± 0.0043 and the lowest mean AHD of 2.2409 ± 0.3661. This significantly 

outperforms the fully supervised baseline, which attained a DSC of 0.8519 ± 0.0395 and an AHD of 

4.7696 ± 1.3128. 
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Notably, the vanilla semi-supervised variant (DSC 0.8505) showed no improvement in overlap 

compared to the baseline but did achieve a better boundary alignment (AHD 2.8317) .  The model 

without fine-tuning (DSC 0.9045, AHD 2.4762) approached the performance of the full configuration, 

highlighting the substantial impact of the iterative pseudo-labeling. The markedly lower standard 

deviations for both DSC and AHD in the full semi-supervised approach indicate more stable and 

consistent performance across validation samples. 

However, this improved accuracy comes at the cost of increased computational time. The 

full configuration (1 5 1  ± 1 1  min) required substantially more training time than the supervised 

baseline (53 ± 4 min), reflecting the trade-off between performance and computational resources. 

To ensure statistical reliability, each model was trained and evaluated five times 

independently, and the results are reported as mean ± standard deviation. This approach mitigates 

the effects of randomness in training and provides a robust measure of consistency across runs. 

 

Table 2 Comparison of segmentation performance 

Model 
Dice Score 

(Validation Set) 

Average Hausdorff 

Distance 

Training Time 

(min) 

Fully Supervised 0.8519 ± 0.0395 4.7696 ± 1.3128 53 ± 4 

Semi-Supervised 

(Vanilla) 
0.8505 ± 0.0298 2.8317 ± 0.5691 92 ± 17 

Semi-Supervised 

(No Fine-Tuning) 
0.9045 ± 0.0071 2.4762 ± 0.4735 126 ± 10 

Semi-Supervised 

(Full Configuration) 
0.9066 ± 0.0043 2.2409 ± 0.3661 151 ± 11 

 

Figure 2 illustrates the training dynamics of both models. In the supervised setting, training 

loss decreased steadily, while the validation DSC plateaued around 0.85. In contrast, the semi-

supervised model exhibited fluctuations in training loss during epochs 100–250, coinciding with the 

integration of pseudo-labeled data. Despite these fluctuations, the validation DSC continued to 

improve, ultimately surpassing the supervised baseline following the fine-tuning stage. These 

observations underscore the importance of iterative pseudo-label refinement in enhancing 

segmentation accuracy, even under increased training complexity. 
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Figure 2 Training loss and validation Dice score for supervised vs. semi-supervised models 

 

2. Qualitative Evaluation 

In addition to quantitative metrics, a qualitative assessment was performed on withheld 

validation volumes to evaluate the anatomical plausibility and visual consistency of the segmentation 

results. As shown in Figure 3, all semi-supervised variants produced fewer false positives in non-

cardiac regions and demonstrated more anatomically accurate delineations of the LA boundary 

compared to the fully supervised model. 

Among the semi-supervised methods, both the configuration without fine-tuning and the full 

configuration yielded noticeably cleaner segmentations than the vanilla semi-supervised variant, 

which exhibited residual artifacts and over-segmentation in peripheral regions. The full-configuration 

model achieved the lowest number of false positives overall, while the no-fine-tuning variant 

produced slightly higher false positives but still performed substantially better than the vanilla 

baseline. 

These visual observations are consistent with the quantitative results reported in Table 2, 

reinforcing that iterative pseudo-label refinement and fine-tuning contribute to improved anatomical 

precision and reduced segmentation noise. 
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   Fully Supervised               Ground Truth                   Prediction                       Overlay 

Semi-Supervised (Vanilla)       Ground Truth                  Prediction                       Overlay 

 Semi-Supervised 

 (No Fine-Tuning)               Ground Truth                   Prediction                       Overlay 
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   Semi-Supervised 

 (Full Configuration)             Ground Truth                   Prediction                       Overlay 

 
 

 

 

 
 

Figure 3 Qualitative comparison of segmentation results 

 

Discussion 
The experimental results clearly demonstrate the effectiveness of the proposed semi-

supervised framework, particularly in data-scarce environments. The substantial improvement in 

mean DSC, combined with reduced variance, suggests that the model benefits significantly from 

leveraging unlabeled data through pseudo-labeling. This finding aligns with existing literature 

emphasizing the role of unlabeled data in enhancing model generalization. 

A key observation is that the semi-supervised model continues to improve even during 

stages of fluctuating training loss—especially when pseudo-labels are incorporated. This indicates 

that the model successfully learns meaningful representations from pseudo-labels despite the 

inherent noise. Qualitative results further confirm more anatomically plausible segmentations, 

supporting the hypothesis that unlabeled data can guide the model toward better anatomical priors. 

To mitigate the impact of noisy pseudo-labels, several strategies were implemented. First, a 

confidence-aware filtering mechanism was applied to exclude low-probability predictions, with the 
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confidence threshold dynamically increased from 0.70 to 0.90 as the model improved. Second, the 

loss weight for pseudo-labeled data was initially set to a very low value (0.01) and gradually 

increased to 0.4 based on the validation DSC, limiting the early influence of noisy labels. Third, data 

augmentation was applied to the unlabeled data pool to enhance diversity and reduce overfitting 

to spurious structures. 

Despite these strategies, some noise remains inevitable—primarily due to the limited training 

data, which constrains the model’s ability to generalize during early training. Increasing the size and 

diversity of the dataset represents a promising direction for further reducing pseudo-label noise. 

Incorporating additional labeled examples or employing self-supervised pretraining could further 

enhance the model’s robustness to label noise and anatomical variability. 

 

Suggestion 
 1. Suggestions for Research Utilization 

This study presents a semi-supervised segmentation framework based on a 3D U-Net 

architecture for LA segmentation from cardiac MRI. The framework was intentionally designed and 

evaluated under extremely limited labeled-data conditions to reflect practical constraints in clinical 

and research environments. By incorporating pseudo-labeling with dynamic confidence filtering, the 

method effectively leverages unlabeled data to improve segmentation performance while reducing 

dependence on manual annotation. 

Experimental results demonstrate that the semi-supervised model consistently outperforms 

its fully supervised counterpart in both accuracy and stability, despite being trained on only 10 

labeled volumes. This highlights the framework’s capability to operate effectively in data-scarce 

scenarios, addressing one of the key challenges in medical image analysis. 

The iterative refinement of pseudo-labels and the adaptive loss-weighting strategy further 

enhance model generalization without imposing significant annotation overhead. Nevertheless, the 

relatively small and homogeneous dataset may limit generalizability to more diverse clinical settings, 

and the training process remains computationally demanding. 

2. Suggestions for Further Research 

Future research will explore the scalability and adaptability of the proposed framework 

through the following directions: 1) Validation on large-scale datasets: Evaluating generalization 

across multi-center or population-level cardiac MRI datasets, 2) Transfer learning from big data: 

Pretraining on large datasets and fine-tuning on small labeled subsets for data-scarce domains, 3) 

Multi-scale pseudo-labeling: Incorporating anatomical context at multiple resolutions to improve 

pseudo-label robustness, 4) Adaptive uncertainty-aware weighting: Integrating uncertainty estimation 
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into the loss function to better handle noisy pseudo-labels, and 5) Efficiency-oriented 

implementation: Developing lightweight models suitable for clinical environments with limited 

computational resources. These directions aim to enhance scalability, robustness, and clinical 

applicability in future cardiac image-analysis systems. 
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