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Abstract

This study proposes a semi-supervised learning framework for left atrium (LA) segmentation
from three-dimensional cardiac Magnetic Resonance Imaging (MRI) using pseudo-labeling.
The objective is to improve segmentation performance under limited labeled-data conditions.
The proposed method integrates a 3D U-Net architecture with an iterative training pipeline and
dynamic confidence-based pseudo-label refinement. Using the Medical Segmentation Decathlon
dataset, experiments demonstrate that the semi-supervised model achieves a mean Dice Coefficient
(DSQC) of 0.9066 + 0.0043 and a mean Average Hausdorff Distance (AHD) of 2.2409 + 0.3661, surpassing
the fully supervised baseline (DSC: 0.8519 + 0.0395; AHD: 4.7696 + 1.3128). Qualitative evaluation
further confirms reduced false positives and enhanced anatomical precision. The results indicate
that the proposed approach effectively leverages unlabeled data to achieve high segmentation
accuracy with minimal manual annotation, providing a practical solution for clinical management of

atrial fibrillation (AF).
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Introduction

AF is a significant global public health concemn. While the age-adjusted prevalence of AF has
remained relatively stable between 1990 and 2019, the numbers of affected individuals and
Disability-Adjusted Life Years (DALYs) have increased significantly. This rise is primarily attributed to
population aging and growth (Roth et al., 2020). Recent studies in the United States have reported
an AF prevalence as high as 3.89%, exceeding previous estimations, with variations across
demographic groups. For instance, men are more prone to AF than women, while non-Hispanic
Whites exhibit a higher prevalence compared with other groups (Oltman et al., 2024). In Thailand,
community-based screening among adults aged > 65 years showed an AF prevalence of 2.8%
(Suwanwela et al., 2021), and among hypertensive patients, the prevalence was 3.46% (Krittayaphong
et al,, 2016). These findings highlight a heightened burden in high-risk populations such as the elderly
and those with cardiovascular comorbidities, underscoring the need for effective screening and
diagnostic methods.

A detailed understanding of the LA structure is crucial for AF management. LA imaging using
MRI provides highly accurate structural information, serving as a vital tool for optimal treatment
planning. Deep learning—particularly convolutional neural networks (CNNs)—has emerged as a
powerful technique for medical image segmentation due to its ability to automatically extract
hierarchical and spatial features. This enables more accurate, robust, and scalable segmentation
compared with traditional methods that rely on handcrafted features or manual rules. In the context
of LA segmentation, deep learning models can better capture complex anatomical variations, which
is critical for clinical decision-making. Although deep learning techniques for MRI analysis and
segmentation can yield promising results, many rely on fully supervised learning, which requires
large amounts of accurately labeled data. This requirement poses a significant challenge, as acquiring
expert-annotated medical images is costly and time-consuming. In contrast, semi-supervised learning
approaches aim to reduce dependency on labeled data by leveraging both labeled and unlabeled
datasets. These methods strike a balance between performance and annotation efficiency, and they
have recently gained attention as a promising direction in medical imaging. For instance, a recent
study demonstrated that semi-supervised learning techniques achieved significantly improved
segmentation performance for brain metastases on multicenter MRI data, especially in low-label
scenarios (Ottesen et al., 2024). Their findings underscore the robustness and generalizability of semi-
supervised approaches across heterogeneous datasets, highlighting their potential in real-world
clinical applications where annotated data is limited. Therefore, integrating deep learning with semi-
supervised techniques offers a practical solution to enhance the utilization of available data while

reducing the reliance on extensive manual annotation by medical experts (Wang et al., 2022).
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In practice, deep learning models for MRI-based segmentation typically require a substantial
amount of annotated data to achieve robust and generalizable performance. The effectiveness of
these models has been shown to improve with increases in both the number of labeled training
samples and the spatial resolution of the input data, reflecting the importance of data volume and
structural detail in complex anatomical segmentation tasks (Yang et al., 2024). Similarly, a study
evaluating U-Net performance in organ segmentation found that the DSC started at 0.424 with just
eight labeled cases and increased substantially to 0.858 with 160 cases, reaching 0.867 when trained
with 320 cases. This trend underscores the strong dependency of segmentation accuracy on the
availability of sufficient annotated data (Bardis et al., 2020). These observations reinforce the notion
that high-quality labeled datasets—often comprising tens to hundreds of annotated cases—remain
critical factors in the success of supervised deep learning methods for MRI segmentation.

Despite the clear benefits of using large annotated datasets, assembling such datasets
remains a formidable challenge. An analysis of Medical Image Computing and Computer Assisted
Intervention (MICCAI) publications between 2011 and 2019 revealed that the geometric mean of
dataset sizes grew at annual rates of approximately 21% for MRI, 24% for Computed Tomography
(CT), and 31% for functional MRI (fMRI), reflecting increasing community expectations for larger
datasets in medical image analysis (Kiryati and Landau, 2021). In a more tangible exemplar,
segmentation of multi-organ CT volumes in the AbdomenAtlas project estimated that a trained
annotator might spend 30-60 minutes per CT volume under manual annotation, and completing all
8,448 CT volumes by conventional means would require on the order of 1,600 weeks (~30.8 years)
of continuous effort (Qu et al,, 2023). Such formidable time and labor demands underline the
infeasibility of relying solely on fully annotated datasets, motivating approaches such as semi-
supervised learning, active learning, pre-annotation, and annotation-correction guidance to alleviate
annotation burden.

This research employs semi-supervised learning to address the limited labeled data
challenge in LA segmentation from MRI images. In this study, we intentionally adopt an extreme
low-data scenario as the labeled set while leveraging additional unlabeled images via pseudo-
labeling. This constraint is chosen to simulate real-world clinical settings where expert-annotated
data are scarce. The proposed method will be benchmarked against a fully supervised baseline
under identical data conditions to evaluate how much semi-supervised learning can mitigate

performance degradation due to the low sample size.
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Research Objectives

1. To develop a semi-supervised learning framework for LA segmentation in 3D cardiac MRI
using pseudo-labeling.

2. To benchmark the proposed method against a fully supervised baseline under limited

labeled-data conditions.

Literature Review

Conventional LA segmentation often employs CNNs in conjunction with supervised learning
techniques. For instance, Zhang et al. (2021) presented a CNN model integrated with Bayesian
filtering for LA segmentation from MRI, achieving a DSC of 94.1% for 2-chamber, 3-chamber, and
4-chamber views. Similarly, Aryan et al. (2022) utilized U-Net with ground-truth MRI data, reporting a
DSC of 0.94. However, traditional CNN-based approaches are limited by their reliance on large
amounts of labeled data, which can be a significant obstacle in medical applications where such
data are scarce. To address this limitation, Swetha et al. (2023) proposed an improved U-Net
architecture incorporating skip connections to enhance LA segmentation accuracy while reducing
the dependence on extensive labeled data. Furthermore, Uslu et al. (2021) introduced LA-Net, which
employs cross-attention modules (CAMs) and enhanced decoder modules (EDMs) for LA
segmentation without requiring post-processing, demonstrating advancements in techniques that are
less reliant on labeled data.

The DSC has become a widely adopted metric for evaluating segmentation performance in
medical imaging, particularly in tasks involving small and irregular structures like the LA. According
to Taha and Hanbury (2015), DSC provides a robust and intuitive measure of spatial overlap between
predicted and reference segmentations, making it especially suitable for 3D image analysis. However,
DSC, being overlap-based, may not fully capture spatial discrepancies, and it therefore should be
considered alongside other evaluation metrics in some cases. Similarly, Maller et al. (2022) proposed
practical guidelines for selecting evaluation metrics in medical image segmentation, recommending
DSC as a primary metric due to its interpretability, while also encouraging the use of complementary
measures—such as the AHD and sensitivity—to gain a more comprehensive understanding of model
performance, especially in the presence of class imbalance.

To mitigate the limitations associated with extensive labeled data requirements, semi-
supervised learning has gained attention for LA segmentation, leveraging unlabeled data in
conjunction with a limited amount of labeled data. For example, Wang et al. (2022) presented a
Dual-Consistency technique using only 20% labeled data and 80% unlabeled data, employing

model-level perturbations and structure-level spatial contextual perturbations to improve LA
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segmentation accuracy. Likewise, Shi et al. (2024) employed a Multi-Level Consistency technique
emphasizing consistency across multiple levels, including the use of virtual adversarial training to
enhance unlabeled data utilization, achieving a DSC of 91.69%. Additionally, Liu et al. (2022)
proposed a semi-supervised framework comprising a segmentation model and a classification model
with a contrastive consistency loss to facilitate better discrimination between labeled and unlabeled
data, achieving a DSC of 89.81%. More recently, Xu et al. (2024) introduced SAMatch, which utilizes
a SAM-guided match-based framework to generate pseudo-labels from unlabeled data,
demonstrating excellent results in LA segmentation even with limited labeled data, such as achieving
a DSC of 89.36% on the Automated Cardiac Diagnosis Challenge (ACDC) cardiac MRI dataset. These
techniques demonstrate the potential of semi-supervised learning to improve LA segmentation
performance without necessitating large labeled datasets.

While supervised learning can achieve satisfactory results in LA segmentation, it remains
dependent on substantial labeled data, which can be a constraint in medical contexts due to the
limited availability of such data. Conversely, semi-supervised learning techniques can leverage
unlabeled data alongside a small amount of labeled data to enhance LA segmentation performance
without excessive reliance on labeled data. Therefore, this research compares the performance of
semi-supervised learning against supervised learning to evaluate which technique achieves superior

LA segmentation accuracy in limited labeled-data scenarios.

Research Methodology

This study proposes a semi-supervised learning framework for LA segmentation in three-
dimensional cardiac MRI, aiming to overcome the challenge of limited annotated data. The proposed
method integrates a 3D U-Net architecture with a confidence-based pseudo-labeling strategy and an
iterative training pipeline. The methodology comprises four main components: dataset preparation,
model architecture, pseudo-labeling strategy, and training procedure.

1) Dataset Preparation

Experiments were conducted using the Medical Segmentation Decathlon (MSD) Task 02:
Heart dataset (Antonelli et al., 2022), which consists of 30 cardiac MRl volumes—20 labeled and 10
unlabeled. Two dataset configurations were prepared for different experimental settings:

- Baseline Set: This configuration uses only the labeled data. Ten labeled volumes were

used for training and five for validation. The remaining five labeled volumes were excluded from
both training and validation, and no unlabeled data were used. This setup serves as the baseline for

fully supervised training.
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- Semi-Supervised Set: This configuration includes both labeled and unlabeled data.
The same ten labeled volumes were used for training and five for validation. The remaining five
labeled volumes were reassigned as unlabeled, combining with the ten original unlabeled volumes
to form a pool of fifteen unlabeled samples. To enhance the diversity of unlabeled data,
augmentation techniques such as random rotation and zoom were applied, resulting in thirty
unlabeled samples used for pseudo-label generation.

The configurations of both sets are summarized in Table 1.

Table 1 Dataset Configurations

Training Unlabeled Unlabeled Validation
Configuration Total
(Labeled) (Original) (Augmented) (Labeled)
Baseline Set 10 0 0 5 15
Semi-Supervised Set 10 15 15 5 45

2) Model Architecture

The segmentation model is based on a 3D U-Net architecture, implemented using the MONAI
framework due to its optimized support for 3D medical imaging and integration with PyTorch. The
architecture comprises an encoder-decoder structure with skip connections and residual units,
facilitating the preservation of spatial and contextual information throughout the network. All models
were trained using the Adam optimizer with a learning rate of 0.0005, a batch size of 2, and a weight
decay of 0.0001. To ensure a fair comparison, these hyperparameters were held constant across
both supervised and semi-supervised training regimes. All experiments were executed on an NVIDIA
Tesla P100 Graphics Processing Unit (GPU) with 15 GB of Video Random Access Memory (VRAM).

3) Pseudo-Labeling Strategy

To leverage unlabeled data, a confidence-aware pseudo-labeling mechanism was employed.
During each training iteration, the current model was used to generate segmentation predictions for
the unlabeled volumes. Voxel-wise confidence scores were obtained from softmax probabilities, and
only predictions that exceeded a dynamically adjusted confidence threshold were retained as
pseudo-labels. The threshold was initialized at 70% and incrementally increased up to 90%, based
on the model’s validation performance. As the validation DSC improved, the threshold was raised
to filter out low-confidence predictions, thereby ensuring the quality of the pseudo-labels. This
dynamic adjustment helped reduce the propagation of noisy or unreliable labels into subsequent

training stages.
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These threshold values (0.70-0.90) were selected based on empirical observations. In our
experiments, when the threshold was set below 0.6, the validation DSC often fluctuated significantly,
suggesting the inclusion of noisy predictions. Setting the initial threshold (the starting point) at 0.7
helped stabilize training, while increasing the threshold toward 0.9 as the model improved avoided
overly strict filtering that would discard useful information.

The total training loss was defined as a weighted sum of two components: a supervised loss
from ground-truth annotations and an unsupervised loss from pseudo-labeled data. Initially, the
pseudo-label loss was assigned a low weight (0.01) to minimize the influence of potential noise. This
weight was gradually increased—up to a maximum of 0.4—according to model performance. This
adaptive weighting strategy mitigated confirmation bias and enhanced training stability.

The selected range of 0.01-0.4 for the pseudo-label loss weight was also based on extensive
experiments. Fixed weights ranging from 0.1 to 1.0 were initially tested, and the best DSC values
were consistently observed when the weight was between 0.2 and 0.4. We then explored adaptive
schemes across several ranges (e.g., 0.1-0.3, 0.1-0.5) and found that a dynamic range of 0.01-0.4
yielded the most stable and high-performing results. Starting from 0.01 allowed the model to
cautiously incorporate pseudo-labels, while increasing the weight as performance improved enabled
better utilization of unlabeled data.

It should be noted that these values were empirically tuned for this specific dataset. When
applying the method to other datasets, re-tuning these thresholds and weights is recommended.

4) Training Pipeline

The semi-supervised training follows a four-stage iterative pipeline designed to progressively
refine segmentation performance (Figure 1):

1. Initial Training: The base 3D U-Net is trained for 100 epochs using the 10 labeled
training volumes to establish baseline segmentation.

2. Pseudo-Label Generation: The trained model generates pseudo-labels for all 30
unlabeled volumes. A dynamic confidence threshold (70%-90%), determined by the validation DSC,
filters predictions to retain only high-confidence labels.

3. Training with Pseudo-Labels: The model is trained for 300 epochs on the combined
labeled and pseudo-labeled data. Supervised and unsupervised losses are calculated separately,
with the pseudo-label loss weight gradually increasing from 0.01 to 0.4 to mitigate the impact of
label noise. Pseudo-labels are regenerated iteratively as model performance improves.

4. Fine-Tuning: After multiple refinement cycles, the model is fine-tuned for 100 epochs
using only the original labeled data with a reduced leaming rate to stabilize performance and

mitigate residual noise effects.
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Early stopping is employed throughout training, terminating if the validation loss fails to
improve for 20 consecutive epochs. Evaluations are conducted every two epochs to prevent

overfitting and optimize computational resources.

1. Initial Training
(10 labeled volumes, + Train base 3D U-Net
100 epochs) « Establish baseline segmentation
2. Pseudo-Label Generation « Predict pseudo-labels using current model
(30 unlabeled volumes) - Dynamic confidence threshold (based on Dice score)
Threshold: 70-90% « Discard low-confidence predictions

3. Train with Pseudo-Labels
(labeled + pseudo-labeled,
300 epochs)

PL loss weight: 0.01 = 0.4

|

« Train on both labeled and pseudo-labeled data
« Separate loss for ground truth and pseudo-labels
- Regenerate pseudo-labels if performance improves

4. Fine-Tuning
(10 labeled volumes, - Final training with high-quality labeled data only
100 epochs) = Reduce noise from earlier pseudo-labels
Reduced LR
Stop

All stages use early stopping (20-epoch patience), evaluated every 2 epochs.

Figure 1 Training pipeline

5) Evaluation Metrics
To evaluate segmentation performance, two standard metrics are used: the DSC and the
AHD. These metrics assess the overlap quality and boundary accuracy between predicted and
ground truth segmentations.
1. Dice Similarity Coefficient (DSC) The DSC quantifies the overlap between the

predicted segmentation and the ground truth. It is defined as:
DSC = 2|P NG|
|P| + 16| (1)
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where:

P = set of predicted voxels

G = set of ground truth voxels

A DSC value ranges from 0 to 1, where 1 indicates perfect overlap and 0 indicates no
overlap. This metric is particularly useful for evaluating the segmentation accuracy of anatomical
structures.

2. Average Hausdorff Distance (AHD) The AHD measures how closely the boundary of
the predicted segmentation aligns with that of the ground truth. It is defined as the symmetric

average of the distances from all points on one boundary to the closest point on the other boundary:

1 . 1 .
AHD(A,B) = max (WZ min|ja — b”’ﬁz min|[b — all)
acA beB

where:
A = set of boundary points from the predicted segmentation
B = set of boundary points from the ground truth segmentation
This metric computes the average of the minimum distances between boundary points of
both segmentations. A lower AHD value indicates better boundary alignment and, consequently,
higher segmentation accuracy—particularly important in applications involving fine or complex

anatomical structures.

Findings

To evaluate the effectiveness of the proposed semi-supervised segmentation framework, a
series of experiments were conducted to compare different training strategies: (1) fully supervised
learning; (2) a vanilla semi-supervised variant excluding several key components (no confidence
thresholding, no pseudo-label weighting, no iterative pseudo-label generation, and no fine-tuning);
(3) semi-supervised learning without fine-tuning; and (4) semi-supervised learning with the full
configuration. All experiments were performed under identical settings, including consistent dataset
splits, hyperparameters, and computational resources.

1. Quantitative Results

Table 2 presents the quantitative results of segmentation accuracy and training time for all
models. The full configuration semi-supervised model achieved the best performance, yielding a
mean DSC of 0.9066 + 0.0043 and the lowest mean AHD of 2.2409 + 0.3661. This significantly
outperforms the fully supervised baseline, which attained a DSC of 0.8519 + 0.0395 and an AHD of
4.7696 + 1.3128.
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Notably, the vanilla semi-supervised variant (DSC 0.8505) showed no improvement in overlap
compared to the baseline but did achieve a better boundary alignment (AHD 2.8317). The model
without fine-tuning (DSC 0.9045, AHD 2.4762) approached the performance of the full configuration,
highlighting the substantial impact of the iterative pseudo-labeling. The markedly lower standard
deviations for both DSC and AHD in the full semi-supervised approach indicate more stable and
consistent performance across validation samples.

However, this improved accuracy comes at the cost of increased computational time. The
full configuration (151 + 11 min) required substantially more training time than the supervised
baseline (53 + 4 min), reflecting the trade-off between performance and computational resources.

To ensure statistical reliability, each model was trained and evaluated five times
independently, and the results are reported as mean + standard deviation. This approach mitigates

the effects of randomness in training and provides a robust measure of consistency across runs.

Table 2 Comparison of segmentation performance

Dice Score Average Hausdorff Training Time
Model
(Validation Set) Distance (min)
Fully Supervised 0.8519 + 0.0395 47696 + 1.3128 53+4
Semi-Supervised
0.8505 + 0.0298 2.8317 + 0.5691 92 £ 17
(Vanilla)
Semi-Supervised
0.9045 + 0.0071 24762 + 0.4735 126 £ 10
(No Fine-Tuning)
Semi-Supervised
0.9066 + 0.0043 2.2409 + 0.3661 151 + 11

(Full Configuration)

Figure 2 illustrates the training dynamics of both models. In the supervised setting, training
loss decreased steadily, while the validation DSC plateaued around 0.85. In contrast, the semi-
supervised model exhibited fluctuations in training loss during epochs 100-250, coinciding with the
integration of pseudo-labeled data. Despite these fluctuations, the validation DSC continued to
improve, ultimately surpassing the supervised baseline following the fine-tuning stage. These
observations underscore the importance of iterative pseudo-label refinement in enhancing

segmentation accuracy, even under increased training complexity.
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Figure 2 Training loss and validation Dice score for supervised vs. semi-supervised models

2. Qualitative Evaluation

In addition to quantitative metrics, a qualitative assessment was performed on withheld
validation volumes to evaluate the anatomical plausibility and visual consistency of the segmentation
results. As shown in Figure 3, all semi-supervised variants produced fewer false positives in non-
cardiac regions and demonstrated more anatomically accurate delineations of the LA boundary
compared to the fully supervised model.

Among the semi-supervised methods, both the configuration without fine-tuning and the full
configuration yielded noticeably cleaner segmentations than the vanilla semi-supervised variant,
which exhibited residual artifacts and over-segmentation in peripheral regions. The full-configuration
model achieved the lowest number of false positives overall, while the no-fine-tuning variant
produced slightly higher false positives but still performed substantially better than the vanilla
baseline.

These visual observations are consistent with the quantitative results reported in Table 2,
reinforcing that iterative pseudo-label refinement and fine-tuning contribute to improved anatomical

precision and reduced segmentation noise.
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Figure 3 Qualitative comparison of segmentation results

Discussion

The experimental results clearly demonstrate the effectiveness of the proposed semi-
supervised framework, particularly in data-scarce environments. The substantial improvement in
mean DSC, combined with reduced variance, suggests that the model benefits significantly from
leveraging unlabeled data through pseudo-labeling. This finding aligns with existing literature
emphasizing the role of unlabeled data in enhancing model generalization.

A key observation is that the semi-supervised model continues to improve even during
stages of fluctuating training loss—especially when pseudo-labels are incorporated. This indicates
that the model successfully learns meaningful representations from pseudo-labels despite the
inherent noise. Qualitative results further confirm more anatomically plausible segmentations,
supporting the hypothesis that unlabeled data can guide the model toward better anatomical priors.

To mitigate the impact of noisy pseudo-labels, several strategies were implemented. First, a
confidence-aware filtering mechanism was applied to exclude low-probability predictions, with the
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confidence threshold dynamically increased from 0.70 to 0.90 as the model improved. Second, the
loss weight for pseudo-labeled data was initially set to a very low value (0.01) and gradually
increased to 0.4 based on the validation DSC, limiting the early influence of noisy labels. Third, data
augmentation was applied to the unlabeled data pool to enhance diversity and reduce overfitting
to spurious structures.

Despite these strategies, some noise remains inevitable—primarily due to the limited training
data, which constrains the model’s ability to generalize during early training. Increasing the size and
diversity of the dataset represents a promising direction for further reducing pseudo-label noise.
Incorporating additional labeled examples or employing self-supervised pretraining could further

enhance the model’s robustness to label noise and anatomical variability.

Suggestion

1. Suggestions for Research Utilization

This study presents a semi-supervised segmentation framework based on a 3D U-Net
architecture for LA segmentation from cardiac MRI. The framework was intentionally designed and
evaluated under extremely limited labeled-data conditions to reflect practical constraints in clinical
and research environments. By incorporating pseudo-labeling with dynamic confidence filtering, the
method effectively leverages unlabeled data to improve segmentation performance while reducing
dependence on manual annotation.

Experimental results demonstrate that the semi-supervised model consistently outperforms
its fully supervised counterpart in both accuracy and stability, despite being trained on only 10
labeled volumes. This highlights the framework’s capability to operate effectively in data-scarce
scenarios, addressing one of the key challenges in medical image analysis.

The iterative refinement of pseudo-labels and the adaptive loss-weighting strategy further
enhance model generalization without imposing significant annotation overhead. Nevertheless, the
relatively small and homogeneous dataset may limit generalizability to more diverse clinical settings,
and the training process remains computationally demanding.

2. Suggestions for Further Research

Future research will explore the scalability and adaptability of the proposed framework
through the following directions: 1) Validation on large-scale datasets: Evaluating generalization
across multi-center or population-level cardiac MRI datasets, 2) Transfer learning from big data:
Pretraining on large datasets and fine-tuning on small labeled subsets for data-scarce domains, 3)
Multi-scale pseudo-labeling: Incorporating anatomical context at multiple resolutions to improve

pseudo-label robustness, 4) Adaptive uncertainty-aware weighting: Integrating uncertainty estimation
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into the loss function to better handle noisy pseudo-labels, and 5) Efficiency-oriented
implementation: Developing lightweight models suitable for clinical environments with limited
computational resources. These directions aim to enhance scalability, robustness, and clinical

applicability in future cardiac image-analysis systems.
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