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Abstract-This paper presents an image processing technique to  
determine the color change of salad lettuce is stored at 15ºC for storage 
times of 0 to 5 days. The technique divided the color of salad lettuce 
into 8 clusters (Dark-green, Light-green, Green-yellow, Brown, Dark, 
White, Shadow, and background) and used these clusters for spatial 
and spectral analysis. In the case of spatial analysis, the number of 
pixels of each cluster was countering over storage time for calculating 
the area of each cluster in the image and was used to determine the 
color change of the lettuce salad. In cases of spectral analysis, the 
reflectance reconstruction technique was applied to reconstruct the 
reflectance data from the image. RGB values from these images were 
transformed to tri-stimulus values (XYZ) and L*a*b* and then used 
with a trust-region-dogleg algorithm for reconstruction the reflectance 
from L*a*b* values. The reflectance data were normalized by an 
average sum of reflectance and called relative reflectance, and then 
use in the partial relative reflectance in a range of blue (450-500 nm), 
green (500-570 nm), and red (610-650 nm) to calculate the spectral  
gradient. The spectral gradient was used to determine the color change 
of the lettuce salad over storage. The result of both spatial and spectral 
analysis shows that changes in the colors of lettuce can be detected  
at storage time in days 3.
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1. Introduction

In recent years, the consumption of  
fresh-cut produce has been increasing due 
to changes in the lifestyles of consumers. 
For example, lettuce (Lactuca sativa L.) has 
an annual production value of $3.5 billion 
in the United States (U.S. Department of 
Agriculture, 2020), with 24.7 lb of lettuce 
consumed per capita (U.S. Department of 
Agriculture, 2019). However, processing 
of the products promotes faster quality 
change, especially color. For this reason, 
most fresh-cut products are sold within a 
few weeks after packaging. Because the 
consumers usually purchase fresh-cut 
produce based on their visual appearance, 
color is an extremely important factor in 
consumer purchasing selection. (Martinez 
et al., 2021; Kader, 2013; Ferrante et al., 
2004). 

	 Color is the first parameter of quality 
evaluation of food products by consumers,  
and it is critical in the acceptance or rejection  
of the product (Du & Sun, 2004; Pedreschi 
et al., 2006). To determine the color of 
food products, visual inspection or color 
measuring with instruments can be carried 
out. The visual inspection is a subjective 
technique. The accuracy of this technique 
depends upon the observer. To objectively 
determine more information, such as  
objective color, color standards are often 
used as reference material. However, 
this technique is quite slow and requires 
more specialized training of the observers 
(Gnanasekharan et al., 1992). Therefore,  
the determination of color for more  
information should be performed via a 
color measuring instrument.

	 Colorimeters are electronic devices 
for color measurement that express colors 

in numerical coordinates. These devices 
are commonly used in the laboratory and 
industry to measure color. However,  
colorimeters are limited to the measurement 
of small regions in which the object has a 
homogeneous color (Gardner, 2007). To go 
beyond this limit, a new technique, namely 
image processing has been widely used for 
objectively measuring the color of various 
food products. This technique provides some 
advantages over a conventional colorimeter 
such as it can be used to determine color 
on a larger region, heterogeneous surfaces, 
and provides the possibility for analyses 
of the entire surface of the food (Brosnan 
& Sun, 2004). This may be extended via 
imaging with a measurement device.

	 In the image, each pixel is  
characterized by three components (red, green 
and blue, RGB) which can be registered  
as any color observed by humans. So, 
the color of many foods can be measured 
by image processing (Saldaña, 2013; 
Blasco et al., 2009; Mendoza & Aguilera, 
2004). However, the color from images is  
illumination dependent, when changing the 
illumination, and the color of the images  
is changed. To solve this problem,  
reconstruction reflectance has been an 
interesting avenue of exploration. Due 
to the reflectance is an illumination  
independent property of the object.  
Obtaining the reflectance data from the RGB 
image could provide a new way of using 
digital cameras in spectroscopy (Dejana  
et al., 2015). The reflectance data are  
recognized as the “fingerprint” of an object’s 
surface and provide the most fundamental 
information (Zhang & Xu, 2009). It can 
be used to identify biochemical proper-
ties of the object and/or determine the 
quality change in the products (Lu et al., 
2019). Therefore, in this paper, we present 
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the methods used to determine the color 
changes of fresh-cut produce by using fresh 
green loose-leaf Lettuce (Lactuca Sativa 
L.) as the sample base for reflectance data. 
This was recovered from RGB images. In 
this method, all pixels in the images were 
reconstructed. For this reason, the quality 
changes can be analyzed on both spectral 
and spatial data in the images.

2. Materials and methods 

2.1 Sample preparation

Fresh green Loose-leaf lettuces (Lactuca 
sativa L.) have a shelf life of 42 days before 
harvest was purchased in the morning from 
a local hydroponic vegetable farm, then 
washed in cold (8°C), chlorinated (100 ppm) 
water for 30 s, shredded and centrifuged 
in a salad spinner for 1 minute to remove 
excess water. The shredded lettuces were 
packed in 10 (7 inch × 11 inch) LDPE bags 
of 40 g each. To accelerate the degradation 
of the lettuce samples, the lettuce samples 
were stored at 15°C under atmospheric 
conditions.

2.2 Image acquisition system

The image acquisition system consists of a 
wood box whose internal walls were painted 
white to avoid the light and reflection of 
the room, two fluorescent lights using for 
illumination (Philips, natural daylight, 
18W, length 30 cm, color temperature of 
6500 K). The lamps were arranged 30 cm 
above the samples, at an angle of 45°to the 
sample plane to give a uniform light intensity 
over the samples. A digital camera (Nikon 
D7200) was used for capturing images. 
The camera was in a vertical position at 

25 cm from the samples and at an angle of 
45° from the light source. The image was 
captured at a resolution of 1200×900 pixels, 
storage in the RGB color model and JPEG 
format. The images were captured every  
24 h for 5 days.

2.3 Color transformation

Since the RGB color model is device 
dependent, it was decided to solve this 
problem using color transformation. In 
agricultural and food products, the L*a*b* 
color model has been widely used due to 
this model relating to human perception. 
The L* parameter is an attribute by which 
a surface emits reflected light and can take 
values between 0 (absolute black) to 100 
(absolute white). The parameters a* and 
b* represent the chromaticity and can take 
values between -120 to 120, a* defines 
the red-green component (red for positive 
values and green for negative values) and 
the b* parameter defines the yellow-blue 
component (yellow for positive values 
and blue for negative values) (León et al., 
2006). Transformation of values in RGB to 
L*a*b* involves two steps of conversion. 
In the first step the RGB color model was 
converted to tri-stimulus values (XYZ) by 
following (1)-(4) (Poynton, 1996).





≤
>+

=
04045.0R/255.92,(R/255)/12

0.04045R/255,05)0.055)/1.0 (((R/255) 2.4
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	 Subsequently the rgb values to  
XYZ using the matrix M for a D65-2° 
illuminate-observer (4) (Blasco et al., 2007).
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Where yx WW ,  and zW are weighting 
factor obtained from inner product of 
relative spectral power of standard 
illuminate  S , the color matching function 
of standard observer (       zyx ,, ) and 
normalizing factor k . For given tri-stimulus 
values, the spectral reflectance  R  can be 

reconstructed. In the same way, L*a*b* 
values which widely to use in agricultural 
and food products can be used to reconstruct 
reflectance (  R ) by subsequently XYZ 
from (18) to (20) into (11) to (13). Then, 
(11) to (13) can be written as below. 
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In this paper, reflectance spectra of each 
pixel were reconstructed by using trust-
region-dogleg algorithm and use the spectral 
data from the Munsell database for the 
initial value to solve the nonlinear system of 
Equations ((21) – (23)). For more accuracy, 
we used the solution value from the 
previous step as the initial value to solve 
(21) – (23) again. 

 
2.6 Validation of reflectance 
reconstruction 
To validate the reflectance reconstruction, 
1269 chips of Munsell color books were 
measured by a spectrophotometer 
(HunterLab, ColorQuest XE, Hunter 
Associates Laboratory, Inc., USA) with 
three replicates to record spectra of each 
chip and the same chips were captured by 
the image acquisition system and 
reconstructed reflectance. The reflectance 
from the spectrophotometer and 
reconstructed ware compared and Good 

Fitting Curve (GFC) was used to determine 
the best fit. 
 
2.7 Determination of the color change of 
vegetable 
To apply image processing as color 
perceiving for indication of the remaining 
usable life of fresh vegetable products, the 
technique must be capable of accurately 
computing the difference between the 
original color region and the new color 
region formed during the storage time. Since 
the pixel based RGB value is transformable 
to the surface reflectance value, the 
derivative of surface reflectance with 
respect to wavelength implies indeed the 
rate of change of an RGB value.  However, 
interpretation of vegetable quality using a 
quite large image of the actual product size 
based on the direct comparison of the pixel-
based surface reflectance values required 
very long computation time.   

We propose a method to determine the 
color change in an area of lettuce salad.  

			   (20)
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In this paper, reflectance spectra of each 
pixel were reconstructed by using trust-
region-dogleg algorithm and use the spectral 
data from the Munsell database for the 
initial value to solve the nonlinear system of 
Equations ((21) – (23)). For more accuracy, 
we used the solution value from the 
previous step as the initial value to solve 
(21) – (23) again. 
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factor k . For given tri-stimulus values, 
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values which widely to use in agricul-
tural and food products can be used to  
reconstruct reflectance (R(λ)) by  
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and food products can be used to reconstruct 
reflectance (  R ) by subsequently XYZ 
from (18) to (20) into (11) to (13). Then, 
(11) to (13) can be written as below. 
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In this paper, reflectance spectra of each 
pixel were reconstructed by using trust-
region-dogleg algorithm and use the spectral 
data from the Munsell database for the 
initial value to solve the nonlinear system of 
Equations ((21) – (23)). For more accuracy, 
we used the solution value from the 
previous step as the initial value to solve 
(21) – (23) again. 

 
2.6 Validation of reflectance 
reconstruction 
To validate the reflectance reconstruction, 
1269 chips of Munsell color books were 
measured by a spectrophotometer 
(HunterLab, ColorQuest XE, Hunter 
Associates Laboratory, Inc., USA) with 
three replicates to record spectra of each 
chip and the same chips were captured by 
the image acquisition system and 
reconstructed reflectance. The reflectance 
from the spectrophotometer and 
reconstructed ware compared and Good 

Fitting Curve (GFC) was used to determine 
the best fit. 
 
2.7 Determination of the color change of 
vegetable 
To apply image processing as color 
perceiving for indication of the remaining 
usable life of fresh vegetable products, the 
technique must be capable of accurately 
computing the difference between the 
original color region and the new color 
region formed during the storage time. Since 
the pixel based RGB value is transformable 
to the surface reflectance value, the 
derivative of surface reflectance with 
respect to wavelength implies indeed the 
rate of change of an RGB value.  However, 
interpretation of vegetable quality using a 
quite large image of the actual product size 
based on the direct comparison of the pixel-
based surface reflectance values required 
very long computation time.   

We propose a method to determine the 
color change in an area of lettuce salad.  

(22)
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2.7 Determination of the color change 
of vegetable

To apply image processing as color perceiving 
for indication of the remaining usable life 
of fresh vegetable products, the technique 
must be capable of accurately computing 
the difference between the original color 
region and the new color region formed 
during the storage time. Since the pixel 
based RGB value is transformable to the  
surface reflectance value, the derivative of 
surface reflectance with respect to wavelength  
implies indeed the rate of change of an 
RGB value. However, interpretation 
of vegetable quality using a quite large  
image of the actual product size based on 
the direct comparison of the pixel-based 
surface reflectance values required very 
long computation time. 

	 We propose a method to determine 
the color change in an area of lettuce salad. 
This method can determine both spatial and 
spectral data. In spatial cases, we divided 
color of lettuce into 8 classes (Dark-green, 
Light-green, Green-yellow, Brown, Dark, 
White, Shadow and background). Then  
clustering all pixels in the image into each 
class by using k-mean clustering. The 
number of pixels in each class over storage 
time was used to determine the area of each 
cluster in the image and used to determine 
the change of color in the image. In spectral 
case, the average spectra of each cluster 
over storage time were calculated and used 
to determine the spectral gradient.	

	 Before investigating spectral  
gradient, it should be known that a  
photometric feature is constructed from 
image irradiance represented as.
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Where  xg  is the geometric factor, 

 ,xe is the incident illumination,  ,xs is 
the diffuse surface reflectance of the object, 
all projected to  yx,x  in the image plane, 
and   represents wavelength direction of 
visible light spectral (Berwick & Lee, 

2004). The image irradiance given in 
Equation (24) includes confounded effects 
of geometry, illumination, and surface 
reflectance and it can take the logarithm to 
separate the multiplicative terms into 
additive terms as below. 
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In this paper, we assumed that the 

effects of geometry and illumination are 
constant for all images. Because all images 
were captured in the same environment, 
therefore, different color in the image is 
caused by only surface reflectance. For this 

reason, we can calculate the spectral 
gradient or gradient of  ,xL  as only effects 
of surface reflectance in   direction as 
shown below. 
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Even though the effects of geometry and 
illumination are negligible to image 
irradiance, the pixel based reflectance 
intensity of each color image is greatly 
different due to the color perceiving 
principle.  Therefore, they cannot be applied 
directly to indicate a degree of color 
changing of the image. In this paper, before 
calculating the spectral gradient from 
Equation (26), we normalize the reflectance 
by the average sum of reflectance and called 
relative reflectance and use the partial 
relative reflectance in a range of blue (450 – 
500 nm), green (500 – 570 nm) and red (610 

– 650 nm) to calculate the spectral gradient 
(Equation 27) then use it to determine color 
gradient (Equation 28), this method applies 
to all clusters. The results of this method can 
indicate that the color has changed from the 
original. Additionally, we investigate the 
ratio between spectral and spatial gradients. 
This ratio can be indicative that changes in 
the spectral gradient is how much pixel 
changes have occurred. This result can be 
useful to carry out the reflectance spectral 
from spectrophotometer and use it to predict 
the change of pixel area equivalent to use of 
image analysis. 

		  (24)
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Even though the effects of geometry and 
illumination are negligible to image 
irradiance, the pixel based reflectance 
intensity of each color image is greatly 
different due to the color perceiving 
principle.  Therefore, they cannot be applied 
directly to indicate a degree of color 
changing of the image. In this paper, before 
calculating the spectral gradient from 
Equation (26), we normalize the reflectance 
by the average sum of reflectance and called 
relative reflectance and use the partial 
relative reflectance in a range of blue (450 – 
500 nm), green (500 – 570 nm) and red (610 

– 650 nm) to calculate the spectral gradient 
(Equation 27) then use it to determine color 
gradient (Equation 28), this method applies 
to all clusters. The results of this method can 
indicate that the color has changed from the 
original. Additionally, we investigate the 
ratio between spectral and spatial gradients. 
This ratio can be indicative that changes in 
the spectral gradient is how much pixel 
changes have occurred. This result can be 
useful to carry out the reflectance spectral 
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and illumination are negligible to image 
irradiance, the pixel based reflectance 
intensity of each color image is greatly  
different due to the color perceiving principle. 
Therefore, they cannot be applied directly 
to indicate a degree of color changing of 
the image. In this paper, before calculating  
the spectral gradient from Equation (26), 
we normalize the reflectance by the  
average sum of reflectance and called  
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relative reflectance and use the partial relative 
reflectance in a range of blue (450-500 nm), 
green (500-570 nm) and red (610-650 nm) 
to calculate the spectral gradient (Equation 
27) then use it to determine color gradient 
(Equation 28), this method applies to all 
clusters. The results of this method can 
indicate that the color has changed from the 
original. Additionally, we investigate the 
ratio between spectral and spatial gradients. 
This ratio can be indicative that changes 
in the spectral gradient is how much pixel 
changes have occurred. This result can be 
useful to carry out the reflectance spectral 
from spectrophotometer and use it to predict 
the change of pixel area equivalent to use 
of image analysis.   
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3. Results and Discussion 
3.1 Color calibration 
The L*a*b* values from spectrophotometer 
and images of 1269 Munsell chips were 
compared. The results show that the average 
error of colors was below ±5% (L* = ±4. 
82%, a* = ±3.97%, b* = ±4.00%) which is 
acceptable (Gutiérrez-Pulido & Salazar, 
2004). In addition, the Orthogonal 
Regression of L*a*b* values between the 

spectrophotometer and image processing 
data shown in (Figure 1) bears this point 
out. We found that the R2 is higher than 0.95 
which indicates that colors from both 
techniques are similar (P>0.05). From these 
results, we confirmed the image processing 
can be used for measuring the color 
variance. 
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Figure 1. The Orthogonal Regression of color between spectrophotometer and image 
processing: (a) L*, (b) a* and (c) b*. 
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3.2 Validation of reflectance recon-
struction

The reflectance spectral of some Munsell 
chips from the spectrophotometer and  
reconstruction was compared and are shown 
in (Figure 2). This paper uses the average 
L*a*b* values of all pixels in Munsell 
chip images to reconstruct the reflectance  
spectrum. The results show that the  
reflectance spectra of many spectral lines 
of both techniques is similar. Consider 
the results in (Figure 2), we show many 
spectral lines of Munsell chips (7.5GY8/8, 
2.5YR6/4, 5Y8.5/12, 7.6RP5/12). The 
code-named chips 7.5GY8/8 are dominant 
in the green zone, which is the main color 
in lettuce. The code-named chips 2.5YR6/4 
and 5Y 8.5/12 represent the brown and 
yellow zones, which refer to poor quality 
of lettuce. The spectrum of all code names 
is reconstructed like the spectrophotometer 
with GFC > 0.95 this confirmed that the 
reflectance from reconstructed data has 

more accuracy, especially, in the main colors 
of lettuce. In addition, (Figure 2) shows 
the spectral line of 7.5RP 5/12, which is  
dominant in the red-pink zone which 
does not occur in lettuce. But the spectral 
line from spectrophotometer and image  
processing is similar (GFC>0.9).

	 The spectral lines of several colors 
were carried out from spectrophotometer 
and reconstruction and showed show good 
fitting. To be confirmed, the spectra must 
produce the true color. We tried to render 
images from the reconstructed reflectance 
with the relative spectral power of a CIE 
standard illuminate and color matching 
function of D65-2° (illuminate-observer at 
10 nm intervals) of the lettuce images and 
the results are shown in (Figure 3). In this 
case, rendering of the image rather than 
like the original image. For this reason,  
we confirm that the color change of  
lettuce can be determined from reconstructed 
reflectance.
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3.3 Determine the color change of 
lettuce salad

In this paper, we use both spatial and  
spectral data to determine the color changes of 
salad lettuce. In the spatial case, the number 
of pixels of each cluster was counted and 
showed in Figure 4. The results show that 
the green cluster decreased over storage 
time while light-green clusters increased 
from days0 to days3, green-yellow cluster 
increased from days0 to days4 then decreased 

until the final storage time (days5), brown 
and dark cluster increased over storage 
time. These results indicate that there are 
changes of color in all main clusters over 
storage time. 

	 Although, this proposed method 
can detect changes of color in each cluster, 
it cannot indicate whether there are any 
changes from any cluster to any other cluster.  
However, it can monitor color change 
in overall image or interest cluster. In  
addition, it can also indicate the amount of 
color change in each cluster. For example, 
in the brown cluster, which is the one of 
most colors that were used to monitor 
the quality change of fruit and vegetable.  
Results showed that it is increasing the pixel 
area from 0.48% at storage time at day0 
to 11.14% at day 4. At the same time, we 
found that other clusters of changes of color 
are such as the brown clusters. The color 
change increased to 31.79% of the sample 
area of light-green cluster and 7.41% of 
the green-yellow within 3 days of storage. 
These results are like those obtained in  
a similar study that investigated the  
quality change of fresh-cut produce by image 
analysis (Lunadei et al., 2012; Zhou, 2004). 
They found that in samples stored at 4°C 
-10°C, the area of color changes amnifests 
at around 10% of the sample area. It can be 
detected by the consumer. This is the most 
significant change in color which occurred 
within the first 4-6 days of storage. In this 
study, we found that consumers can detect 
the color change of lettuce within 3 days of 
storage time if it was stored at temperature 
is higher than 10°C (Figure 4).
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Figure 3. (a) Lettuce image from camera and (b) rendering image from refl ectance 
reconstruction
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	 In spectral case, the spectral gradi-
ent was calculated and used to calculate the 
color gradient. (Figure 5) shows the color 
gradient per number of pixels (CGP) of 
green clusters, light-green color and green-
yellow with storage time, respectively. In 
cases of green clusters, the color gradient 
per number of pixels with storage times of 
0-3 days, rather than decreasing, constantly, 
due to the color of lettuce samples in this 
case, was slightly changed which differs 
from storage time of 4-5 days. In storage 
times of 4 and 5 days the color of lettuce 
was changed from green to brown and dark. 
For light-green and green-yellow clusters, 
CGP increases in a range of storage times 
from 0-3 days, which indicates that the let-
tuce tended toward light and yellow with 
longer storage times. For storage times of 
4-5 days, the CGP of green, light-green and 
green-yellow clusters were highly decreased 
due to the color change to brown and dark. 
According to the findings of this study, 
the critical point at which consumers can 
detect a change in the color of lettuce is 3 
days, which is consistent with the findings 
of Aekrum and Lertsiriyothin (2015), who 

used image texture properties to analyze 
the quality of green oak vegetables. Green 
oak vegetables stored at 15°C have been 
found to have severe changes in surface 
quality after 4 days or more. In addition, 
(Table 1) and (Table 2) show the percent-
ages of difference of dColor/dλ and pixel 
area of Green, Light-green, Green-yellow, 
Brown and Dark clusters are represented 
comparing data of storage times at days0. 
The results show that, Brown and dark 
clusters have more difference in dColor/
dλ but slight differences in the pixel area, 
but in the contrast to Green in the pixel 
areas, but in contrast to Green, Light-green 
and Green-yellow clusters. These results 
tell that, for the large area clusters (Green 
and Light-green clusters) on the first day 
of storage, the slight changes in dColor/
dλ resulted in a significant change in the 
area. But, for Brown and Dark clusters, in 
which small areas in the first day of storage 
changed in small areas and requires more 
change in dColor/dλ. Therefore, color 
change considerations should be focused 
on some cluster that indicate the change 
in productivity.
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Table 1.	 Show the percentage difference in dColor/dλ and pixel area of Green,  
Light-green, Green-yellow clusters comparing with data of storage time at 
days0.

Storage  
time  

(days)

Cluster
Green Light-green Green-yellow

Δ(dColor/
dλ) 
(%)

Δ(area)
 (%)

Δ(dColor/
dλ) 
(%)

Δ(area) 
(%)

Δ(dColor/
dλ)

 (%)

Δ(area) 
(%)

1 4.86 -1.34 2.51 3.27 -9.41 0.56
2 5.30 -22.09 -0.66 20.29 -2.09 3.81
3 2.93 -33.68 1.81 27.33 14.40 7.25
4 6.42 -54.62 36.74 15.25 28.21 18.05
5 104.48 -60.86 2.80 -4.41 19.50 0.68

Table 2.	 Show the percentage difference in dColor/dλ and pixel area of Brown and 
Dark clusters comparing with data of storage time at days0.

Storage  
time  

(days)

Cluster
Brown Dark

Δ(dColor/dλ) 
(%)

Δ(area)
 (%)

Δ(dColor/dλ) 
(%)

Δ(area) 
(%)

1 46.60 0.26 122.59 0.34
2 60.12 0.48 244.50 0.79
3 300.40 2.77 282.10 1.04
4 457.39 9.91 625.17 3.15
5 -64.23 17.90 -90.87 40.41

4. Conclusion

This paper proposes a method to use image 
processing to determine color changes of 
fresh-cut produce, which use salad lettuce  
as the sample. The proposed method of 
using both spatial and spectral data to 
determine the color change. The spectral 
of all pixels was reconstructed by using a 
trust-region-dogleg algorithm and clustering 
spectrum into 8 clusters then a countering 
number of pixels for each cluster. The results 
show that, the percentage area of the main 

clusters (green, light-green, green-yellow, 
brown and dark) were changed over storage  
time and it can be indicated that the  
critical storage time within which a consumer 
can detect the color change of produce 
for this result is 3 days of storage time, 
within which the area change around 10% 
from the original. In addition, the spectral 
data also calculated the color gradient per 
number of pixels. The results can be used 
to indicate the critical storage time, which 
is like using the percentage area.
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