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Abstract - The development of an improved hearing sense in teleosts as expressed in fossil otoliths
may have been one important element in the success of their evolution. Hence, fossil otoliths add
valuable information to paleoichthyology. Teleost otolith morphology, however, has initially diversified
very slowly during the Jurassic and Early Cretaceous and accelerated only during major phases of
teleost radiation in Late Cretaceous and Paleogene times.
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1. Introduction

Otoliths are solid calcium carbonate aggregates in the ear
of actinopterygian fishes, while most other vertebrates have
numerous tiny crystals, so-called otoconia (Carlstrom,
1963). Teleosts possess three sets of otoliths, namely the
lapillus in the utricle, the sagitta in the saccule, and the
asteriscus in the lagena, which are mostly composed
of aragonite (sagitta, lapillus) or vaterite (asteriscus)
(Carlstrom, 1963). Each otolith overlies the respective
sensory epithelium (= macula). The macula sacculi is
characterized by sensory hair cells that are arranged into
different orientation groups (Platt and Popper, 1981). The
orientation of a sensory hair cell and thus its morphological
and physiological polarization is based on the position of
its eccentrically placed kinocilium within the ciliary bundle
(Platt and Popper, 1981). Relative motion between otolith
acting as inertial mass and ciliary bundles leads to
(maximum) stimulation of the sensory hair cells, if the
bundle is deflected towards the kinocilium (Hudspeth,
1985). The saccule together with the lagena is hypothesized
to play an important role for the acoustic sense.

The sagitta is usually the largest and commonly
referred to as the “otolith”. It has developed a particularly
diverse morphology in teleosts, which is generally found
to be diagnostic at the species level and often at higher
taxonomic ranks as well; this variation in otolith morphology
is extensively used in the fossil record for the reconstruction
of non-skeleton-based fossil fish faunas (Nolf, 2013).
Isolated otoliths are much more abundant than articulated
and identifiable fossil fish skeletons. Therefore, they allow
a more continuous tracking of the fossil record of
actinopterygian fishes through space and time, especially
in sediments which are devoid of articulated skeletons. In
addition, isolated otoliths tend to represent assemblages of
small fish having lived in well oxygenated shallow waters
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and in offshore environments, thereby partly complementing
articulated skeletons which are often found in carbonatic
rocks or in sediments indicating anoxic environments
(Schwarzhans, 2012). However, the identification of fossil
species or higher taxa using isolated otoliths depends very
much on the comparison with Recent taxa or (rare) fossil
fishes displaying otoliths in situ. Moreover, otoliths cannot
provide the level of “evolutionary” detail as articulated
skeletons do and they become increasingly rare with
geological age because of their composition of metastable
aragonite.

2. Methods

Here, we present and discuss the early phases in the evolution
of Mesozoic teleost otolith morphology and the rise of new
sulcus patterns that may be correlated with the orientation
patterns of ciliary bundles on the macula sacculi (Schulz-
Mirbach and Ladich, 2016). A geometric morphological
analysis of the contour and sulcus has been used to describe
the evolution (Tuset et al.,2016) and diversification of the
otolith morphology. Morphological disparity is calculated
as the sum of the diagonal elements of the group covariance
matrix of the Procrusted Variance using the Geomorph
package (Adams et al., 2014) in R. In contrast to other
measures of disparity, multivariate variance has the desirable
property of being relatively insensitive to variations in
sample size.

3. Results

Teleost (sagitta) otoliths are readily recognized by the
presence of a structured and diversified sulcus in an axial
position on the inner face of the otolith, corresponding to
a diversified macula sacculi, which attaches to the sulcus
(Fig. 1). The macula sacculi in teleost fishes displays five
principle orientation patterns of ciliary bundles including
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sub-patterns and some specializations thereof (Popper and
Coombs, 1982; Schulz-Mirbach and Ladich, 2016). The
functional advantage of teleost otoliths remains widely
elusive; however, the morphological diversification of
otoliths clearly flourished with the explosive radiation of
teleosts and is therefore suggestive of an important role in
teleost evolution.

The earliest true teleost otoliths are known from the
Sinemurian, synchronous with the earliest leptolepiform
skeletons of the genus Proleptolepis. These “leptolepid”-
type otoliths are calibrated by in situ finds in Leptolepis
normandica and Cavenderichthys talbraganensis (Delsate,
1997 and unpublished data), with the caveat, that no
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otoliths are known from extinct stem Teleostei such as the
Pholidophoridae (Arratia, 2013). “Leptolepid”-type
otoliths represent an “archaetypical” teleost otolith
morphology, for which the term “archaesulcoid” had been
coined (Schwarzhans, 1978) (Fig. 1). Extant teleosts
displaying a similar otolith morphology are predomi-
nantly found associated with the widespread “standard”
macula pattern (Popper and Coombs, 1982). All known
teleost otoliths from the Jurassic and many from the Early
Cretaceous show the same otolith pattern. As a result, the
otolith morphospace was rather restricted throughout this
time period (Fig. 2).
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Figure 1. Principle sulcus morphologies of sagitta otoliths (upper row) and associated macula patterns (lower row) (after

Schwarzhans, 1978; Schulz-Mirbach and Ladich, 2016).

During Late Jurassic, the earliest putative elopomorph and
osteoglossomorph otoliths however, recorded (Nolf, 2013).
Their occurrence is more or less in accordance with skel-
etal findings (Patterson, 1993). The Elopomorpha and also
one osteoglossiform family appear to have a potentially
synapomorphic “alternating” macula pattern (Schulz-
Mirbach and Ladich, 2016). During the Early Cretaceous,
increasing diversity in elopiform and albuliform otoliths
is observed, slightly predating the earliest skeletal finds.
These are the first otolith morphologies that can be linked
to extant teleost groups at family level.

The Aptian to Turonian time interval has yielded few
otolith associations (Nolf, 2004; 2016) and even fewer
otoliths in situ (revealed by microCT imaging; Schwar-

zhans, Beckett, Schein and Friedman, ms.). The diversity
of otolith morphology has slightly increased. “Leptolepid”-
type otoliths are still present and elopomorph and possibly
protacanthopterygian otoliths become more common and
diverse (Fig. 2). A few more modern otolith morphologies
are emerging as well, but without adequate linking to in
situ finds; thus, their interpretation is controversial. The
postulated occurrence of acanthomorph otoliths in the
Aptian (Nolf, 2004) and of “perciform” otoliths in the
Cenomanian (Nolf, 2016) remains to be verified. This
contrasts with the first skeleton-based acanthomorphs in
the Cenomanian (Patterson, 1993) and of perciforms in the
Late Cretaceous to Paleocene (Carnevale and Johnson,
2015).
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Figure 2. The fossil record of skeleton- and sagitta otolith-based data of selected teleost groups through time, and the

evolution of the morphological diversity of otoliths.

The Late Cretaceous (Senonian) marks the onset of a
significant increase in otolith diversity (Fig. 2). At that time,
several different morphological types emerge such as the
acanthomorph (mostly beryciforms and holocentriforms,
but also first unambiguous perciforms), anguilliform,
stomiiform, aulopiform, zeiform, polymixiiform, ophidiiform,
and potentially myctophiform. Most of these otolith-based
records are consistent with respective skeleton finds
(Patterson, 1993). Presence of Myripristis-type otoliths
point to a unique specialization of the macula sacculi at
this time; Sargocentron-type otoliths are characterized by
a posterior-ventrally bent cauda (heterosulcoid sulcus). The
Myctophiformes have a unique “opposing”” macula pattern
with the rear vertical section extending over the anterior
opposing section and a line of large cells below the posterior
part of the macula sacculi (Popper, 1977). The latter feature
may relate to the unique caudal pseudocolliculum found
in myctophid otoliths (Schwarzhans, 1978), and is first
observed in the Late Paleocene. Many otolith morphologies
found in the Late Cretaceous are highly specialized belonging
to extinct taxa and therefore pose a severe problem for
taxonomic allocation due to the paucity of fossils with
otoliths in situ (Schwarzhans, 2010; 2012).

After the K/Pg-boundary, a new composition and
diversification of otolith morphologies is observed during
the Paleogene, most notably with the advent of gadiforms
during Paleocene, perciforms and pleuronectiforms during
Paleocene and Eocene or gobiiforms during Eocene to
Oligocene (Fig. 2). Again, these otolith finds are consistent

with skeleton-based records (Patterson, 1993). The
Gadiformes are characterized by a symmetrical otolith
morphology (homosulcoid sulcus) and a “gadiform dual”
macula pattern (Lombarte and Popper, 2004), but also
include the family Moridae with a highly specialized
morphology of the otolith and its macula (Deng ez al.,2011)
possibly triggered by specific extensions of the swimbladder
contacting the ears. The gobies also developed a specific
otolith morphology along with a specific “dual” macula
pattern. In conclusion, the otolith morphospace has
increased significantly during the Late Cretaceous, and has
reached its current complexity and diversity during the
Paleogene with the advent of gadiforms and gobiiforms
and their specific otolith and macula developments.

4. Discussions and conclusions

The emergence of the diversity of sulcus morphology may
be connected with major evolutionary events in teleosts
and extrinsic factors; however future studies have to test
this assumption. We further emphasize the urgency for
studies of otoliths in sifu in order to overcome persisting
obstacles in their taxonomic interpretation. The results of
the analysis of the otolith morphospace show a noticeable
increase of the disparity (MD) from Jurassic (MD=0.053)
to Late Cretaceous (MD=0.090). The greatest expansion
occurred during Late Cretaceous with the advent of
fusiform and tall otoliths with a heterosulcoid sulcus, and
with mesial sulcus positions. During the Palaeocene
(MD=0.083) the gadiform homosulcoid sulcus occurred,
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and mesial sulci increased noticeably. Finally, in the Eocene
(MD=0.087) the complete morphospace was filled with a
wide variety of otolith outlines and sulcus shapes (Fig. 2).

Our understanding has increased regarding the interplay
between otoliths and the corresponding maculae, but we
still lack some basic knowledge about the effects of sulcus
morphology and otolith shape on ear function. Further
progress will depend primarily on two fields of research:

- We need a wider array of investigations of the
macula sacculi covering a broader range of the enormous
diversity of Recent actinopterygian fishes. These data
should be integrated into studies on otolith morphology,
with special focus on the sulcus acusticus.

- An intense search for otoliths in situ is strongly
promoted, either by physical observation or application of
novel techniques such as microCT imaging. Particular
emphasis should be on fishes from crucial time periods in
the evolution of teleosts such as the Aptian-Albian and the
Late Cretaceous.
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