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Abstract - This research focused on the estimation of above ground carbon biomass of orchards in 
Sang Kho Sub-District, Phu Phan District, Sakon Nakhon Province in the northeast of Thailand using 
remote sensing with Modified Soil Adjusted Vegetation Index-2 (MSAVI2) and Fractional Vegetation 
Cover (FVC). The study methodology was conducted by bringing data from Landsat 8 OLI to adjust 
the reflection of the Top of Atmosphere (ToA) and classify the vegetation by using MSAVI2. Pixel 
values above 0-1 were determined to be vegetation and pixel values equal to or below 0 were determined 
not to be vegetation. Then, the pixel value was determined to classify the vegetation to be 0-100 by 
using FVC and the satellite data obtained from the previous process was applied to determine the 
correlation with the field data by statistical methods to get the correlation equation y = 0.0874e0.064x 
with a coefficient of determination R² = 0.9123. The calculation resulted in an above ground carbon 
content of 277.430 tCO2/rai. In addition, the researchers also tested the statistical accuracy of the above 
ground carbon, which could be analyzed by Landsat 8 OLI and field data with a Paired Sample T-test. 
The result found no statistically significant difference at a confidence level of 95%. 
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1. 	Introduction
The earth receives energy from the sun in the form of light 
energy. Some part of the energy is reflected back to space 
in the form of thermal energy. While some of this thermal 
energy will be absorbed by greenhouse gases, which are 
present in a small amount in the natural atmosphere. The 
thermal energy absorbed by greenhouse gases creates 
warmth and is required for living creatures in this world. 
If the amount of thermal energy is overloaded, it will be 
retained and the heat will be reflected back down to the 
earth and causes global warming. In fact, all greenhouse 
gases are caused by human activities. The gas that is most 
important is carbon dioxide (CO2) (Teerawong et al., 2012; 
Litynski et al., 2006; Wasun et al., 2010). At any rate, CO2 
is released into the atmosphere by various processes, such 
as fuel combustion and deforestation. Meanwhile, the 
growth of vegetation and the associated photosynthesis 
process helps vegetation to absorb CO2 and transform it to 
biomass (stem, branches and leaves) and roots (Ogawa  
et al., 1965; Senpaseuth et al., 2009). As a result, CO2 will 
be locked into the vegetation until it is cut from the area. 
This process is called “carbon biomass”, which is  

regarded as the most effective process for reducing CO2 
with natural mechanisms (Teerawong and Pornchai, 2014; 
Teerawong and Yannawut, 2016). The assessment of carbon 
biomass of forests usually requires a high budget due to 
the difficulty of area exploration. Currently, remote sensing 
technology is used to assist the assessment of above ground 
carbon biomass due to satellite data that provides reflectivity 
at different wave lengths. Thus, the above ground carbon 
biomass obtained from satellites in forest areas can be 
determined quickly with less budget required (Liaghat and 
Alasundram, 2010; Laosuwan et al., 2011; Odindi et al., 
2015). Remote sensing is considered to be a modern  
technology that is increasingly important. The data  
obtained from satellites has evolved rapidly in terms of 
recording and data analysis methods, especially data  
recording systems (sensor), which had been developed in 
terms of spatial resolution and spectral resolution. It  
resulted in a variety of applications in various fields  
(Campbell, 1996; Lu et al., 2002; Laosuwan et al., 2011;  
Teerawong and Yannawut, 2016; Laosuwan et al., 2016; 
Yannawut and Teerawong, 2016; Teerawong et al, 2016; 
Teerawong et al, 2017; Yannawut and Teerawong, 2017). 
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In addition, satellite data is currently accepted for use in 
monitoring changes in natural disasters and incidents 
caused by human actions in a timely manner.
	 In Thailand, related research papers could be found 
with the majority being assessments of carbon biomass in 
forests and plantations. There is no assessment of above 
ground carbon biomass in orchards. For this reason, this 
study aimed to assess the above ground carbon biomass of 
orchards in Sang Kho Sub-District, Phu Phan District, 
Sakon Nakhon Province in the northeast of Thailand with 
the application of remote sensing data with MSAVI2 and 
FVC.

2.	 Study area and data collection
2.1Study area: The study area was in Sang Kho Sub-
District, Phu Phan District, Sakon Nakhon Province in the 
northeast of Thailand (Fig. 1) with 14 agriculturists  
participating and a total area of 72.20 rai selected to be a 
pilot project area for the study. 

Figure 1. Study area.

2.2 Data collection: This study used the data from Landsat 
8 OLI Path 126 Row 45 recorded on February 7, 2015 in 
the area of orchards in Sang Kho Sub-District, Phu Phan 
District, Sakon Nakhon Province in the northeast of Thai-
land. The orchards in the pilot area were planted with 14 
types of fruit trees including:
1) Maoberry (Antidesma thwaitesianum Mull. Arg.).
2) Sugar Apple (Annona squamosal L.).
3) Longan (Dimocarpus longen Lour.).
4) Pomelo (Citrus maxima Merr.).
5) Burmese Grape (Baccaurea ramiflora Lour.)
6) Marian Plum (Bouea macrophylla Griffith.)
7) Mulberry (Morus alba Linn.) 
8) Jack Fruit (Artocarpus heterophyllus Lam.)
9) Mango (Mangifera indica L.). 
10) Indian Gooseberry (Phyllanthus emblica L.)
11) Tamarind (Tamarindus indica L.)
12) Santol (Sandoricum koetjape Burm.) 
13) Lychee (Litchi chinensis. Sonn.)
14) Lime (Citrus aurantifolia Swing.)

3.	 Research methodology
This study divided its methodology into two main processes 
as below:

	 1) 	The process of analyzing the data from the  
Landsat 8 OLI satellite.
	 2) 	The process of surveying field data to determine 
the carbon content in the  plots in the study area.
		  The final process could be found from the  
statistical correlation between the data from the Landsat 8 
OLI satellite and the field data to calculate the carbon 
content per area.

3.1	 Analysis process of data from Landsat 8 OLI satellite
3.1.1 Electromagnetic waves from the sun hit the Top of 
Atmosphere (ToA) and its value is based on the distance 
between the earth and the sun, including the angle of  
incidence. Some of the electromagnetic waves cause 
phenomenon such as scattering. Air molecules, clouds and 
dust were partially absorbed by ozone, gas, dust and clouds. 
The rest was reflected by objects on the earth back to the 
data recorder on the satellite. This phenomenon may result 
in an error in the satellite data recording. To reduce the 
effects of the electromagnetic waves from the phenomenon, 
this research adjusted the ToA to ensure the accuracy of 
the data from the Landsat 8 OLI satellite in two steps:  
1) converting digital numbers to radiance and 2) converting 
radiance to ToA reflectance by modeling in these two steps 
in the Spatial Modeler Language in the ERDAS program 
(Fig. 2), which was derived from Equation 1 and Equation 
2 (Teerawong and Pornchai, 2014; Teerawong and  
Yannawut, 2016).

Figure 2. Top of Atmosphere model using spatial modeler.
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The final step was to calculate the 

carbon content of vegetation in the 
permanent plots as presented in Equations 
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3.3 Analysis of biomass per area 
This study brought FVC obtained from the 
correlation equation and presented in the 
model to develop the biomass per area. 
Then, the results of the biomass per area 
from the field data and the data analyzed 
from Landsat 8 OLI were brought to test 
the statistical accuracy.  
 
4. Result 
4.1 Analysis results of data from 
Landsat 8 OLI satellite 
4.1.1 The results of adjusting the ToA of 
the electromagnetic waves caused by the 
scattering phenomenon by air molecules, 
clouds and dust as well as absorption by 
ozone, gas, dust and clouds are presented 
in Fig. 5. 
4.1.2 The result of the vegetation index 
with the MSAVI2 model and the result of 
the value adjustment by finding the FVC 
are shown with data from the Landsat 8 
OLI satellite between 0-100, as presented 
in Fig. 6. 
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Figure 5. (a) Before ToA and (b) after ToA.

Figure 6. Result of FVC.

4.2 Results of fileld survey
All the 22 permanent plots in the study area had measure-
ments of the heights of the vegetation at a size of greater 
than 4.5 cm DBH at a height of 130 cm. Then, the names 
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and height of the vegetation were recorded to assess the 
above ground biomass. The correlation between the value 
of the FVC and the carbon content is shown in the model 
represented in Fig. 7 and obtained the correlation equation 
y = 0.0874e0.0647x with a coefficient of determination  
R² = 0.9123. A coefficient of determination (R²) close to 1 
indicates a high relationship. The graph of the correlation 
could be found if the value of FVC increases, and the 
carbon content will rise accordingly.

 
Figure 7. Correlation with FVC. 

4.3 Analysis result of biomass perarea
In this study, the biomass in the area (tCO2/rai) was  
estimated by using the FVC obtained from the equation to 
present the model developed. The result obtained from the 
estimate of tCO2/rai from the data from the Landsat 8 OLI 
satellite (Fig. 8) showed that bright colors would give a 
high content of biomass, while on the other side, the dark 
colors will have less biomass content. Then, the results 
were brought to estimate the tco2/pixel (Fig. 9). It could be 
found that the bright colors would give a high content of 
biomass, while on the other side, dark colors would give a 
lower content of biomass. As a result, the estimation of the 
carbon content in the orchards in Sang Kho Sub-District, 
Phu Phan District, Sakon Nakhon Province has been  
conducted.

Figure 8. The tco2/rai.

Figure 9. The tco2/pixel.

5. Conclusions
This research aimed to assess the above ground carbon 
biomass in orchards in Sang Kho Sub-District, Phu Phan 
District, Sakon Nakhon Province in the northeast of  
Thailand by applying remote sensing. The research  
determined the correlation between the above ground 
carbon biomass from the field survey with MSAVI2 and 
FVC to analyze the correlation in the form of a linear  
regression analysis to determine the correlation equation 
and coefficient of determination (R2). As a result, the find-
ings indicated the correlation equation y = 0.0874e0.0647x 
with a coefficient of determination of R² = 0.9123. There-
fore, the calculation of the above ground carbon biomass 
indicated 277.430 tCO2/rai in a total area of ​​70.10 rai. 
Moreover, the research also found that the results were in 
line with other research studies, namely the studies of 
Phutchard et al., 2014; Teerawong and Yannawut, 2016; 
Yannawut and Teerawong, 2016; Tianyu et al., 2016; and 
Yannawut and Teerawong, 2017, etc. In addition, a test of 
the statistical significance of the above ground carbon  
biomass of the data from the field survey was conducted. 
The analysis of the data from the Landsat 8 OLI satellite 
with a Pair Sample T-test showed statistical significance 
with a confidence level of 95%. When considering the 
results of the study, it is beneficial to apply the estimation 
of the above ground carbon biomass in the orchards in Sang 
Kho Sub-District, Phu Phan District, Sakon Nakhon Prov-
ince in the northeast of Thailand with no requirement for 
surveying the entire field. This finding can reduce the costs 
and research timing as well as give up-to-date information 
to meet the demand for urgent information.
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