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Abstract - The brown planthopper (Nilaparvata lugens) 
is a serious pest affecting rice production worldwide, 
causing economic losses and challenges to food security. 
Traditional and conventional approaches relied on 
synthetic insecticides, which have led to increased pest 
resistance and environmental concerns, highlighting 
the need for sustainable alternatives. A comprehensive 
management strategy for N. lugens that effectively 
integrates pheromone-targeted approaches and RNA 
interference (RNAi) has not yet been reported. This review 
discussed innovative strategies integrating pheromone-
targeted and RNAi-induced biopesticides, enhanced 
by CRISPR technology. Pheromones, particularly sex 
pheromones, can disrupt mating behaviours, offering 
a non-toxic alternative to reduce pest populations 
sustainably. RNAi biopesticides offer a targeted approach 
by silencing essential genes related to the pest’s survival 
and reproduction, minimizing off-target effects and 
environmental impacts, presenting a precision-based 
alternative to conventional pesticides. Additionally, 
CRISPR technology enhances these strategies by 
enabling the synthesis of pheromones independent of 
the insect host and facilitating the delivery of RNAi 
constructs, potentially leading to the pest-resistant rice 
varieties. Ultimately, a thorough understanding of the 
biological and ecological aspects of N. lugens is crucial 
for evaluating current research on pheromone and 
RNAi applications within integrated pest management 
(IPM) frameworks. The challenges and opportunities 
presented by these innovative approaches necessitate 
interdisciplinary research to optimize their effectiveness 
while addressing regulatory and public acceptance 
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concerns. These insights can significantly 
advance agricultural practices and enhance 
food security amid rising pest pressures, 
ultimately ensuring both food security and 
environmental sustainability.
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targeted management, 
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1. Introduction

	 Rice (Oryza sativa) is a vital staple 
crop for over half of the world’s population, 
cultivated extensively across various regions, 
in Asia, Sub-Saharan Africa, and South 
America, amongst the largest consumers 
(USDA, 2023). It is reported that more than 
800 insect species live in rice ecosystems, 
which around 100 species are recognized 
as pest causing considerable damage 
(Oo et al., 2020). In rice agroecosystem, 
insect groups can be categorized based on 
their functional diversity into three main 
categories: insect pests, natural enemies, 
and neutral insects, such as pollinators 
(Isnawan & Ramadhanti, 2021). Major pests 
include armyworms, rice bugs, black bugs, 
cutworms, field crickets, grasshoppers, 
leafhoppers, mealybugs and planthopper. 
These pests collectively pose significant 
threats to agricultural productivity by 
causing direct damage to crops, reducing 
yields, and increasing the need for costly 
pest management interventions (Ane, 2016). 
Moreover, the practice of applying high rates 
of nitrogen fertilizer to boost rice production 
can inadvertently intensify pest outbreaks. 
This occurs because enhanced nutritional 
quality improves pests’ longevity, fecundity, 
and growth rates while simultaneously 
weakening the plants’ defenses against these 
pests (Horgan et al., 2021; Li et al., 2021). 
Uncontrolled pest infestation significantly 
affects rice production and yield losses. 
Research indicates that diseases like sheath 
blight, brown spot, and leaf blast can cause 
regional yield losses between 1% and 

10%. The brown planthopper (Nilaparvata 
lugens), yellow stem borer (Scirpophaga 
incertulas), and leaf folder (Cnaphalocrocis 
medinalis), which collectively contribute 
to substantial yield losses, estimated at 
31.5%, i.e., only in Asia. Among insect pests, 
stem borers are especially concerning, as 
they can lead to white heads and result 
in an estimated yield loss of about 2.3%. 
When accounting for the overall impact 
of various pests, the combined mean yield 
loss is approximately 37.2% at a regional 
attainable yield of 5.5 tonnes per hectare, 
with potential losses varying from 24% 
to 41% depending on specific conditions 
(Savary et al., 2000). Furthermore, it is 
reported that diseases account for about 
10% of annual rice production losses, 
translating to approximately 2.5 million 
tonnes, underscoring the critical impact 
of pest management on food security 
(Prakash et al., 2014). However, despite 
the concern of popular stem borer, the N. 
lugens is also one of the most destructive, 
causing extensive damage to rice crops 
globally. 

1.1 Geographical distribution of N. lugens

	 N. lugens live in many parts of 
the world where rice is a staple food for 
millions of people (Bottrell et al., 2012). 
N. lugens was reported to be native or 
originated from Southeast Asia, where 
countries such as Thailand, Vietnam, 
Indonesia, and the Philippines report high 
populations, especially during the wet 
season when rice cultivation is at its peak. 
Prior to 1975, the insect primarily inhabited 
certain state in Southern Asia. However, 
in 1995, it had extended its presence to 
Odisha, West Bengal, and Assam, and by 
2000, it further spread to Chhattisgarh, 
Bihar, Jharkhand, and Uttar Pradesh 
(Krishnaiah & Varma, 2011). Meanwhile 
India and Bangladesh face considerable 
threats, particularly in regions with climatic 
conditions conducive to its proliferation. 
The pest is also prevalent in East Asia, 
notably in China and Japan, where it can 
inflict severe damage to rice crops during 



Volume 11, Number 3, September–December 2025 Integrating CRISPR-driven pheromones and RNAi 
production – Possible “savior” for the management...

223

outbreaks (IRRI, 1979). Furthermore, N. 
lugens has been reported in certain areas of 
Africa, particularly Madagascar, where rice 
cultivation is expanding. The pest’s ability 
to thrive in diverse environments makes 
it a persistent challenge for rice farmers, 
necessitating effective management strategies 
to mitigate its impact on rice production. 
The geographical distribution of N. lugens 
is influenced by climate, availability of host 
plants, and agricultural practices. Warmer 
temperatures and high humidity levels favor 
the pest’s development and reproduction, 
leading to increased populations during 
certain seasons. Research indicates that 
the potential overwintering areas for N. 
lugens are projected to expand poleward, 
particularly into mid-latitude regions, 
which could facilitate its establishment 
in new areas previously unsuitable for 
overwintering. This shift raises concerns 
about its impact on local rice production 
systems, as the planthopper is known to 
cause severe damage to rice crops during 
outbreaks. Furthermore, studies have 
documented an increase in the ecological 
suitability for N. lugens in regions such as 
Northern China, Korea, and Japan, suggesting 
that these areas may become new hotspots 
for planthopper populations in the future 
(Hong et al., 2024; Tyagi et al., 2022). The 
expansion of its range is closely linked to 
changes in climate conditions that allow 
for greater survival and reproduction rates 
in these temperate zones. In addition, in 
recent years, it has caused extensive damage 
in countries such as India, Indonesia, and 
the Philippines, with estimated losses 
exceeding US$300 million due to both direct 
feeding damage and the transmission of the 
grassy stunt disease. The N. lugens’s ability 
to rapidly increase in population and its 
unpredictability in infestation patterns have 
made it a primary concern for rice farmers 
globally (Dyck & Thomas, 2023). Since the 
late 1990s, this pest has developed into a 
significant threat across all rice-growing 

regions, causing yield losses that can 
soar to 60% (Jena et al., 2018). This global 
spread highlights the adaptability of N. 
lugens to various climatic and agricultural 
conditions, underscoring the urgent need 
for effective pest management strategies.

1.2 Life cycle and morphological 
characteristics of N. lugens 

	 The N. lugens life cycle consists 
of incomplete metamorphosis, which is 
three main stages: egg, nymph and adult 
(Figure 1A). During the egg stage, adult 
female N. lugens lay eggs on the leaves and 
stems of rice plants. The eggs are elongated 
and whitish in color. They are usually in 
rows or clusters, sticking to each other 
with a sticky substance produced by the 
female N. lugens. The egg incubation period 
lasts around 7 to 10 days, depending on 
the environmental conditions (faster at a 
temperature of 25-30°C). For the nymph 
stage, they go through five instars or 
developmental stages. At first, the nymph 
is wingless and pale yellow. When they 
change instar, they become darker and 
grow wings. The duration of the nymphal 
stage varies from 16 to 25 days. Finally, 
during the adult stage, upon reaching the 
fifth instar, the nymph transforms into an 
adult N. lugens. Within 4 to 6 days, adult is 
to be then able to reproduce again. Adult 
N. lugens has several distinct morphological 
features; elongated body measuring about 
3 to 4 mm in length, slender body with 
brownish brown color, a pair of thin and 
transparent wings, the head of the insect 
has compound eyes; hind legs long and 
suitable for jumping, with visible veins; 
long antennae, which help in the senses 
and have a mouth to suck the rice plant 
called a stylet bundle (stylet bundle) (Figure 
1B). It penetrates the rice phloem, eats the 
rice sap, and causes damage or death to 
the rice plant directly.



Nur Syakila Rohawi and  
Nursyuhaida Mohd Hanafi 

224 Food Agricultural Sciences and Technology (FAST)

	 Mating behaviour in N. lugens involves 
an acoustic signal called “swarming”. Male 
N. lugens produce vibration calls or mating 
songs by rapidly vibrating their wings to 
attract the attention of female (Shi et al., 
2021). The female responds to the call, and 
mating occurs on rice plants or even in flight 
(aerial mating). After mating, females lay 
their eggs on suitable surfaces of rice plants 
(EFSA Panel on Plant Health et al., 2023). 
N. lugens exhibits a strong preference for 
certain rice varieties as its primary host. 
They are particularly attracted to young 
rice plants and tender shoots because they 
contain phloem sap of rice plants with 
high levels of sucrose and low levels of 
silicon (He et al., 2015; Kikuta et al., 2015). 
Certain rice varieties show varying degrees 
of susceptibility or resistance to N. lugens 
attack. Genetic factors, such as the presence 
of specific Bph genes, mainly contribute to 
the resistance of certain rice types (Jena & 
Kim, 2010). These genes confer mechanisms 
like antibiosis and antixenosis, which 
prevent or lessen the impact of N. lugens 
infestation. For instance, a comparative 
study on multiple rice genotypes uncovered 

that the known resistant variety Ptb33 
markedly reduced egg-laying rate, their 
survival, nymph number and inhibited 
the N. lugens population compared to the 
highly vulnerable TN1 variety (Wang et 
al., 2000).

1.3 Damage caused by N. lugens

	 As mentioned above N. lugens adult 
stages feed on rice plants by sucking sap 
or sap from the phloem, leading to the 
extraction of plant fluids, reducing plant 
nutrients, weakening and disrupting the 
immune system of rice plants (Zhu et al., 
2020). This causes stunted growth and 
yellowing of leaves and ultimately reduces 
grain production and quality. Severe 
infestations can result in desiccation and 
death of rice plants, leading to significant 
yield losses. Severe infestations can cause 
a phenomenon called “hopperburn”, a 
condition characterized by maximum wilting 
and drying (Figure 2). Yield loss varies 
depending on the intensity and duration 
of the attack, as well as the resistance level 
of the rice variety.
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Figure 1. A) Life cycle of N. lugens, B) Morphology of adult N. lugens. (Syngenta, 
2023). 
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	 N. lugens also acts as a vector to 
spread plant viruses, including Rice Ragged 
Stunt Virus (RRSV) and Rice Grassy Stunt 
Virus (RGSV), which worsen rice growth 
and yield (Cabauatan et al., 2009). They 
employ specific mechanisms to enhance 
viral transmission through persistent-
propagative mechanisms, primarily by 
invading the midgut epithelium, crossing 
the basal lamina into visceral muscles, 
and then spreading into the hemolymph. 
This leads to systemic viral spread, and 
interaction with salivary glands during 
feeding on rice plants (Na Phatthalung & 
Tangkananond, 2021). They acquire this 
virus from infected plants and spread it to 
healthy plants while feeding, exacerbating 
the damage caused by the insects. Plants 
infected with the virus show symptoms 
such as stunting, mosaic pattern, and 
yellowing, reducing grain quality, which 
leads to more severe yield loss (Kurniawati 
et al., 2023).

1.4 The need for an effective pest 
management strategy: Integrated pest 
management (IPM)

	 Integrated Pest Management (IPM) 
is a combined strategy that effectively 
controls pest populations while minimizing 

environmental impact and reducing reliance 
on chemical pesticides. It involves the 
integration of various strategies, including 
cultural, biological and chemical control 
methods, to achieve long-term pest reduction 
(Kogan, 1998). Figure 3 illustrates the stages 
of control when managing pest infestation 
in any global agricultural area.

	 Due to uncontrolled N. lugens 
infestation, traditional or cultural pest 
control methods have shown limited 
effectiveness in controlling N. lugens 
infestation, leading to significant yield loss. 
In addition, the use of synthetic pesticides 
with chemical control has resulted in 
resistance to N. lugens and has raised 
environmental concerns. The efficacy is 
likewise poor. Therefore, by integrating the 
biotechnology approach may pave a way 
to improve the IPM strategy in managing 
these pests (Alemu, 2020). In recent years, 
advances in biotechnology have opened 
new avenues for insect pest management.  
Genetic engineering and RNAi specifically 
offer targeted and specific pest control 
methods (Andrade & Hunter, 2016). This 
approach has the potential to disrupt the 
reproductive and physiological processes 
of N. lugens, reducing populations and 
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Figure 2. The phenomenon of "hopperburn" in rice fields due to the drying of rice plants 
infested with N. lugens (IRRI, 2023). 
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minimizing crop damage. Based on the 
literature search, there does not appear to 
be any published paper that specifically 
combines pheromone-targeted approaches 
with RNAi strategies for managing N. lugens. 
While studies are exploring CRISPR/Cas9 
and RNAi technologies independently in 
the context of pest management, and some 
discussing the use of pheromones, the 
integration of these methods into a cohesive 
strategy for controlling N. lugens has not 
yet been documented in the literature. 
Briefly, CRISPR technology, which stands 
for Clustered Regularly Interspaced Short 
Palindromic Repeats, has revolutionized 
genome editing, offering an accurate, 
efficient, and cost-effective method for 
modifying DNA sequences. This system, 
derived from the bacterial immune response 
against viruses, employs a guide RNA 
(gRNA) to direct the Cas9 enzyme to a 
specific DNA sequence, enabling targeted 
cuts or modifications (Makarova et al., 
2011; Pickar-Oliver & Gersbach, 2019). 
CRISPR has diverse applications across 
various fields. In medicine, for instance, 
CRISPR-based treatments, which repair 
mutations to restore normal gene activity, 
are being explored for hereditary illnesses 

such as sickle cell anemia and hemophilia 
(Kansal, 2024). In agriculture, CRISPR has 
facilitated the development of drought-
resistant crops and allergen-free foods by 
precisely altering plant genomes (Ahmad et 
al., 2023). Moreover, in biotechnology, it has 
been applied to engineer microorganisms 
for biofuel production and bioremediation 
(Hassanien et al., 2023). Thus, this review 
will comprehensively be discussed on the 
integration of these methods in management 
of N. lugens infestation.

2. Pheromone-targeted approach 

	 Pheromone-targeted pest control 
has emerged as a promising approach in 
modern agriculture, offering a sustainable 
and eco-friendly alternative to conventional 
pesticides. Pheromone-targeted approaches 
in agriculture utilize insect pheromones 
to manage pest populations through 
methods such as mating disruption and 
mass trapping. Pheromones are chemicals 
released by insects to communicate with 
each other. They play an important role 
in attracting mates, marking territory, 
aggregation, host location and alarm 
signalling (Abd El-Ghany, 2020). One 

Figure 3. Integrated Pest Management (IPM); graphic guideline illustrating global agricultural 
practices that are often used worldwide.
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of the key advantages of this method is 
its specificity. Pheromones are species-
specific, meaning they are recognized and 
responded to only by individuals of the 
same species (Sorensen & Baker, 2014). 
When exogenous pheromones are applied 
to crops, the insects become confused 
and are unable to locate one another to 
mate and reproduce (Figure 4). Because 
they are species-specific, biodegradable 
substances that don’t destroy biodiversity 
or promote the emergence of resistance, 
pheromones are appealing. By utilizing 
synthetic versions of these pheromones, 

researchers and farmers can effectively 
disrupt the mating cycles of target pest 
species, leading to a decline in their 
populations without adversely affecting 
beneficial insects or the environment. 
Moreover, the use of pheromones in pest 
control reduces the reliance on conventional 
pesticides, which can leave chemical 
residues in agricultural products and the 
environment. By minimizing the use of these 
chemicals, pheromone-targeted approaches 
contribute to the production of safer, more 
sustainable agricultural products that are 
in high demand by consumers.
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2.1 Application for N. lugens management

	 In the case of N. lugens, the female 
emits a special pheromone mixture to attract 
the male to mate. In pest management, by 
producing large quantities of pheromones, 
it becomes a tool to manipulate the 
behaviour of male N. lugens, disrupting 
their mating patterns and behavior, thus 
reducing their reproduction rate (Benelli 
et al., 2019; Witzgall et al., 2010). The use 
of pheromone traps or dispensers in the 
field aims to attract N. lugens from plants 

or attract them to certain areas as a control 
measure. To date, none of these approaches 
have been used against a reported N. lugens 
attack. This approach offers a targeted and 
environmentally friendly alternative to 
traditional insecticides, as it specifically 
targets N. lugens without harming other 
beneficial organisms. Additionally, plant 
traps and pheromone traps are non-toxic 
approaches that can be integrated into IPM 
programs to manage N. lugens infestation. 
Trap plants are attractive alternative host 
plants and can divert pests from the main 
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rice crop, reducing the level of infestation 
(Sarkar et al., 2018). Pheromone traps, on the 
other hand, use synthetic sex pheromones to 
attract and trap male N. lugens, disrupting 
their reproductive cycle. These techniques 
have shown effective results in reducing 
pest populations and can be effectively 
integrated into IPM strategies.

2.2 Application of genetic engineering 
techniques using CRISPR technology 
for pheromone production

	 Traditionally, pheromones are 
extracted from natural sources, such as 
insects or plants, where availability and 
scalability are limited. Extraction methods 
often require large quantities of starting 
materials and require labour (Cortes Ortiz 
et al., 2016). These factors lead to challenges 

in meeting the demand for pheromones 
in pest management programs. Genetic 
engineering techniques including gene 
cloning, transformation, genome editing 
techniques (gene editing) such as CRISPR-
Cas9 appear as promising platforms to 
produce pheromones on a larger scale 
(Wani et al., 2022). Yeast species such as 
Saccharomyces cerevisiae can be genetically 
modified to express biosynthetic genes 
responsible for pheromone production 
(Petkevicius et al., 2020; Williams et al., 
2016). Yeast offers several advantages, 
such as the ease of genetic manipulation, 
ease of propagation, and the ability to 
produce complex molecules (Wagner & 
Alper, 2016). This leads to the production 
and secretion of pheromones into the 
surrounding environment (Figure 5). 
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Figure 5. Exogenous pheromones production in yeast as a host using genetic engineering 
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	 The use of yeast engineering for 
pheromone production offers several 
advantages, including scalability, cost-
effectiveness, and the ability to produce 
pheromones with high purity and consistency. 
Genetic engineering techniques also allow 
modification of pheromone components to 
optimize their attractiveness and effectiveness 
in pest management strategies.

3. RNA interference (RNAi)-
induced biopesticide

	 RNA interference (RNAi) is a biological 
process that controls gene expression by 
silencing certain genes (Leung & Whittaker, 
2005). RNAi enables silencing of specific 

genes by introducing small RNA molecules, 
known as small interfering RNA (siRNA), 
which combine with complementary 
RNA molecules that bind to and degrade 
messenger RNA (mRNA) target genes 
thereby preventing the translation of target 
genes into functional proteins (Agrawal 
et al., 2003). RNAi offers promising 
biotechnological tools for targeting and 
disrupting the expression of specific genes 
in N. lugens. Various virulence genes have 
been identified in N. lugens, contributing to 
its ability to attack and damage rice plants 
(Ji et al., 2013; Xiao et al., 2015). These genes 
encode proteins involved in processes such 
as nutrition, detoxification, or immune 

Table 1.	 Studies on pheromone production in engineered yeast.

Insect/ pest 
species

Pheromone 
biosynthesis pathway Yeast host

Yield of 
pheromone 
produced

Reference(s)

Helicoverpa 
armigera

Z)-11-Hexadecenal 
(Z11–16: Ald) and 
(Z)-9-hexadecenal 
(Z9–16: Ald)

Saccharomyces 
cerevisiae

22.7 mg/L 
and 45.9 
mg/L 
respectively

(Jiang et al., 
2022)

Lepidoptera 
(moth)

fatty acyl-CoA 
desaturases and fatty 
acyl-CoA reductases

Yarrowia 
lipolytica NS (Petkevicius 

et al., 2022)

European corn 
borer (ECB), 
Ostrinia 
nubilalis

(Z)-11-tetradecenol 
(Z11-14: OH)

Yarrowia 
lipolytica

188.1 ± 
13.4 mg/L

(Petkevicius 
et al., 2021)

Helicoverpa 
armigera

(Z)-hexadec-11-en-1-ol 
and (Z)-tetradec-9-en-
1-ol,

Yarrowia 
lipolytica

(Holkenbrink 
et al., 2020)

Oriental 
fruit moth, 
Grapholita 
molesta

Desaturase (Gm-DES) 
and terminal reduction 
catalyzed by fatty acyl 
reductase (Gm-FAR)

Saccharomyces 
cerevisiae NS

(Vatanparast 
& Kim, 
2019)

Turnip moth, 
Agrotis segetum

Fatty-Acyl Desaturase 
and a Fatty-Acyl 
Reductase

Saccharomyces 
cerevisiae NS (Hagström 

et al., 2013)

Cabbage 
looper moth, 
Trichoplusia ni

Desaturation of 
coenzyme-A esters of 
saturated fatty acids

Saccharomyces 
cerevisiae NS (Knipple et 

al., 1998)

Note: *NS; not specified in the literature.
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evasion. By targeting important genes 
involved in insect survival or virulence, 
RNAi can inhibit important physiological 
processes such as molting, reproduction, 
immune response, thereby reducing insect 
and population survival and minimizing 
damage to crops. Several studies have shown 
success in identifying N. lugens virulence 
genes and using RNAi to control N. lugens 
in a laboratory setting (Rout et al., 2023; 
Wang et al., 2015). Such as 7,860 differently 
expressed genes, including those related to 
metabolism and immunology, were found 
in fat bodies from virulent and avirulent 
N. lugens populations using transcriptome 
analysis. These genes are essential for 
virulence adaptation to resistant rice types 
like Mudgo (Bph1) (Yu et al., 2014). Another 
study, involving RNAi targeting three 
NICstF genes implicated in molting and 
reproduction resulted in fatal phenotypes 
and decreased survival rates in N. lugens 
nymphs (Jing et al., 2024). Furthermore, N. 
lugens’s genome-wide analysis of alternative 
gene-splicing revealed a total of 27,880 
alternative splicing events corresponding to 
9,787 multi-exon genes were detected that 

are key virulence-associated genes that may 
be inhibited by RNAi to hinder the pest’s 
abilities to overcome rice resistance (Liu 
et al., 2021). These findings underscore the 
potential of RNAi-based strategies to target 
virulence mechanisms in N. lugens, paving 
the way for effective pest management 
solutions. While, CRISPR technology have 
shown effective findings in manipulating 
N. lugens genes for pest management (Table 
2), Xue and colleagues, reported that they 
target the eye pigmentation genes (NI-cn 
and NI-w) led to noticeable phenotypic 
changes, demonstrating the precision of 
CRISPR-mediated mutagenesis (Xue et al., 
2018). Furthermore, the CRISPR knockout of 
NICYP6CS1 gene (a detoxifying gene of N. 
lugens) cause insecticide resistance to the pest 
(Zhang et al., 2023). Additionally, another 
study targeted the gustatory receptor gene 
(NlugGr23a), which caused male sterility by 
disrupting sperm development, offering a 
potential molecular target for genetic pest 
control (Zhang et al., 2023). These studies 
highlight CRISPR as complementary tools 
for managing pest populations while 
minimizing environmental impact.

Table 2.	 CRISPR applications in N. lugens.

Gene targeted Function Findings References

NI-
cn (Cinnabar) 
& 
NI-w (White)

Eye 
pigmentation

Germ-line mutations resulted in 
bright red compound eyes and 
ocelli, heritably transmitted to the G1 
generation. Mosaic eyes with white 
and lightly pigmented ommatidia; 
mutant rate of up to 27.3%.

(Xue et al., 
2018).

NlCYP6CS1
Cytochrome 
P450-mediated 
detoxification

Increased susceptibility to insecticides 
like imidacloprid, nitenpyram, and 
thiamethoxam by 2.3- to 7-fold; 
reduced survival and reproduction.

(Zhang et 
al., 2023)

NlugGr23a
Gustatory 
receptor (male 
fertility)

Knockout caused male sterility due 
to arrested sperm development prior 
to pronucleus formation, reducing 
female fertility after mating.

(Zhang et 
al., 2023).
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	 Table 3 indicated the RNAi 
application for N. lugens. Using RNAi 
technology, scientist are able to silence 
essential genes like NICPSF30, which lead to 
impaired hormonal pathways in N. lugens, 
subsequently halting their growth and 
causing mortality (Jing et al., 2024). Next, 
RNAi targeting metamorphosis-related 
genes (NIE93 and NIKr-h1) disrupted the 
balance between ecdysone and juvenile 
hormone signaling, preventing proper 
development (Li et al., 2018). On the other 
hand, the autophagy-related gene NIATG3 

was also targeted, significantly reducing 
survival and fecundity in N. lugens (Ye 
et al., 2021). Another study focused on 
the NITOR gene, which, when knocked 
down, reduced male fertility by impairing 
spermatogenesis (Zhuo et al., 2017). 
Therefore, the application of RNAi-based 
approaches in pest management has great 
potential for selective and environmentally 
friendly control of N. lugens. However, more 
research is needed to optimize delivery 
methods and ensure efficient management 
under field conditions.

Table 3.	 RNAi Applications in N. lugens.

Gene 
Targeted Function Findings References

NICPSF30 mRNA processing

Severe developmental defects, 
disrupted molting, increased 
mortality, and hormonal regulation 
impairment.

(Jing et al., 
2024)

NIE93 & 
NIKr-h1

Ecdysone 
signaling 
(metamorphosis) 
& juvenile 
hormone signaling

Prevented nymph-adult transition, 
causing supernumerary nymphal 
instars. Precocious formation of 
incomplete adult features; mutual 
repression with NIE93.

(Li et al., 
2018)

NIATG3 Autophagy 
regulation

Inhibited survival and fecundity, 
significantly reducing the total 
number of eggs laid per female.

(Ye et al., 
2021)

NITOR Protein synthesis 
regulation

Reduced fertility in male N. lugens by 
impairing spermatogenesis and sperm 
quality.

(Zhuo et 
al., 2017)

4. Ethical and regulatory 
considerations

	 The integration of CRISPR-driven 
pheromones and RNAi production for 
managing N. lugens in rice paddy fields 
raises several ethical and regulatory 
considerations that must be addressed to 
ensure responsible implementation (Figure 
6). One key ethical standpoint is the need 
for informed consent and transparency; 
stakeholders, including farmers and 
consumers, must be fully informed about the 
nature, potential risks and their intended effect 

and any possible unintended consequences 
associated with these biopesticides as it 
involves genetic modification approaches, 
such as CRISPR. This aligns with ethical 
standards emphasizing voluntary informed 
consent, which is crucial for maintaining 
public trust as well as their perception and 
ensuring ethical compliance in agricultural 
biotechnology (Lockwood, 2004). Additionally, 
the environmental impact of introducing 
genetically modified organisms (GMOs) 
into ecosystems is crucial to be assessed 
to prevent unintended consequences on 
non-target species including beneficial 
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insects and other organisms within the 
ecosystem to ensure ecological balance 
(Caradus, 2022; Devos et al., 2016). Engaging 
with communities and stakeholders is 
essential to address public perception 
concerns regarding genetically engineered 
organisms and biopesticides, fostering 
transparency in research and development 
to build trust (Shams et al., 2024; Singh et 
al., 2024). Long-term ecological balance 
should be prioritized to avoid unintended 
consequences. Moreover, the implications 
for food security must be carefully 
considered; any new technology should 
enhance sustainable agricultural practices 
without compromising crop yields (Qaim, 
2020). Transparency in food labelling is also 
essential, as consumers should be informed if 
products have been treated with biopesticides 

derived from genetic technologies (Fărcaș, 
2024). Equity and accessibility are also 
critical ethical considerations, as there 
is a risk that advanced biotechnological 
solutions may be monopolized by large 
agribusinesses, exacerbating inequalities 
in agricultural productivity and resource 
access (Schurman & Munro, 2013). Policies 
should promote inclusivity and support 
for marginalized farming communities to 
ensure that smallholder farmers can benefit 
from these innovations (Diao et al., 2023). 
Furthermore, the welfare of any organisms 
affected using these biopesticides should 
be evaluated to minimize suffering. Ethical 
frameworks should guide these evaluations, 
prioritizing ecological integrity alongside 
agricultural productivity (Gjerris et al., 
2023).
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	 From the regulatory perspective, 
adherence to existing frameworks governing 
genetically modified organisms (GMOs) 
and biopesticides is vital, as regulations 
vary by country due to normally existing 
frameworks often treat biopesticides similarly 
to conventional pesticides, which can 
hinder the approval process for innovative 
solutions like CRISPR-driven pheromones 
and RNAi. Regulatory bodies, such as the 
EPA in the United States, need to adapt 
their guidelines to account for the unique 
characteristics of biopesticides, including 

their mode of action and environmental 
impact. This adaptation may involve 
establishing specific data requirements 
for registration, including assessments of 
potential off-target effects and long-term 
ecological consequences (NASEM, 2016). 
Thorough risk assessments must be conducted 
to evaluate potential environmental and 
health impacts, including studies on the 
stability and persistence of pheromones and 
RNAi in the environment. The registration 
of biopesticides typically requires extensive 
data on efficacy, safety, and environmental 
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impact. Establishing protocols for monitoring 
the effects of these biopesticides on both 
target and non-target species post-release is 
necessary, along with reporting mechanisms 
for any adverse effects that may arise 
during agricultural practices (Arora et al., 
2016; Greaves, 2009). Intellectual property 
rights present another layer of complexity; 
addressing patent issues and ensuring 
fair use of genetic technologies will be 
important to protect farmer rights and 
access to these biopesticides (Hashimy 
& Benjamin, 2024). Finally, aligning with 
international frameworks, international 
harmonization of regulations is essential 
given the global nature of agricultural 
markets. Collaboration between countries to 
share data and best practices can facilitate 
faster approval processes and broader 
acceptance of innovative pest management 
strategies (Handford et al., 2015; Yeung et al., 
2017). Finally, robust monitoring and post-
market surveillance systems are necessary 
to track the effectiveness of biopesticides 
and any adverse effects on non-target 
organisms and ecosystems once they are in 
use (EFSA Panel on Genetically Modified 
Organisms et al., 2020). Regulatory agencies 
must implement these systems to ensure 
compliance with safety standards and to 
address any emerging issues promptly. 
Overall, addressing these ethical and 
regulatory considerations is crucial for 
the responsible deployment of innovative 

biopesticide strategies in agriculture that 
prioritizes environmental sustainability, 
food security, and social equity will be 
essential for the successful implementation 
of these innovative strategies.

5. Integrated pest management 
(IPM) strategies: Combining 
pheromone, RNAi, and CRISPR 
approaches

	 The ongoing threat posed by 
N. lugens requires the development 
and implementation of effective pest 
management strategies. An integrated 
strategy that combines pheromone lures, 
RNAi biopesticides, and CRISPR technology 
could provide a comprehensive solution to 
managing N. lugens (Figure 7). By integrating 
exogenous pheromones into trap forms, this 
mechanical or physical prevention approach 
can effectively monitor and reduce pest 
numbers. However, despite its advantages, 
the pheromone-targeted method is not a 
standalone solution for pest control. In the 
event of a damaging infestation, chemical 
control measures, such as the application of 
pheromone sprays or RNAi biopesticides, 
are necessary to provide immediate relief 
from high pest populations (Kourti et al., 
2017; Kumari et al., 2023). By combining 
these methods, farmers can achieve a more 
comprehensive and sustainable approach 
to pest management.
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the commercialization and widespread use 
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production in N. lugens pest management 
(Veres et al., 2020). Future research 
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delivery system to increase target 
specificity and efficiency, and evaluating 
the long-term ecological effects of RNAi on 
non-target organisms and the environment 
(Li et al., 2025; Zarrabian & Sherif, 2024). 
Addressing these challenges will contribute 
to the development of sustainable and 
environmentally friendly strategies for N. 
lugens management. 
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6. Limitations, challenges and 
future directions

	 As research and technology continue 
to advance, the potential of pheromone-
based pest control is expected to grow, 
contributing to the development of more 
sustainable and environmentally responsible 
agricultural practices. Despite the potential 
for N. lugens pheromone production using 
yeast engineering, several challenges need 
to be addressed. One of the challenges is to 
identify and optimize the genes involved in 
pheromone synthesis to ensure biologically 
active pheromone production. Factors 
such as gene expression levels, metabolic 
flux and precursor availability need to 
be optimized to maximize pheromone 
production (Löfstedt & Xia, 2021; Min 
et al., 2017). Balancing the expression of 
various genes involved in the pheromone 
biosynthesis pathway is important to 
ensure efficient production. Furthermore, 
introducing genes and foreign substances 
into yeast can affect its physiology. 
Expression of pheromone biosynthesis 
genes can alter cellular resources, leading 
to changes in yeast growth, metabolism, or 
stress response. Ensuring that engineered 
yeast strains remain stable throughout 
prolonged fermentation is essential for 
scaled-up pheromone production (Ferreira 
et al., 2024; Rizvi et al., 2021). Other 
challenges are to achieve high pheromone 
production yields to meet the demand for 
large-scale pest management applications, 
improve the attractiveness of engineered 
pheromones, and optimize delivery methods 
for effective pest control. Additionally, 
the development of a cost-effective and 
sustainable development system will be 
essential for the commercialization and 
widespread use of engineered yeast-based 
pheromone production in N. lugens pest 
management (Veres et al., 2020). Future 
research directions for N. lugens pest 
management involve further elucidating 

the mechanisms of RNAi in N. lugens, 
improving the delivery system to increase 
target specificity and efficiency, and 
evaluating the long-term ecological effects 
of RNAi on non-target organisms and the 
environment (Li et al., 2025; Zarrabian & 
Sherif, 2024). Addressing these challenges 
will contribute to the development of 
sustainable and environmentally friendly 
strategies for N. lugens management.

7. Conclusion

	 The integration of pheromone-
targeted strategies, RNAi biopesticides, and 
CRISPR technology presents a promising 
pathway for sustainable management of 
N. lugens. Continued research is essential 
to optimize these approaches and ensure 
their efficacy in real-world agricultural 
settings.
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