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Abstract - Efficient nitrogen (N) management is crucial 
for improving growth, yield, and nitrogen use efficiency 
(NUE) of maize (Zea mays L.) while maintaining  
environmental quality. This study evaluated growth 
parameters, yield attributes, soil nutrient dynamics, 
nitrogen uptake, and NUE under various N sources 
and management practices on the sandy loam soil of 
Chitwan, Nepal. The experiment was designed as a 
randomized complete block with three replications, 
incorporating the following treatments: N check, N all 
at basal dose, N at three split doses, polymer-coated 
urea (PCU), neem-coated urea (NCU), urea deep 
placement (UDP), leaf color chart (LCC ≤4.5), and soil 
plant analysis development (SPAD ≤40) meter. The 
results depicted that the slow-releasing nitrogen 
sources, such as PCU, NCU, and UDP, along with split 
applications, outperformed conventional methods 
significantly. PCU emerged as the most effective  
treatment, achieving the highest plant height, yield, 
and nitrogen uptake. Compared to conventional  
applications, PCU increased grain yield by 11.2%, LCC 
(≤4.5) improved agronomic efficiency by 54.2%, and 
UDP enhanced recovery efficiency by 61.5%. These 
findings suggest that integrating slow-release and 
split-application practices can optimize N use and 
support sustainable maize production, with PCU 
being the best among all other treatments.

Keywords: 	 Maize, nitrogen management, nitrogen 
uptake, nitrogen use efficiency, slow-release  
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Abstract - Understanding genotype-by-environment 
interaction (GEI) is essential for sustainable agricultural 
production and food security. This study assessed GEI 
and yield stability in 21 mung bean (Vigna radiata) 
accessions across seven Nigerian locations during 
the 2023 rainy season using genotype plus genotype 
by environment (GGE) biplot analysis. A randomized 
complete block design with three replicates was employed 
to evaluate agro-morphological traits such as grain 
yield, plant height, flowering, and pod characteristics. 
Environmental factors significantly influenced grain 
yield, accounting for 28.75% of the variation, while 
genotype and GEI effects explained 4.31% and 17.88%, 
respectively. Principal component analysis revealed 
that the first two axes explained 72.25% of total 
variation, with PC1 and PC2 accounting for 60.20% 
and 12.05% of the variation, respectively. Ballah was 
identified as the most favorable environment due to 
high-yielding potential in mung bean accessions, and 
Tvr-5 emerged as the most stable and high-yielding 
genotype, particularly excelling in the southern guinea 
savanna. Variability in plant height, pod number, and 
grain yield across environments highlighted the need 
for breeding strategies targeting both broad and specific 
adaptability. Tvr-58, Tvr-5, and Tvr-8 were identified 
to exhibit stability with high yield and are therefore 
recommended for cultivation and breeding programs.
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1. Introduction
  In Nepal, maize (Zea mays L.) is the 

second most important cereal crop after 
rice in terms of both area and production. 
It  plays  a  critical  role  in  the  country’s 
agrarian  economy,  particularly  in  the 
mid-hill and mountain regions, where it 
serves  as  a  staple  food  and  a  primary 
source of income for smallholder farmers 
through  local  markets (Sapkota  et  al., 
2017). Economically, it is a key crop in the 
country’s  agricultural  development 
programs and agro-based industries such 
a s   p o u l t r y  a n d  f e e d  p r o d u c t i o n .
Nutritionally,  maize  is  a  rich  source  of
carbohydrates  and  provides  essential
nutrients, including protein, dietary fiber,
vitamins  (such  as  vitamin  B-complex), 
and  minerals  like  magnesium  and 
phosphorus (Bathla et al., 2019). It contributes 
to  dietary  diversity  and  food  energy 
intake,  especially  in  regions  where 
alternative food sources are limited. From 
a  food  security  perspective,  improving 
maize productivity and the quality of its 
plant materials, such as grains, stover, and 
cobs, is vital for sustaining food availability, 
enhancing  nutritional  outcomes,  and 
increasing  resilience  to  climate-related
challenges.  As  Nepal  continues  to  face
issues like population growth, declining 
arable  land,  and  climate  variability, 
strengthening  maize-based  production 
systems  is  essential  for  achieving  long- 
term food and nutritional security.

  Maize productivity relies heavily on 
balanced and adequate nutrient availability,
particularly nitrogen (N), a fundamental
component of amino acids, proteins, and
chlorophyll. In Nepal, granular urea is the 
primary source of N due to its affordability
and rapid plant response (Maharjan et al., 
2016). Despite the importance of nitrogen, 
its  efficient  use  in  maize  cultivation 
remains a significant challenge, particularly 
in developing countries like Nepal, where
resource  constraints  and  environmental 
concerns persist (Devkota et al., 2016).

	

 

 

 
  

 

	
 

 
 

 

 

 
 

 

 

 

 

Urea has low nitrogen use efficiency
(NUE), with more than half of the applied 
N  being  lost  through  volatilization, 
denitrification, and leaching (Yang et al., 
2011). These losses lead to environmental 
issues such as groundwater contamination, 
eutrophication,  biodiversity  loss,  and 
greenhouse gas emissions. Additionally, 
excessive  urea  application  negatively 
impacts  soil  physical  and  chemical 
properties  (Fugice  et  al.,  2018). Also, 
application  of  urea  on  the  surface  is
subject to immobilization and significant 
loss to the atmosphere as NH3–N (Shapiro
et al., 2016). To enhance NUE and mitigate
environmental harm, it is vital to identify
optimal N application methods that align 
N supply with plant demand throughout
the growth season (Gagnon et al., 2012).

Several  innovative  N  management
approaches  have  been  developed  to 
address these challenges, including split 
application,  slow-release  fertilizers, 
controlled-release coatings, deep placement 
technologies, and precision tools like LCC
and SPAD. Split N fertilizer applications 
can boost grain yield, NUE, and profitability 
while reducing N input (Chen et al., 2015).
Slow-release N sources, as a single basal
dose, offer an effective solution, reducing 
labor and time (Li et al., 2017). Controlled-
release  N  fertilizers  are  encapsulated  or
coated urea that act as a physical barrier 
to inhibit the quick release of urea (Shapiro 
et al., 2016), improve soil fertility, reduces
N deficiency, and lowers environmental
pollution (Chang-Ai et al., 2016), decreasing
N requirements by 20–30% compared to
traditional  practices  while  maintaining 
maize  yields (Xie  et  al.,  2019).  Urea 
briquettes,  a  slow-releasing  N  fertilizer,
placed 7–10 cm deep near the root zone, 
reduce  runoff  and  volatilization  losses,
enhancing  NUE (Azeem  et  al.,  2014).
Decision support tools like the leaf color
chart  (LCC)  and  soil  plant  analysis
development (SPAD) meter synchronize 
N  supply  with  maize  needs,  improving 
NUE and reducing environmental N loss
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(Karthik et al., 2022). These strategies aim 
to enhance nitrogen availability in synchrony 
with crop uptake while reducing losses.

  Although various nitrogen management 
strategies have been explored individually, 
limited  studies  have  systematically
compared  multiple  N  management
approaches under the same agroecological 
conditions. This study was conducted to 
bridge the knowledge gap by evaluating 
and  comparing  different  nitrogen  man- 
agement practices, including slow-release 
formulations and placement strategies, to
identify  the  most  efficient  approach  for 
enhancing  productivity  and  NUE  in 
maize.  The  findings  aim  to  support 
evidence-based  recommendations  of  N
management  approach  for  sustainable 
maize cultivation.

2. Materials and methods
2.1 Experimental site

  The field experiment was conducted 
on slightly acidic sandy loam soil with pH 
6.5,  organic  matter  2.6%,  total  nitrogen 
content 0.1%, available phosphorus 59 kg
ha-1, and available potassium 126 kg ha-1, 
during late spring to early monsoon at the
Horticulture Farm (27 ̊40ˈ N latitude, 84 ̊
23ˈ E longitude, altitude 256 meter above

 

	

 

sea  level),  Agriculture  and  Forestry
University  (AFU),  Rampur,  Chitwan, 
Nepal. The experimental site has a humid-
subtropical  climate  with  cool  winters 
when  temperatures  fall  below  10°C  and 
hot summers when temperatures rise up
to 35°C.

2.2 Experimental design and treatments

  The experiment was conducted in a 
randomized  complete  block  design
(RCBD) with eight treatments and three
replications. Replications were one meter 
apart, and each plot was 0.5 meters apart. 
Each treatment plot measured 7.2 m2 (3.6
m × 2 m), comprising 48 plants, six lines
each with eight plants (66,667 plants ha-1)
at a spacing of 0.6 m between rows and 
0.25 m between plants. Two maize seeds
of  Rampur  Hybrid  10,  a  heavy  feeder
hybrid variety of maize relevant to climate 
of experimental site, were sown per hill 5 
cm below the soil surface and thinned to 
one  plant  per  hill  21  days  after  sowing. 
The total experimental area was 313.25 m2, 
with 1152 total plants. The recommended 
fertilizer  dose  in  the  experiment  site
(Chitwan)  for  hybrid  maize  is  180:60:60
N:P:K  kg/ha  by  Nepal  Agriculture  and
Research Council (Koirala et al., 2020).
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Table 1. Treatment combinations.

SN Treatment Detail
1 N check 0:60:60 kg ha-1 NPK, at basal
2 N all at basal 180:60:60 kg ha-1 NPK, N applied from normal urea all as basal dose
3 N at three splits 180:60:60 kg ha-1 NPK, N applied from normal urea at three splits: basal, knee 

height (25 DAS), and silking stages (65 DAS)
4 PCU 180:60:60 kg ha-1 NPK, polymer-coated urea, applied all as basal dose
5 NCU 180:60:60 kg ha-1 NPK, neem oil-coated urea @ 5ml kg-1, applied at basal
6 UDP 165.6:60:60 kg ha-1 NPK, 5.4 g plant-1 (two urea briquettes of an average size of 

2.7 g) after germination (10 DAS) at 10 cm below and 5 cm away from seedlings
7 LCC (≤4.5) 108:60:60 kg ha-1 NPK was applied in total, at the rate of 20% urea of 180 kg N 

ha-1 per application, applied thrice, at basal and when threshold was met on 
LCC at critical value 4.5 at 21 DAS and 41 DAS according to readings taken at 
10-day intervals

8 SPAD (≤40) 72:60:60 kg ha-1 NPK was applied in total, at the rate of 20% urea of 180 kg N 
ha-1 per application, applied twice, at basal and when threshold was met on 
SPAD reading at critical value 40 at 21 DAS according to readings taken at 
10-day intervals

Note: NPK=nitrogen, phosphorus, potassium; PCU = polymer-coated urea; NCU = neem-coated urea; 
UDP = urea deep placement; LCC = leaf color chart; SPAD = soil plant analysis development; DAS = days 
after sowing.

LCC and SPAD readings were conducted 
between 8:00 and 11:00 a.m. at 10-day 
intervals starting from 21 days after  
sowing. N was applied based on the set 
critical limits of LCC and SPAD.

2.3 Data collection and soil analysis

	 Five central plants per plot were  
randomly selected and tagged for data 
collection, excluding border plants.  
Morphological characteristics, including 
plant height and leaf number, were 
recorded at 30, 60, 90, and 110 DAS. Plant 
height was measured from the base of the 
plant to the base of the flag leaf using a 
measuring tape, and leaf numbers were 
counted from individual plants to calculate 
the average.
	 Stover yield was measured at harvest 
(110 DAS). Stover from individual plots 
was harvested manually and weighed in 
the field and its moisture content was 
determined by the gravimetric method. 
Grain yield and thousand-grain weight 
were recorded after shelling and drying 
the grain. A Wile-55 moisture meter was 
used to measure grain moisture content. 
Grain and stover yield per hectare were 

	 Blended fertilizers, Single Super 
Phosphate (16% P2O5) and Muriate of 
Potash (60% K2O), were applied once 
during planting in all plots, including the 
N check plot. N fertilizers were applied 
as per treatments, at the same depth as 
seed placement and 5 cm distant from the 
seeds. 100% of recommended N (180 kg 
ha-1) was supplied through N all at basal, 
N at 3 Splits, PCU, and NCU, whereas 
91.61% through UDP, 60% through LCC, 
and 40% through SPAD. For decision 
support tools, readings were taken from 
the top, middle, and basal parts of the 
fully expanded flag leaf before the silking 
stage because it is the youngest and most 
actively photosynthesizing leaf at that 
stage, providing an accurate indication of 
the plant’s nitrogen status. Readings from 
the top, middle, and basal portions ensure 
a more representative average of chlorophyll  
content or greenness. After silking, the ear 
leaf becomes the most physiologically 
active and functionally important leaf 
contributing to grain filling, making it the 
most appropriate for nutrient status  
assessment during the reproductive stage; 
therefore, the ear leaf was used after silking. 
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adjusted  to  14%  moisture  using  the  for- 
mula (Dhakal et al., 2020):
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equations (5) and (6), respectively 

(Dobermann, 2007):  
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where, 

YN = grain yield of treatments receiving N 

fertilizer 
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FN = rate of N applied   
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2.4 Statistical analysis  

Data from field experiments and 

laboratory analyses were entered into MS 

Excel and subjected to analysis of variance 

(ANOVA) using R-studio 4.3.1 for RCBD. 

ANOVA was used to compare means across 

different treatments and assess the effect of 

treatments on the response of variables. Mean 

calculation of the set of data, standard 
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5% level of significance was used for mean 

separations. 
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at maturity (kg ha-1) in control plots 
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at different growth stages (30, 60, 90, and 
110 days after sowing), were notably  
impacted by various nitrogen sources and 
management practices at P < 0.001 (Figure 
1). At the end of the first month of sowing 
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(30 DAS), the maximum plant height was 
recorded with the treatment, N application 
all at basal. Whereas, PCU treatment  
resulted in the tallest plants at the 2nd (60 
DAS), 3rd (90 DAS), and last (110 DAS) 
recordings of data. At 60 DAS, PCU, UDP, 
and NCU resulted in statistically similar 
maize plant heights. Compared to the 
basal application of nitrogen (N), PCU, 
UDP, NCU, and the three-split N application 
produced maize plants that were 3.7%, 

2.3%, 1.5%, and 0.8% taller, respectively. 
By harvest (110 DAS), these differences 
increased to 5.6%, 3.85%, 2.98%, and 
3.56%, respectively. Overall, PCU treated 
plots exhibited best performance among 
all treatments. Nevertheless, the decision 
support tools, LCC at a critical value of 
4.5 and SPAD at a critical value of 40 could 
not outweigh the performance of basal 
application. The lowest plant height was 
observed with the N check in each recording. 

could not outweigh the performance of basal 

application. The lowest plant height was 

observed with the N check in each recording.  

 
Figure 1. Effect of N source and management on maize plant height at various growth stages.  

DAS = days after sowing; Different letters in lowercase indicate significant differences in mean 

value, while the same letter(s) indicate non-significant effect of treatments at 5% level of 

significance and the mean was separated by Duncan Multiple Range Test (DMRT). 
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Figure 1. Effect of N source and management on maize plant height at various growth stages. 
DAS = days after sowing; Different letters in lowercase indicate significant differences in mean 
value, while the same letter(s) indicate non-significant effect of treatments at 5% level of 
significance and the mean was separated by Duncan Multiple Range Test (DMRT).

	 The number of maize leaves per plant 
was significantly affected by different N 
management practices (Figure 2). At 30 
days after sowing (DAS), the highest 
number of functional leaves (8.20) was 
observed in the treatment where the full 
dose of nitrogen was applied at the basal 
stage. At 60 DAS, the application of 
polymer-coated urea (PCU) resulted in 
the greatest number of functional leaves 
(15.07), statistically similar to UDP (15), N 

at 3-splits (14.93), and basal application 
(14.13), followed by NCU (14.07). By 90 
DAS, PCU continued to outperform other 
treatments, recording the highest number 
of functional leaves (13.93). At harvest 
(110 DAS), UDP has more functional 
leaves (5.07). The nitrogen control (N 
check) consistently exhibited the lowest 
number of functional leaves across all 
growth stages.
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Figure 2. Effect of N source on maize leaf number at various growth stages. 
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11.80% higher than those obtained from the 

N all-at-basal treatment, which produced 
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Figure 2. Effect of N source on maize leaf number at various growth stages.
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	 The effect of nitrogen sources and 
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parameters, thousand kernel weight 
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ha-1). TKW of NCU (353 kg ha-1), and N at 
3 splits (352.33 kg ha-1) treated plots 

outweighed N all at basal by 11% and 
10.79%, respectively. The highest maize 
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and 11.80% higher than those obtained 
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produced 9.88 t ha⁻¹ grain yield and 10.98 
t ha⁻¹ stover yield. Whereas, the lowest 
TKW, grain yield and stover yield were 
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Figure 3. Effect of N source and management on maize thousand kernel weight (TKW), grain 

yield (GY), and stover yield (SY). Different letters in lowercase indicate significant differences in 

mean value, while same letter(s) indicates non-significant effect of treatments at 5% level of 

significance and mean was separated by DMRT. 
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Figure 3. Effect of N source and management on maize thousand kernel weight (TKW), grain 
yield (GY), and stover yield (SY). Different letters in lowercase indicate significant differences 
in mean value, while same letter(s) indicates non-significant effect of treatments at 5% level of 
significance and mean was separated by DMRT.
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Figure 4. Grain and stover yield advantage of different N treatments over conventional urea 
application (N all at basal).

3.3 Soil parameters 

	 There was no significant difference 
in soil organic matter content, whereas pH 
was affected at P < 0.01. High pH was 
obtained in the N check treatment than 
with N2 application treatments, indicating  
the increment in acidic ions in N N-treated  
soil. NPK content of soil was significantly 

affected at P < 0.001. N was highest in the 
UDP-treated plot, followed by PCU, 
NCU, and N at 3 splits. The highest phos-
phorus (P) and potassium (K) levels were 
found in the N check treatment, indicating 
higher P and K uptake in N-treated plots 
(Table 2).

Table 2.	 Effect of different nitrogen sources and management practices on soil samples 
collected at harvest (110 DAS).

Treatment OM% pH Total N% Available 
P2O5 

(kg ha-1)

Available 
K2O

(kg ha-1)

N check 2.70±p0.36 6.37±0.03a 0.07±0.04e 64.67±1.76a 111.00±1a

N all at basal 2.00±0.37 6.07±0.03bc 0.10±0.06cd 59.67±0.88bc 95.33±2.4bc

N at 3 splits 2.25±0.07 6.10±0.06bc 0.11±0.07bc 55.33±0.88d 90.67±1.45cd

PCU 2.26±0.05 6.20±0.06ab 0.13±0.07ab 55.00±1.73d 88.33±1.66d

NCU 1.81±0.04 6.10±0.06bc 0.12±0.07b 54.00±0.99d 89.33±3.28cd

UDP 2.73±0.51 6.23±0.07ab 0.14±0.53a 52.33±0.88d 92.67±2.6bcd

LCC(≤4.5) 1.92±0.05 6.00±0.1c 0.10±0.05cd 60.33±0.33b 97.67±0.88b

SPAD(≤40) 2.36±0.45 6.00±0.06c 0.09±0.45de 63.00±0.99ab 108.33±0.66a

LSD(0.05) ns 0.17** 0.02*** 3.54*** 6.18***

SEm(±) 0.32 0.06 0.006 1.17 2.04

CV (%) 24.65 1.62 9.62 3.46 3.65

Note: OM = organic matter; pH=potential of hydrogen ion; N = total nitrogen; P2O5=available phosphorous; 
K2O = available potassium; LSD = least significant difference; CV = coefficient of variation; Data represented 
with the same letter(s) are non-significant effect of treatments at 5% level of significance and mean was 
separated by DMRT; ** and *** represents significant at 0.01 level of significance, and 0.001 level of 
significance, respectively; ns, non-significant at the 0.05 probability level.



67 Volume 12, Number 1, January - April 2026 Optimizing nitrogen management practices 
to enhance nutrient use efficiency...

3.4 Nitrogen uptake 

	 Grain and stover nitrogen uptake in 
maize were significantly affected by N 
sources and management practices at P < 
0.001 (Figure 5). PCU treatment resulted 
in the highest grain (156.72 kg ha-1) and 
stover (86.93 kg ha-1) N uptake. Whereas 
the lowest N uptake was observed with 

the N check treatment. PCU, NCU, UDP, 
and N at 3 split application increased the 
N uptake of grain by 13.84%, 13.73%, 
12.41%, and 11.01% and stover N uptake 
by 29.05%, 25.01%, 23.68%, and 16.68%, 
respectively, compared to N all at basal 
application.

 
Figure 5. Effect of N source and management on N uptake by grain (GNU) and stover (SNU) of 

maize. TNU=total nitrogen uptake; Mean was separated by DMRT and different letters in 

lowercase indicate significant differences in mean value, while same letter(s) indicates non-

significant effect of treatments at 5% level of significance. 

 
Figure 6. Relationship between total Nitrogen uptake and yield of maize. 

A highly significant and strong 

positive linear relationship (R² = 0.9868) was 

observed between total nitrogen uptake and 

maize yield, indicating that nitrogen uptake 

accounted for approximately 98.68% of the 

variability in grain yield. The regression 

equation (y = 0.0339x + 2.8165) implies that 

for every 1 kg/ha increase in nitrogen uptake, 

maize yield increased by approximately 33.9 

kg ha-1. This strong correlation emphasizes 
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Figure 5. Effect of N source and management on N uptake by grain (GNU) and stover (SNU) 
of maize. TNU=total nitrogen uptake; Mean was separated by DMRT and different letters in 
lowercase indicate significant differences in mean value, while same letter(s) indicates non-
significant effect of treatments at 5% level of significance.
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Figure 6. Relationship between total Nitrogen uptake and yield of maize.
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	 A highly significant and strong  
positive linear relationship (R² = 0.9868) 
was observed between total nitrogen  
uptake and maize yield, indicating that 
nitrogen uptake accounted for approximately  
98.68% of the variability in grain yield. 
The regression equation (y = 0.0339x + 
2.8165) implies that for every 1 kg/ha 
increase in nitrogen uptake, maize yield 
increased by approximately 33.9 kg ha-1. 
This strong correlation emphasizes the 
critical role of nitrogen in enhancing 
maize productivity and suggests that 
optimizing N uptake is essential for 
achieving higher yields under the given 
management practices. 

3.5 Nitrogen use efficiency 

	 Nitrogen Use Efficiency (NUE), 
including Agronomic Efficiency (AEN) 
and Recovery Efficiency (REN), was  
significantly affected by the nitrogen  
management practices (P < 0.001), as depicted  
in Figure 7. Among the treatments, the 
LCC (≤4.5) method recorded the highest 
agronomic efficiency (23.19 kg grain per 
kg N applied), indicating superior crop 
yield response per unit of nitrogen used. 
UDP treatment showed statistically  
similar AEN values. In terms of recovery 
efficiency, the UDP treatment resulted in 
the highest value (0.63 kg N recovered per 
kg N applied), suggesting effective nitrogen 
uptake by the crop. This was followed 
closely by PCU and LCC treatment, which 
also showed statistically similar REN 
values. On the other hand, the N applied 
all at basal resulted in comparatively lower 
efficiencies in both AEN and REN. 

the critical role of nitrogen in enhancing 

maize productivity and suggests that 

optimizing N uptake is essential for 

achieving higher yields under the given 

management practices.  

 

3.5 Nitrogen use efficiency  

Nitrogen Use Efficiency (NUE), 

including Agronomic Efficiency (AEN) and 

Recovery Efficiency (REN), was 

significantly affected by the nitrogen 

management practices (P < 0.001), as 

depicted in Figure 7. Among the treatments, 

the LCC (≤4.5) method recorded the highest 

agronomic efficiency (23.19 kg grain per kg 

N applied), indicating superior crop yield 

response per unit of nitrogen used. UDP 

treatment showed statistically similar AEN 

values. In terms of recovery efficiency, the 

UDP treatment resulted in the highest value 

(0.63 kg N recovered per kg N applied), 

suggesting effective nitrogen uptake by the 

crop. This was followed closely by PCU and 

LCC treatment, which also showed 

statistically similar REN values. On the other 

hand, the N applied all at basal resulted in 

comparatively lower efficiencies in both 

AEN and REN.  

 
Figure 7. Effect of N source and management on nitrogen use efficiency (NUE), agronomic 

efficiency (AEN), and recovery efficiency (REN) of maize. Mean is separated by DMRT; different 

letters in lowercase indicate significant differences in mean value, while the same letter(s) indicate 

non-significant effect of treatments at 5% level of significance. 
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resulted in the highest agronomic efficiency 

(54.19 %), UDP gave the highest recovery 
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	 All the treatments except the N check 
resulted in higher nitrogen use efficiency 
compared to conventional urea. While 
LCC resulted in the highest agronomic 

efficiency (54.19 %), UDP gave the highest 
recovery efficiency (61.54%) over basal 
application. 
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Figure 8.  Comparative advantage of nitrogen uses efficiency of different N treatments over N all 

at basal. NUE = nitrogen use efficiency; AEN = agronomic efficiency of applied N; REN = 

recovery efficiency of applied N. 

 

4. Discussion  

4.1 Growth parameters 

Plant height is directly influenced by 

the proper supply of nitrogen at various 

growth stages of maize (Shrestha, 2015). In 

this study, plant height and leaf number were 

recorded at 30, 60, 90, and 110 DAS. Though 

vegetative growth typically ceases after 

flowering, measuring these traits post-

flowering provides valuable insights into 

growth stabilization and the residual 

influence of nitrogen treatments. These data 

serve as important indicators for evaluating 

treatment effects and understanding crop 

developmental responses. 

At 30 DAS, plant height and leaf 

number were highest under the N all-at-basal 

treatment, reflecting early nitrogen 

availability (Thakur et al., 1998). From 60 

DAS onward, PCU-treated plants 

consistently exhibited the greatest plant 

height and leaf number, aligning with the 

slow and sustained nitrogen release provided 

by its polymer coating, which showed 

statistically similar results with UDP, NCU, 

and N at 3-splits. This is supported by Hergert 

et al. (2011), who observed similar outcomes. 

The increase in plant height with split 

applications and slow-release N sources like 

PCU, NCU, and UDP can be attributed to 

continuous nitrogen supply, which promotes 

cell division, elongation (Adhikari et al., 
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Figure 8. Comparative advantage of nitrogen uses efficiency of different N treatments over N 
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Discussion
4.1 Growth parameters

Plant height is directly influenced by
the proper supply of nitrogen at various 
growth stages of maize (Shrestha, 2015). 
In  this  study,  plant  height  and  leaf 
number were recorded at 30, 60, 90, and
110  DAS.  Though  vegetative  growth 
typically ceases after flowering, measuring 
these traits post-flowering provides valuable
insights into growth stabilization and the
residual influence of nitrogen treatments.
These data serve as important indicators 
for  evaluating  treatment  effects  and 
understanding  crop  developmental 
responses.

  At  30  DAS,  plant  height  and  leaf 
number  were  highest  under  the  N  all- 
at-basal  treatment,  reflecting  early
nitrogen availability (Thakur et al., 1998).
From 60 DAS onward, PCU-treated plants
consistently  exhibited  the  greatest  plant 
height and leaf number, aligning with the 
slow  and  sustained  nitrogen  release 
provided  by  its  polymer  coating,  which 
showed  statistically  similar  results  with

 

	  
 

 

 

UDP,  NCU,  and  N  at  3-splits.  This  is
supported  by Hergert  et  al.  (2011),  who 
observed similar outcomes. The increase 
in plant height with split applications and
slow-release  N  sources  like  PCU,  NCU, 
and UDP can be attributed to continuous
nitrogen  supply,  which  promotes  cell 
division,  elongation (Adhikari  et  al., 
2016), and higher auxin levels (Joshi et al.,
2014).

PCU  and  NCU,  coated  with  semi-
natural  macromolecules,  gradually 
release nitrogen in synchrony with plant 
needs (Hergert  et  al.,  2011),  while  UDP,
compacted into dense pellets, has reduced 
surface area, hence slows down the rate 
of dissolution compared to conventional 
urea and when deep-placed at 7–10 cm, 
minimizes  volatilization  and  runoff, 
ensuring steady nitrogen availability near 
the  root  zone (Varadachari  &  Goertz, 
2010). These  mechanisms  collectively 
supported superior growth performance. 
In contrast, poor performance by decision
support  tools  (LCC  at  critical  value  4.5 
and  SPAD  at  40)  likely  resulted  from 
insufficient  nitrogen  supply  during  key
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growth phases. The fixed threshold values 
may not have reflected the dynamic N 
demand of the crop, causing delayed or 
suboptimal N application. This aligns 
with Singh et al. (2016), who reported 
improved growth with LCC thresholds of 
5–5.5 and SPAD readings of 45.4. Future 
research should explore stage-specific or 
adjusted thresholds to enhance the precision  
and effectiveness of these tools.

4.2 Yield attributes

	 The higher dry matter accumulation 
in grains observed with the slow- and 
controlled-release nitrogen sources in our 
study is likely due to the continuous 
availability of nitrogen over an extended 
period, which supports prolonged grain 
filling. This finding aligns with Cheetham 
et al. (2006), who reported that sustained 
nitrogen availability enhances dry matter 
deposition. Similarly, Dhakal et al. (2021) 
noted that adequate nitrogen supply  
improves kernel integrity and supports 
grain development, which was evident in 
our treatments involving PCU, UDP, and 
NCU.
	 Our results also corroborate those of 
Beshir et al. (2019), who found greater dry 
mass accumulation and yield under 
improved nitrogen management strategies  
that reduce N losses. In our study,  
treatments such as PCU and N at 3 splits 
reduced nitrogen loss and enhanced dry 
matter accumulation, supporting their 
conclusions. Furthermore, the grain and 
stover yield improvements observed in 
these treatments (as shown in Figure 4) 
are consistent with findings by Umesha 
et al. (2017), who attributed increased 
yield to better nitrogen synchronization 
and reduced volatilization and denitrifi-
cation.
	 Additionally, Ye et al. (2013) reported 
enhanced root growth and dry matter 
accumulation with PCU, which aligns 
with our observation of greater biomass 
in PCU-treated plots. Ashraf et al. (2016) 
emphasized the role of nitrogen in  

 

	
 

 

	

 
 

 

improving pollination and sink development, 
leading  to  increased  grains  per  cob  and 
grain yield, a trend also supported by our 
results. Similarly, Dawadi and Sah (2012)
linked nitrogen availability to increases in 
plant  height,  leaf  number,  and  stover
yield, which parallels our findings.

Finally, our results reaffirm those of
Marahatta  (2022),  who  reported  the
highest grain yield advantage with PCU
over conventional basal nitrogen application,
followed  by  UDP.  This  trend  is  clearly 
reflected  in  our  data,  further  validating 
the  efficiency  of  controlled-release  and
deep placement nitrogen strategies

4.3 Soil parameters

The non-significant effect of nitrogen
sources and management practices on soil 
organic matter (OM) was likely due to the
limited  influence  of  inorganic  fertilizers
on  OM  dynamics.  This  is  supported 
by Moran  et  al.  (2005),  who  found  no
preferential transformation of mineral N 
over residue-derived N into soil organic 
matter. The observed reduction in soil pH 
in  N-treated  plots  is  attributed  to  the
depletion  of  basic  cations (Lucas  et  al.,
2011; Tian & Niu, 2015) and the deposition
of  H⁺ ions  released  during  ammonium
(NH₄⁺)  uptake  by  plant  roots (Ge  et  al., 
2018). UDP-treated plots showed higher
nitrogen content in the soil, likely due to
minimized  N  losses  and  prolonged  N
availability (Yao et al., 2018), while higher
residual  N  in  PCU-treated  soils  can  be 
attributed to delayed nitrification (Ashraf 
et al., 2019) and gradual release of N via
diffusion (Ye  et  al.,  2013).  Interestingly, 
the highest phosphorus (P) and potassium
(K) levels were recorded in the N-check
treatment,  suggesting  greater  uptake  of
these  nutrients  in  N-treated  plots.  This
pattern  is  consistent  with  previous
findings that adequate nitrogen enhances
nutrient  absorption (Hoffmann  et  al., 
1994) and  that  P  and  K  uptake  increase
with rising N levels (Ray et al., 2019).
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	 These findings suggest that while 
advanced N management practices may 
not significantly improve soil OM in the 
short term, they can influence nutrient 
dynamics and soil acidity, factors that are 
critical for maintaining soil fertility and 
guiding sustainable fertilization strate-
gies. 

4.4 Nitrogen uptake 

	 In our study, treatments with split N 
application (N at 3 splits), PCU, NCU, and 
UDP resulted in significantly higher  
nitrogen uptake compared to the N all- 
at-basal application. These treatments also 
extended the duration of active nitrogen 
uptake, suggesting improved synchroni-
zation of nitrogen availability with crop 
demand. This is evident from the higher 
residual nitrogen levels and improved 
nitrogen use efficiency (NUE) observed in 
these treatments.
	 These findings align with Fageria and 
Baligar (2005), who emphasized the  
importance of synchronizing nitrogen 
availability with plant demand to maximize  
uptake and minimize losses. The delayed 
nitrification and extended nitrogen  
availability observed in PCU and NCU 
treatments support the findings of Ashraf 
et al. (2019), who reported a 30-day delay 
in nitrification due to coated urea, increasing 
the plant-available nitrogen pool. Similarly,  
Ye et al. (2013) described how coating urea 
forms a diffusion barrier that slows nitrogen  
release, reduces losses, and enhances 
NUE. In the case of UDP, our results are 
consistent with Eldridge et al. (2022) and 
Yao et al. (2018), who found that deep 
placement of urea briquettes reduces  
nitrogen losses and increases plant  
uptake. Additionally, Du et al. (2019) 
demonstrated that split N applications 
prolong the period of rapid nitrogen  
absorption, which aligns with our  
observation of extended nitrogen uptake 
phases in the split application treatments.

4.5 Nitrogen use efficiency 

	 In our study (Figures 7 and 8), LCC 
(critical value 4.5) recorded the highest 
agronomic efficiency at 23.19 kg grain/kg 
N applied (54.19% more compared to 
basal application), which can be attributed 
to its lower total nitrogen application 
while still achieving substantial yield. 
This supports the findings of Jat et al. 
(2012), who reported higher NUE with 
lower LCC thresholds. Similarly, Subedi 
et al. (2018) observed the highest agronomic  
efficiency with LCC-based nitrogen  
management. We observed statistically 
similar results with UDP (22.33 kg grain/
kg N applied) and this aligns with the 
study of Dhakal et al. (2021) and Marahatta 
(2022), who observed high NUE with UDP 
and PCU.
	 UDP showed the highest recovery 
efficiency at 0.63 kg N recovered/kg N 
applied, which is 61.54% more compared 
to basal application (Figure 7 and 8),  
followed by PCU at 0.61 kg N recovered/
kg N applied and LCC at 0.6 kg N recovered/ 
kg N applied with no statistical difference, 
confirming the enhanced nitrogen uptake 
and minimized loss with deep placement 
and slow-release approaches. These  
results align with those of Yao et al. (2018), 
who reported recovery efficiency of up to 
62% with UDP, and Xie et al. (2020), who 
demonstrated higher N recovery and 
yield with PCU compared to conventional  
urea. Liu et al. (2019) also reported superior 
NUE for UDP over basal N application, 
which supports the trend observed in our 
experiment.
	 To summarize, the primary objective 
of this study was to compare split application,  
slow-release approaches and precision 
tools with conventional method of N 
management and identify the most effective  
approach of nutrient management in 
maize farming. The results demonstrated 
that slow-release urea and split N applications 
significantly enhanced maize perfor-
mance and nitrogen use efficiency (NUE) 
compared to conventional urea. Among 
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the treatments, PCU produced the highest 
grain yield and N uptake, while LCC and 
UDP recorded the highest agronomic and 
recovery efficiencies, respectively. NCU 
and N applied in 3 splits also outper-
formed the all at basal application.
	 These findings suggest that slow-release  
N sources and precision tools offer clear 
advantages over conventional practices in 
terms of both productivity and sustainability.  
However, adjustments to LCC and SPAD 
threshold values may further improve 
their accuracy in assessing crop N require-
ments. Further research is recommended 
to evaluate the performance of these tools 
under varying threshold settings and 
environmental conditions.

Conclusion 
	 This study demonstrated that improved 
nitrogen management strategies signifi-
cantly enhance maize yield and nitrogen 
use efficiency. Among the treatments, 
PCU resulted in the highest grain yield 
and nitrogen uptake, while UDP and LCC 
showed notable improvements in agronomic  
and recovery efficiencies. Overall, the 
findings highlight the potential of slow- 
release fertilizers and precision tools over 
conventional nitrogen application for 
promoting productivity and sustainability 
in maize farming. Regarding performance 
PCU was best recommended, while  
regarding convenience and cost-effectiveness, 
UDP is more accessible and affordable for 
smallholder farmers due to its lower  
material cost compared to coated urea, 
LCC and SPAD and simpler application 
process (once at plantation time) compared  
to splits application. 
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