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ABSTRACT
This research develops a method for classifying and detecting objects within container shipments during
customs procedures using package images. Using 5,113 images from three international freight forwarding
companies in Bangkok, we employed machine learing models to classify products into five categories. The
study found that the YOLOv4 algorithm achieved the highest accuracy without resampling techniques.
However, resampling techniques such as SMOTE and Borderline SMOTE significantly improved classification
performance in cases of imbalanced data. Undersampling did not enhance accuracy, as it led to the loss
of crucial information. The integration of object detection and OCR verification enabled the system to
accurately and quickly identify product types from images. The proposed method can reduce the risk of

illegal imports and enhance efficiency in customs procedures.
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A1 Accuracy 103U Uaesfilfinadiaiieg lunismsradunazduuninguandlifiudn YoLova 1o
Accuracy geamluynUssavaudn saedosflonisunnd nfesdioneains onansuasAsiinnt uazadodldliih Taed
Andusmegil 86.36% Tegsfianiileifisudiumaiindug msfiAn Accuracy vosnguAdesiiomnansuimgiiaiian
fm]Lﬁmfmﬂmmsﬁu%’aummgﬂmaLLasé’ﬂwmsmaaﬁ“uviasuaqLﬂ%ﬂﬁ@ﬂﬁLLWMéﬁﬁmwmmﬂwmaLLasﬁiwasL.Ssm
1 Fldnsasedunazsuunyildenni dudeiadu venaniu wlesdlensunmdunirinenaiinsineain
vieaneRunilidaaundeldiias vilinedia OCR wionsasyadudenmliannsavhouldediefiussdnsnm
A3 1 WARSAT Accuracy MNNMSYTUIENAENSUDIMUUSIA0IENANNATANIATITUY WarUssinnvesdus

A151991 1 A1 Accuracy(%) TBILUUTIABY LENANLWATANIINTIITUY wazUszunnuasaud

wadansiasu  wesesdle wiagdle endswaz
wazIWMUNINY  NMISUWNG QDGERE Aaiun ol
R-CNN 65.22 83.21 82.44 79.54
Fast R-CNN 69.45 88.64 85.45 79.65
Faster R-CNN 70.25 82.5 88.73 82.45
YOLOv2 71.11 85.72 86.54 85.49
YOLOvV3 70.36 85.14 88.05 89.54
YOLOv4 73.58 89.72 88.12 90.12
Anade  70.00 85.82 86.56 84.47

A15739 2 wansAn Precision (%) Waz Recall (%) Y8en1ssuundudnguiniesiiounnd Tnsiu3ouiiiey
5813190151414 Resampling (without Resampling) Aun15ldinafian Resampling @19 9 Taun SMOTE,
BorderlineSMOTE Wag Undersampling a1nuaansaziniulainmaianisld SMOTE way BorderlineSMOTE 42e
\fiaiein Precision waz Recall 1iluifeunnnsdl Instawizinafia YOLOVA fu SMOTE ifiAn Precision gagndia
81.10% waz Recall gagniis 68.44% wa#inasld Undersampling §iA1 Precision was Recall sgaiiletiisuiy
mnAfia Resampling 3u 9 Jsuandlyiifiuin SMOTE uag BorderlineSMOTE fusgAnsamlunsuulsnuusiue
Tumsduunussinmveandesieunmedunnnin Undersampling
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M19199 2 #1 Precision(%) Way Recall(%) 8N 159 LuNAUAINGNLATIOLNNELSNAUWMATANITNTIVTUY ko
wAllA Resampling (SMOTE, BorderlineSMOTE Wag Undersampling)

NguLATaNEHBNTUNNE

without Resampling with SMOTE with BoderlineSMOTE  with Undersampling
Precision  Recall  Precision Recall Precision Recall Precision Recall
R-CNN 74.55 49.87 75.88 50.89 73.21 51.02 72.11 45.25
Fast R-CNN 75.44 52.23 76.92 55.88 74.59 53.21 70.45 48.77
Faster R-CNN 40.21 55.52 50.28 60.35 50.69 55.22 35.21 52.68
YOLOv2 70.25 52.54 80.55 65.32 75.45 55.89 60.58 52.44
YOLOv3 71.88 59.84 80.34 63.28 75.92 59.63 62.47 55.74
YOLOv4 72.78 61.87 81.1 68.44 76.22 62.47 65.89 57.47
Average 67.52 55.31 74.18 60.69 71.01 56.24 61.12 52.06

nslfinadia Undersampling lunisduunuaznsnsaduinglunguiniesiiomsunmesinagiinalid iiesan
maandauiednvendudeyadaunn (Majority Class) orahlidoyaddgmsly Fsdsualinuudianainng
wadnslFlalusiug: vonaniu suamwaﬂmaaawaqmﬂmiawuwmasmm"l:dawimmamawmmmaq
Uszinndoya smmwﬂ;wLLU’umamlmmmmmLLummqmmmLL@ﬂmNﬂu"LmaanLuum

51971 3, 4 Uaz 5 LARIAT Precision wa Recall vean1suundufinguinesiloneains nauienaisuas
Aefinst waznguiadodldluiln auddiu Swanisvaaesaenadosiunanisaasueinguiaiaiiownmd nande
windlian5l4 SMOTE wag BorderlineSMOTE eiiiuiein Precision wag Recall ldluifounnnsdl

A13197 3 #N Precision(%) wae Recall(%) Y8N35 hUNFUAINGLIATosHN0aTHeNmUMATANITNTIITUY Lay
wAlla Resampling (SMOTE, BorderlineSMOTE wag Undersampling)

nquiATasilanasaig

without Resampling with SMOTE with BoderlineSMOTE  with Undersampling
Precision  Recall Precision Recall Precision Recall Precision Recall
R-CNN 75.82 76.55 79.42 75.48 78.26 74.21 72.12 50.87
Fast R-CNN 79.72 82.41 83.77 82.44 81.1 82.24 75.44 54.78
Faster R-CNN 75.68 83.83 80.55 81.02 81.15 80.1 73.47 63.41
YOLOv2 75.49 80.26 83.47 82.98 82.47 81.3 72.98 67.92
YOLOvV3 74.12 80.88 82.98 82.45 80.14 81.47 71.47 60.96
YOLOv4 76.45 88.04 81.92 81.89 80.47 80.87 74.14 60.68
Average 76.21 82.00 82.02 81.04 80.60 80.03 73.27 59.77
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M19199 4 A1 Precision(%) ag Recall(%) U9IN139MUNAUAINGNDNATTHATFIRLNLENANATANITATIATU
waznAta Resampling (SMOTE, BorderlineSMOTE Wag Undersampling)

NauLaNaTHATEINNN

without Resampling with SMOTE with BoderlineSMOTE  with Undersampling
Precision  Recall Precision  Recall Precision Recall Precision Recall
R-CNN 74.22 80.21 78.93 80.47 76.66 79.98 70.44 70.41
Fast R-CNN 72.54 82.45 77.99 81.42 72.45 79.45 70.14 72.55
Faster R-CNN 75.12 84.68 78.54 83.24 75.22 79.47 70.47 73.83
YOLOv2 75.69 85.72 78.21 84.72 75.41 81.24 69.58 78.14
YOLOv3 78.66 85.23 80.2 84.21 76.32 81.23 69.54 77.55
YOLOv4 79.63 85.78 80.14 84.63 77.45 83.35 75.87 75.89
Average 75.98 84.01 79.00 83.12 75.59 80.79 71.01 74.73

M990 5 A1 Precision(%) waz Recall(%) veamsdnwundumnaguesedldlniuwenanumalinnsnsiadus uaz
wAllA Resampling (SMOTE, BorderlineSMOTE Wag Undersampling)

nguaFadldlni

without Resampling with SMOTE with BoderlineSMOTE  with Undersampling
Precision  Recall Precision  Recall Precision Recall Precision Recall
R-CNN 72.45 78.63 74.87 77.21 72.44 75.44 65.45 50.24
Fast R-CNN 72.04 75.25 74.89 75.01 72.92 75.41 65.74 52.45
Faster R-CNN 75.88 75.75 76.55 75.88 75.45 75.98 63.72 54.47
YOLOv2 74.92 78.72 76.98 78.87 74.43 76.54 60.21 55.47
YOLOvV3 75.65 80.12 77.99 81.42 76.55 80.11 61.24 55.74
YOLOv4 78.97 82.98 79.82 82.55 78.5 81.95 62.35 54.78
Average 74.99 78.58 76.85 78.49 75.05 77.57 63.12 53.86
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Resamnpling tila1USsuiiloufudanesfiudug uenainiu n1sldinaila Resampling L9y SMOTE waz
BoderlineSMOTE ann3ntasiiindszdniaimveanisdwunusnuozlifaugndosniu n1sléinada
Undersampling s'mﬁumif\i’wLLuﬂLLazmimaﬁU’i@q%hhbsjLﬁummgﬂé’awmmaﬁwé flesnnnnisansiuauy
egiemhliteyadigymely feyaivasndosgealinseunquuuinlunnnsdvesszandoya uagih
Truvudaediiansduuningidanuunndatul fegrauiue

Precision az Recall \usainddayfitielunsianudiladesnuuiugnazanuaiuisalunisdwun
1AzA5293UTAQUBITEUY A Precision way Recall Aigevilviiulaluaugniosuazainuanunsnvesssuu ns
Gonldlumauazinailan Resampling fiiinzaudmsuvanuiimdeiifiunisiianuddgegiann Tneaisiiansan
AmufesmLardnuuzvestoyaiiodenliuuuaouanmaiadifiusyivinmgeaalunudy
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