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Abstract
The number of people with depression is constantly increasing. Depressed people are not treated and
express behavior via social network posts. Thus, a depression risk analysis model is proposed using online
social network data. This research collects data from the patient depression questionnaire (PHQ-9) and Twitter
comment data. The Twitter data is collected from 405 Twitter users, 178 depressed people and 114 regular

people. A hybrid machine learning technique is applied as the model construction and compared with four
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machine learning techniques Support Vector Machine, Naive Bayes, Decision Tree, Deep Learning, Random
Forest. The experimental results revealed that Hybrid machine learning technique achieved higher F-measure
than other machine learning techniques. Moreover, the results indicated that the appropriate attributes for
modeling in this research were all features which consisted of Demographic Characteristics, Twitter User's

Information, Text, and Emoticons.

Keywords: Depression; Social Network; Risk Analysis Model
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-
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R 2

A DEPRESSION RISK ANALYSIS MODEL USING ONLINE SOCIAL NETWORK DATA
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X,, DepressionTweets Numeric Srumwniafiugastonzduain

X,, PositiveReTweets Numeric FIUWIUINIAGIULIN

X;, NegativeReTweets Numeric PwIUINIAMUAL

X,, DepressionReTweets  Numeric Fruminiafiuaasfinnizfuiai
X,, PositiveHashtags Numeric WIBUITUANGIBUIN

X,, NegativeHashtags Numeric FUWIRUTTUAING WAL

X,, DepressionHashtags ~ Numeric FunugTRRnAugasfianzduiah
X,, SentimentScore Numeric @hmﬁ'ﬂﬂumumw Né’ﬁﬂ’uadﬂﬁﬂ

o

a ¢ @& o (4 -
F’l]]ﬂrlu ﬂﬂ'mza"lﬂﬂ'](ﬂlﬁlﬂiﬂLﬂ%ﬁiygﬂa"l‘iﬂdm (Emoticon)

X,; EmojiSentimentScore  Numeric Aadazuuuanuiinuasdnyzlarsual
X,;  PositiveEmoji Numeric Fuwudryzlarsust duuan
X,,; NegativeEmoji Numeric ﬁ‘i’]u’mﬁ%yﬁﬂmimniﬁ’mau

wan13UszlanaEBuLAS (Depression Assessment Score)

Y  Depression Nominal AMduLai Level 0: Lidanzduiai Level 1: Anzduiai
Jeautas Level 2 : NMsGuanszaulunand Level 3 : A

Gy LT ALI WU
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3. SuWABWNNTAI UL LS AR 1F1wN1SNEINTAE (Model Construction)

lumgumauﬁl,ﬂumgu@aumsa%muu{ma\‘iéﬁﬂmﬂﬁﬂmiﬁﬂuﬁmaaLﬂ'%iaal,muvl,au'%m‘ (Hybrid Support
Vector Machine and Random Forest : Hybrid-SVM-RF) fa lfinafiadwnasaiiniaasunsinwlunisaaiian
qmé’nwmzﬁmmzau swnumnafiausuaaunasalunsanuuuinaed lasdaaudsigi (Input Variables)
&8 X, - X,, wazeulsandhnany (Target Variable) fio Y Gslinuazdoadait

3.1 ﬂ’ﬁﬂ”@Lﬁaﬂ@;mé'ﬂumzﬁmmmu (Feature Selection) ldmianagmansuzdininaiinifiiouiia
(Recursive Feature Elimination : RFE) lagldinafingwnasaraniaasunsduidugiuaauuy (Model Base) fa
I8 museuinaongmansme (Feature) aan'ly Iﬂﬂqmﬁ'ﬂwmzﬂ%%mﬁ 27 QUUANBIE (X, - X,,) Nt
daoanfiaz 1 ANz (RFE-SVM(26)) a4ATU 10 QAN (RFE-SVM(17)) WaIINIWANNTYz N
ﬂizﬁ‘nﬁmwLﬁiamqmé'nﬁm:ﬁmm”@aaﬂ F991NNTTUIUNN TR WL MIAANAANHTULDAN 3 ATANNHTUL
(RFE-SVM(24)) lﬁmﬂszﬁwﬁmwiﬂmmgaﬁqﬂ FaugalunIwag 4 %aqma"’ﬂwm:ﬁ@‘f@aaﬂ Usznauaas

wamiNen (X,, : Friend) S1uwang@aana (X,, : Followers) $1%2% Emoticon 6N%U1N (X,, : PositiveEmoji)

0925

ma" RFE-SVIM[24)
0.905

oass ‘\‘// \;—-"'""‘\ T

0.865

F-Measure

No FS RFE RFE RFE RFE RFE RFE RFE RFE RFE RFE
SVM(26) SVM(25) SVM(24) SVM(23) SVM(22) SWM(21) SVM(20) SVYM(19) SWM{18) SVM(1T)

Feature Selection

AN 4 miﬂinﬁuﬂ*szaﬂ%mwLﬁamqmé'ﬂwmzﬁmm”@aaﬂ

3.2 nsiunudaaslesldinefiaumuasunaiss lddayanislnuniametvedls landaous
#L9 (Input Variables) A X, — X,,, X5 — X5 X,, Waz@aui 3@t 1vuny (Target Variable) A Y @2835n019
123y 10 &3 (10-fold cross validation) adszduwuuuinass Gsmmassaitlels Python Library §1%3UM17
Uszulanan1Inaaad wazlt Scikit-learn Library IUNY Keras library WLz Tensorflow Library f1RIUNIIFI
wuustaadarunatauInaaNuWalss (Random Forest) %uflumﬂﬁﬂmﬂ%'yujmmLﬂ%iaal,muﬁ;‘i]"aau
(Supervised Machine Learning) LLazmTﬂ(ﬂaa\‘ifrﬁ’m’muu’izuuﬂﬁiﬁmﬁﬂmﬁ? 10
4. ifumaumﬂﬂ‘%ﬂnLﬁﬂnﬂszan%mmmné"\aao (Model Performance Evaluation)
Tuguaeuiliinnn3ouifisudsansawuasuuuinasslauiasuusduiauils (Hybrid Support Vector
Machine and Random Forest : Hybrid-SVM-RF) ﬁ'ULV]ﬂﬁﬂgu 9 e 1) waWug (Naive Bayes) [9, 19, 21]
2) TANDIALINLADSUNTD (Support Vector Machine (SVM)) [9, 14, 21-23] 3) auladmsaasula (Decision Tree
(J48)) [10, 22] 4) mﬂﬁﬂmiﬁﬂuflﬁaﬁn (Deep Learning) [12, 21] az 5) inakalswaauWalia (Random
Forest) [13] ‘[ml"ﬁmﬁmsw:ﬁﬁaQaﬁm%'uﬂ'ﬁﬂi:t,ﬁuﬂszﬁﬂ%n'\wmaame‘haadmﬂmsﬁmsmmmmg’m
4 @ laud mmmgnﬁaa (Accuracy) AnANNLAHEN (Precision) A1a213328n (Recall) wazA1dsz@nsanw
TasT2y (F-measure) G9iinuazidoansil
fANLAwEN (Precision) g 80 INEIBIZTHIN aj’wmunag’wé’aasmﬁagluﬂag'm C, uazuudaadrinmg

ﬁmgﬂumﬁu C, @iaa‘)’wmumg'm”aazmﬁmmﬁuum"waaaﬁwmwaaylluﬂéju C, 9auN1IN 4

Precision = 100 4)

— X
(TP + FP)
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A1A1NTEAN (Recall) A BAINEIBIZRING aiﬂmumjw@Tmsmﬁﬁwamsﬁﬁmmiﬂayﬂumju C
@iaﬁmmmjm‘ﬁarjwﬁwmﬁa%ﬂuna;u C, a9aun1IN 5
Recall i 100 (5)
ecall = —X
(TP + FN)

ﬂ'wmmgﬂﬁad (Accuracy) fia 8ATIEIBIZNIN ﬁ‘hmuﬂﬁjuﬁaamdﬁﬁwamiﬁwmmgﬂﬁm @31

ﬂajm‘i";aamﬁmm AIFNANIN 6

| TP + TN 100 "
= X
CCUTACY = TP + TN + FP + FN)

fA1dszansawlassin (F-measure) g MTUSHUABUAIANULNKET BLAZAIANNTEANVBILGRS

amathrang Jfousiiousriaanundninlag s ﬁgmﬂuﬂﬂiﬁﬂmm@ﬁaumiﬁ 7
2 X (Recall X Precision)

F—-M = 7
easure (Recall + Precision) v

Tagfi TP (True Positive) fio ﬁi'lmuﬂsjuﬁ'saﬂ'mﬁaglunﬁéw ¢, wazuuudnasrhuaheglundu ¢

TN (True Negative) fia i‘i'mmnsjwﬁ'saamﬁvhiaglumjw ¢, uazuuudnasrhweilisglundu ¢

FP (False Positive) fia ﬁ‘im’mnqiuﬁ'sasmﬁvlsjaglumju ¢, winupdaasrhwahaglund C

FN (False Negative) fia ﬁ‘hmunéj&lﬁmmaﬁaghﬂéu ¢, udnuudnasrhwaihisglundu ¢

c, fia mjmaﬁm”mmuumﬂwamsﬂmﬁuma:sﬁuLﬂ%ﬁﬁmaauﬁammumaaumq:sﬁmﬂ%ﬂ 9 fanw

(9Q) 4 szevazuun e 0S<3

WRIIINHWIIRIA1UTEANTNINVILL LT s nnata lauSas uusTuianhs v ndJouioy
UszdnfniwaninafiandualteninidIouinaud1sesasiANLUfowiliag (Percentage Increase Change)
AIFNNNIN 8

(New Value — Initial Value)

o _ x 100 ®)
Yo Increase Initial Value

lae#i  %lincrease Aa ANTaasANIUALUULAY
A ' A A A A € A a a
New Value fa d113zanTnInanmaia lausas wusotaniis

Initial Value §a fUsz@nsniwannmaiiaan

WNaN15798

NamsaaﬂLmnuasﬁ'ﬁu%’umuﬁﬁaaa

nTuaeumsasuuLiaeafildluniswennsal (Model Construction) Usznause aaudsinigh
(Input Variables) fia AMANHMULFIUNINMNEIBYANN UASAUINBIUZIINNIAADT (X1 — X27) Uazdauisd

=2 ¥

1N (Target Variable) Aa 1eAUNNIETULATY (Y) A1vinIAaLRang@AN ML IlWNNZEY (Feature

a a

Selection) l¥n13ariaguansudIninafiaifiiouiia (Recursive Feature Elimination : RFE) laglfinadia
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FwwasanaasuuTdundng1uaauuD (Model Base) nadanuuidstin lassuuudiassasimaiiausuasy

c§ ° N o & 1% ° Y {
WalIw 611\‘1LL'U‘U?]"IQﬂﬂﬂi@%qﬂmuﬂﬂuﬂqiﬁiqﬁLLuUQWaaGLLﬁ@G@GﬂWWﬁ 5

SominomEioe = 034 { Diprssion Twees == 05 )
gins - 0.5 oni =04

sarmples = 3
vl =[0.5.6. 7]
ciase — lovell

sampies = 24
value = [1, 5. 24. 6]
s - el

_/i'/\.,

e - " S
e erindAn < m} Depression Iweets <= 0.5
08 [

oo )

™
(Desreseion e e < 75 e
Qini =03 oinl

Tectession Tweers == 1 Ve et £ 05
pi=0.2 i =02
s H \mw G E

i 00
samples
vl = 0,0, n E
s = lowel3

e i

gei= 0.0
samples = 2
walue - 10, 4, 0]
clase— level?

sampies - 3
value 11,70, 1
dass - evell

! | ’\
1 N . S | kSR ey a5
g =00 =0 gi-on ) [ gn-o0 ) [FamiMomber <- 45
saripls = 1 samples = 3 =1 sarnpies = 1 ottty
v =10,0.1,0] v =10.0,0,5] | [ s =00, walue = 0,20, 0f —
[ class=oveld ) | class=lewd )

10 b2¢ valuc = [1,0.0, 1]
dass = fewil? | elass = el dace ol |
a &

/
{gn=on_
samples - 1
aluc=[1.0,0.0]

\

class = vy

P

gni=n0 | gi-00
= sanpis = samgies
v 5,0.0,2) ke mtﬂj s 5 0 e 80
| dass el ) | el S |\t~ iz

gn=00_
saiiples =5
vl = (15, 0,8, 9]

cliss = feweld )

saflcs =3
valuz = |0, 0.3, 0]
| dlass =z~ )

sangles = 1
wa: = [1,0,0.0]
| el = e )

sirmples
o0z

elass = w2

AR 5 LUUFaeIMTAATzRaNuLRBsIaINSIian 1z SuLA e EII‘]?‘].TQHE‘I \3atnuRIANBa At

anuuudiseslunind 5 aradrsluinitirasduliaiuneldin lnuauuga Ao ALARIAZILUY
AN3FNV0INIA (Sentiment Score) mem"l;E'L%ﬁ@hl,aﬁ'yﬂzl,l,uummjﬁﬂmaa‘ﬂ"imﬁaﬂﬂdﬂﬂ%ﬂLﬁ’]ﬁ'ﬂ 0.0
fodldasamaufisminuasuinguuan (Positive Hashtag) ueitinderu1nnin -0.0 Itldasramanfisiunin
n3aduuIn (Positive Tweet) 3nnsidudiagneazluamasauisimiuniadinuin 49 daminnin 0.5
lﬁwl,ﬂm’a%aauﬁmmﬁmzuuummfﬁﬂmawﬁ‘m (Sentiment Score) WNAAININNINRIBLYINAL -0.00 3=dN122
%mﬂ%’wagﬂmm”uﬁaﬁ (level 1) \Tuaw

Tugnvesmaiuuusassmsdensianudsswssmaiansduah Wl siumunsousesldas
A 6 I@UL'%'mwQ‘l‘*ﬁ@ammuaaumm]”aQamuqﬂﬂmmziﬁaw%L@mi%mlmmuﬁmm WRIINTIN
LUL180992 U35 NIARANTIZA UL T BN IT wazudsszaunzBuaildnugldnunmu lasmsdszaiaws
Usznaudiy 2 9unau Ao mgumumﬂﬁm]”ayamﬂ@%mu (Data Acquisition)I@ULﬂuﬂ'aHadﬁuqﬂﬂa
wazdayamsldnuniamaidounas 2 dland anwnannsdmdunmizfuaidowuulszdunizfuain
9 10w (PHQ-9) ﬂé'amﬂﬁ?uﬁdL°ﬂ’1;jmgu@aummﬁ'@qmé’m&m:maﬁaga (Feature Extraction) WAz DANN WA
vanuafildanntuaenillldsananaiiuuuninsssmidiensianuismamaionsdua iarimng
saunazBuailwnuglgau
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/1. Data Acquisition 2. Feature Extraction \

P | Personal Information = Demographic | . .
f‘ . Questionmaire Charsoristie Data Format Modification _
User
4 Twitter ID \\ N Exfracting m
| Other Twitter User’s Information | I Twitter user’s Information

‘ Twitter API

| Tweets || Retweets || Hash ; Extracting Text Sentiment i Depression Risk
I 5 o = - Analysis Model

Emoji :
| Extracting Emoji Sentiment

— Y

Depression Level (Level 0-3)

= o N a & a a = ) o
AINN 6 ﬂ']iu’]LLUUﬁ]’]aaﬂﬂ'ﬁ'JLﬂj’]‘:ﬁﬂ?']uLﬁ?.l\‘l"lla\iﬂ’ﬁl.ﬂ@ﬂqusﬁlll,ﬂqulﬂl"ﬁ (Model Usage)

Wan15UseAnYILENSNNVBILULINR DY

°

Namiﬂinﬁuﬂizﬁ‘n%mwmaumm‘haaaﬁﬁ@mn*’gﬂﬂ]’aga FUIU 292 A LLﬂdLﬂu;‘T“ﬁma:Gﬁum%
8% s uIn 3,138

Fuan 178 au uazlifinneBuain Swan 114 au lasddayamuaasanuiuuuniaaes
%3 Usenaudiun1snia (Tweet) $142% 366 39 N133N3A (Retweet) $149% 2,772 39 UAZNNSUETUTN
(Hashtag) $1W7% 42 uawuiin Ssnanmnasssudain 3 dau aait

1. msulSsuifisuardseansanlagsaa (F-measure) 2090 ULIIABIINNT LTAMU TR
(Input Variables) ﬁtmn@haﬁ’%

lasaauds1inidn (Input Variables) Usznaudns AN BDALEUNENIN (Demographic Characteristics)
(X, X,) ADANHIAZNNNIALA a%ﬁl,flm‘fagaw&a"lﬂ (Twitter User's Information) (X,,- X,,) A 4an=meINNIA
ma?ﬁﬂuﬁagaﬂi:mﬂﬁamm (Text) (X,s— X,,) LLa:qmﬁ’num:mn‘ﬂ%ma%ﬁl,flué'ruugﬂmimﬁ (Emoticon)
Xys, X57) Iﬂﬂaﬁ‘”'mLLum‘i'laa\‘i@i”’aﬂmﬂﬁﬂmiﬁmﬁwaam%aaLLuuvLau%mT (Hybrid Support Vector Machine and
Random Forest : Hybrid-SVM-RF) @anamaidssuifisudszinsnn usasldasning 7

Lfiaﬁmsmwmmmunumumwﬁ 7 Soldeaudstndriuandroni aduldhquanyuznnianes
ﬁLflmTaHawd';Vlﬂ (Twitter User's Information) l¥@Usza@nsnwlassia (F-measure) ﬁaﬂ‘ﬁ'q@ (Fouaz 66.84)
J998981A8 qmé’nwm:mnﬂ%Lmi‘ﬁl,ﬂué'zygﬂm'iami (Emoticon) (388az 68) AMAANHAULAIUAIEATN
(Demographic Characteristics) (3088 73.58) WAz AANHMLA1BTDANY (Text) (088 84.029) ATNAIAL
%aﬂuqmé’nwm:ﬁayﬂuﬂ@u 1318019 (1-itemset)lumm:ﬁﬂmé'ﬂwmﬂumjw 2318017 (2-itemset)
LAz 3 318N17 (3-itemset) Iﬁ@iﬁﬂi:aﬂ%nwwimmmgaﬂd’]qmé'ﬂwmzﬁagluﬂgiu 1 5918115 wazidlain
qméi’nwmzﬁ%%m (Mixed Data Sources) 3114l 3gsnauuudiassnuin qmﬁnwmzﬁ%mdﬁmﬂizﬁw%mw
lag373 (F-measure) g@ﬁlqﬂ (30882 89.05) @”@ifuﬁa;gaqmé’ﬂwmzﬂgmm Usznaueny auanEmdmUNIsANW
(Demographic Characteristics) (X, - X,,) Aadnumzanniataaiidudoyarialy (Twitter User's Information)
X,,- X.,) Qmé’nwm:mﬂw%mai’ﬁﬂuﬁagaﬂizmwﬁamm (Text) (X,5— X,,) WazAMANBMUIINNIaLIADT
ﬁLﬂué'zygﬂmimﬁ (Emoticon) 591MuN @UALNINAUILLUII80INITIATNTR AN T ITEIN S AANT22

Fuale ﬂ’l%ﬂ]’agam%mhﬂé'muaauvl,mﬁumu?é'ﬂﬁ
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— (=] — —
<t [22] (=] r~
— =] ] =]

=] [{=] (=]
g ] 0 co

73.583
i 84.029
% 68.003

80.953
82.842
87.655
88.162
89.016
87.349
89.050

o
=t
et
=3
=)

F-Measure

© = © = ©» - - © = - w ©» = w o= n
s 9 i g 5 B 5 £ 9 b SRS T 5 8 3
= = [ =2 b : : =% = t @ 5 bl t o : =
© g s = = © E = o2 > D = 3
g = E gE £ g & £ 8 T = Ts A
£ = w £ 8 o " 1= 2 = E2=_ 2 9oF o
= o £ £ = =] [=R=lr-W & o ]
s £ g B E @ = T @898 wm = £ a
(=1 v i o Y = [=1 “v £ = £ == > o =
o & 2 S = = B E R S =
5 o E E £ c 5 gseg E E=€ 54
[ = @ = =4 ) £« E E v W= X
= o a n =2 = s Eg o O
no= 2 8 2 =
a =} = o e <
3 £ =) - g
wv =
o | w 2 o 2
= S =]
5] 2 5]
£ =) =
w E w
[S¥}
1-itemset 2-itemset 3-itemset All

Feature

i 7 maSouifisuddseintawaesuuudtaelaslsaindssinega (Input Variables) Auanenanis

(%

2. maSeufisuardssandawnuusiaasinmw Ay mﬂﬁﬂmsﬁﬂuﬁwaaméaa (Machine
Learning) 5‘%

Lﬁaﬁmsmwamnﬂ?ﬂuLﬁﬂumﬂizﬁ‘n%mwmeimau‘ﬁ'ﬁ'@umﬁmmﬂﬁﬂm'ﬁﬁmujﬁjaam%aumu
lau3ad (Hybrid Support Vector Machine and Random Forest : Hybrid-SVM-RF) ﬁumﬂﬁﬂmn‘%auﬁmam’%ao
(Machine Learning) A 9 frensiliouifisudnsesasifinasuuag (Percentage Increase Change)
Lfiaﬁmsmwwmmugﬁlumwﬁ 8 wm"lmﬂﬁﬂmil,’%‘smg”maom%iaaLmuvl,au%m‘ (Hybrid Support Vector
Machine and Random Forest: Hybrid-SVM-RF) 1d1anasgiulunisdszidudsz@niainuuudiaes 4 dn
fa cshmmgn@i”aa (Accuracy) A1ANNWAIKEN (Precision) A1A1N52AN (Recall) LazA1Usz@nTanlasiu
(F-measure) ga‘ﬁ'q@

lasdddseintanlassin (F-measure) gan’hmﬂﬁﬂmﬁmyﬁmﬂﬁq@ flo Souaz 126.80 9893
fa adadwnasannaesuurdududusmaguinuisoaulngls Souas 16.60 wananiudaian
ﬂi:%ﬂﬁmwimmmgaﬂi'} Lﬂﬂﬁﬂﬂﬁﬁﬂujl,%dﬁﬂ%”aﬂa: 11.47 wafadulinsdasulasosaz 7.14 uazinadia
wInaaNNaLIRIDEAL 2.31 ANEA

3. msmqmé’nﬂmzﬁﬁﬁﬁty (Feature Importance)

mimqmé’ﬂwm:ﬁé’] 7Y FnsUNIE LU naIIn s anusswaImianazlsadued

TavlsiaSat1osInNaawlall

12 | Article 253639



11381INRIINBIRBATUASUNIILIal a1 Tnereaasuazinalulad

99 16 agufl 31 unsau-fiquiow 2567

I F-measure SAccuracy o [@Precision =Recall
<
140.00 - 9
-
120.00 | '
[
v
g
5100.00 -
(=]
@
&
S 80.00 -
5]
£
o 60.00 -
oo
8
c
@ 4000 | o . o
= o o w ~ O po <=
& $ v ™~ - = < oS 9
2000 4 < = o I “ 0 O m oS g4
L ™~ 1 on o Mm NG
. [ =]
0.00 e
SVM Decision Naive Bayes RandomForest Deep Learning

Machine Learning Technique

a = a ' a a o a o @ P a @ A A
AINN 8 ﬂﬁL‘LlSm_IL'Y]El‘i_lﬂﬂ‘ﬂizﬁ‘ﬂ‘ﬁﬂﬂ‘wLLUUﬁ]’laa\‘]‘HW@NWI ﬂULﬂﬂuﬂﬂ’]sLiﬂuEmaﬂ LATRIDY 9

SentimentScore
TweetPeriodl
TweetPeriod2

PositiveReTweets
DepressionReTweets
EmojiSentimentScore
NegativeReTweets
FamilyMember
NegativeEmoji
Weight
CongenitalDisease
NegativeTweets
PositiveTweets

Age

ParentStatus

Income

Education

Gender

Feature

0.0325
4 0.0318
T 0.0275
0.0248
3 0.0190
PositiveHashtag 0.0179
DepressionTweets 1 0.0141
DepressionHashtag E 0.0103
NegativeHashtag EEEEE 0.0086
CoupleStatus [==m 0.0051

10.0845
1 0.0789
= 0.0779

0.0722

0.0634

2 0.0617

0.0610

0.0579

2 0.0560

0.0545

Z 0.0520

0.0424
1 0.0415

Carrer FEER 0.0045

0 0.01 002 003 004 005 006 007 008 0.09
Feature Importance Score

NN 9 AmiaNEUENAAYS MILMIENILUTIsaIMTleTRRANIEIaIMIian Iz A

laglgiasatnoasanaantall

WaRIananueu)iluning 9 wud quansueidmayfgalunsaiisunsdiaainmaiienzyd

A a 2 % X% A o & av & a ] A P
ﬂ?qNLaﬂﬂmaﬂﬂqiLﬂ@ﬂqqzsﬁNLﬂi']I@ElI"ﬁ?Jaﬂﬂtﬂﬁﬂ“ﬂflﬂﬁﬂﬂ&]aau‘lﬂ% 1%\1']%35]5]% a8 ﬂqLﬂaﬂﬂzLLu%ﬂqflwzaﬂ

294179 (Sentiment Score) 7898911A8 I1WIUNIANBEITNIINIAT 6.00 — 00.00 w. (TweetPeriod1) LazduIn

nIafiagzningian 00.00 — 6.00 w. (TweetPeriod2) luumizNiardn

(Career) AapuanmacdAyiasNga

Tunsaanuudiaasluwinuiaoi uaﬂmﬂﬁfuuﬁaQmé’nwm:ﬁgﬂé’@aaﬂ AILATIADUNTITIILLUINRDIAE
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wmafianiaiTouivadiniasunulauiad (Hybrid SVM-RF) §31194 3 quanumz Aa 31uiuiian (Friends)
° v ° o & o o = IS [ AV °
Fruang@aau (Followers) uazdwaudnygdarsualdruuan (PositiveEmoji) Taduguianumuz laigniiiun

NI lNIEIBLUS 80 lwIwIdu T

arduazandana

MU RN AL WIAA LN TEANLU U LA WAIWILUUIN889N1IILAIIEHAMNLTLIVINTIAANNE
X o X% A [ & a & A a =2 = 2
GIJNL?IE’IIG]EIFL“E“IIBHGLQSE]“U’IElﬁdﬂllaauvl,au Tauau130ILATIERAMULFLIVAINSAANETULATT TIUIuanD
TLAUATLWUBIANNLFDINALLAANITTULAT LLazﬁmﬂ'nugﬂﬁaoﬁlmzﬁuﬁﬂau%’uvlﬁ TauuuuitaaInmwl
laslfinafianiniouiveinIasunulauiad (Hybrid Support Vector Machine and Random Forest: Hybrid-
P A Ao A A A ' A a o A 4 &
SVM-RF) Sainafiansiniauaiatsz@nsanlassiu (F-measure) FINIUNARANMITOUIBILATDIDUNIANG
1 a = ldl A L3 = a = t& = %
Img&mwmﬂuﬂmawmﬁman@ fia TauaY 126.80 T8IRINNAD LNARATANESALINLADSLUTTUTILTUUTING
guinwidpdulngld Savaz 16.60 wananuudafidrUszaninwlasmiuginit maiianaioufidedin
Sauay 11.47 wazimafadulinisaagulatavss 7.14 smmm@mm%mﬂuﬂﬂwwmmumuﬂs:aﬂﬁmwga
Lﬁadmﬂﬂ]’agamﬂumw@amﬁayﬂuu‘%uwﬁLmﬂ@i’mﬁmmﬁﬁ'ﬂﬁu "l,aj'iwzl,fluqmé'ﬂwm:madmg'm”aa;;m
917 WOTIA WATANMN LT INTLEAIANNAALRUEIWLAS DN L FIANDOW 1At Qmé’nwm:ﬁaﬁ'@ml‘*ﬁmnﬂ%
. R ; 4 e . g
LAD3 LATEIWNNLATW asinnaianNamIINazMNzaNNgANUTo YA AN L Ta Y
UANINNBULINULIN Qmé’nwmzﬁmmmﬂumm‘?’mme‘imaﬂumu?ﬁ'ﬂﬁﬁa Qmé’numxﬁwm
é v s v . . . [ a fd' v
T9dsznaudls AUANBULEIUNIEATN (Demographic Characteristics) AaansmzaInnIaiaainidutoys
11711 (Twitter User's Information) AnanszIInIaaeinidudayalszinndany (Text) Lz mansme
a A& o i A I A a { 'y
mnmmmﬁmﬂuawugﬂaﬁmﬁ (Emoticon) TalAendsz@nTniwlassiu (F-measure) ganga (Fauaz 89.05)
Iﬂﬁfqmé'ﬂwm:ﬁéhﬂ”rg (Feature Importance) T#n1383194UUIN889INTIATIZRAMNLTIVIN AR
2 o XY A @ & A ' A R a ) A o
mlLm'ﬂﬂﬂi‘ﬁmagal,mam'mmﬂwaauvl,au fa ALARUAZLURANUITNVDINIA (Sentiment Score) TIFOAANDY
AUWITBVAI Stephen Uaz Prabu [24] AdnIn1IaTadunzBuaiiluniamaidisnmlianzianuiin
A ' ' o o o Aa ° o
BINANITANBINUIN mmuuummgﬁﬂ (Sentiment Score) LARARWTNANIINNTAIWI AL UUANIETULAT
(Depression scores) AmaN ¥ NId1ATY (Feature Importance) A1aUsaaAa F1wIun1InIafiagszninana
6.00 — 00.00 %. (TweetPeriod1) Waz§1WIUMINIANALTZRINIIA 00.00 - 6.00 W. (TweetPeriod2) luamizfl
@ AV A ' A a o A o A . o va
qmaﬂﬂm:‘nvlwNa@]aﬂi:aﬁﬁmwmaumumaaa fa F1wauLien (Friends) I1urmel@aaa (Followers)
LLa:ﬁhmué'nngﬂa'lmﬁ@Tmmﬂ (PositiveEmoji)
ag19bsAaY ﬁagaﬁﬁﬂmlﬁlumiﬁwLmuﬁmmmﬁmﬁ:ﬁmmLﬁmmaamuﬁ@maﬂiﬂ%uLﬂ%’]
U 1 o a o g L o v 1 & a o QI a v
lasldinTatnsdsanaanladlunuidoi dildwudayalduinwe Siwissluawanaraivdiumdaya
Mhanltlumsasuuudnass uazNansantadedu g MNerTaaRauLGN 1w U W ﬁammﬁﬂﬁ‘ugﬂmw
s’mﬁamsﬂ%’uﬂgam:mumi LRZITNNTIUATETIILUUIN809 INDLANNUTEANTAWUBILULINA0Y WazLaen
o Aaa & o ° A o X ace A& ° o A
waawﬁmﬂq@ #ANINLHLIILV LT RaINNAWDRIwIToAnws v Wl lunsnawiszuu e ey
AMULFLIVBINITIAAAIT TN LA ﬂ’l‘ﬁﬁagam%ﬂhﬂ&aﬂuaaﬂaﬁ FainlU1tlunsasagaunzdued

TuseeuiSudale

naanssudsena

@
awv A

Nuideilasy L’Euq@mgumﬁﬁmmwﬁw TREERGIAE ﬁs':ﬁu']% RN BA N ITUNIFILRIY

ANINMEAAT ATBUAZWIANTIN UAZNINURIFININIMEAT ITUAzUIANTIY (3% &la39n3 NRIIS 179276)

14 | Article 253639



11381INRIINBIRBATUASUNIILIal a1 Tnereaasuazinalulad U9 16 a1fuf 31 unau-Iu1uwu 2567

LAaN&E132 1999

[1] Hongsrisuwan, N. (2016). Depression. HCU Journal of Health Science, 19(38), 105-118.

[2] The Excellence Center for Depression Disorder. (2017). Knowledge and essence about depression,
World Health Day 2017. Depression: Let's talk. pp. 1-2.

[3] WHO. (2021). Depression. Retrieved from https://www.who.int/news-room/factsheets/detail/depression

[4] Tawichsri, T., and Sa-ngimnet, B. (2021). Mental health problems in Thailand during the Covid-19
crisis from the perspective of an economist (aBRIDGEd No. 8/2021). Puey Ungphakorn
Institute for Economic Research. Retrieved from https://www.pier.or.th/abridged/2021/08/

[5] Department of Mental Health. (2021). Strategic Plan for the Department of Mental Health during the
12" National Economic and Social Development Plan (2017-2021). Mental Health Strategy
Department of Mental Health. pp. 19-20.

[6] Institute for Population and Social Research Mahidol University. (2017). Thai health report 2560.
Bangkok, Thailand: Amarin Printing & Publishing Public Company Limited. pp, 88-89.

[7] Phanichsiri, K., and Tuntasood, B. (2016). Social Media Addiction and Attention Deficit and
Hyperactivity Symptoms in High School Students in Bangkok. Journal of the Psychiatrist
Association of Thailand, 6(13), 191-204.

[8] Choudhury, M., Counts, S., and Horvitz, E. (2013). Social media as a measurement tool of
depression in populations. In Proceedings of the 5" Annual ACM Web Science Conference
(WebSci '13), pp. 47-56. New York, USA: ACM.

[9] Barhan, A., and Shakhomirov, A. (2012). Methods for sentiment analysis of twitter messages. In:
Proceedings of the 12" Conference of Fruct Association, pp. 215-222.

[10] Sood, A., Hooda, M., Dhirn, S., and Bhatia, M. (2018). An initiative to identify depression using
sentiment analysis: A machine learning approach. Indian Journal of Science and Technology,
11, 1-20.

[11] Park, M., Cha, C., and Cha, M. (2012). Depressive moods of users portrayed in Twitter. In
Proceedings of the ACM SIGKDD Workshop on Healthcare Informatics (HI-KDD). pp. 183-195.
Beijing, China: ACM.

[12] Orabi, H. A., Buddhitha, P., Orabi, H. M., and Inkpen, D. (2018). Deep Learning for Depression
Detection of Twitter Users. In Proceedings of the Fifth Workshop on Computational Linguistics
and Clinical Psychology: From Keyboard to Clinic, pp. 88-97. New Orleans, Louisiana.

[13] Aldarwish, M., and Ahmad, H. (2017). Predicting Depression Levels Using Social Media Posts, In
IEEE 13th International Symposium on Autonomous Decentralized System (ISADS), pp. 277-
280. Bangkok, Thailand.

[14] Hu, Q., Li, A,, Heng, F., Li, J., and Zhu, T. (2015). Predicting Depression of Social Media User on
Different Observation Windows. In Proceedings of IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT), pp. 361-364. Singapore.

[15] Hootsuite. (2019). Digital 2019 Thailand : Social Media Audiences Quarterly Growth. Retrieved from
https://www.slideshare.net/DataReportal/digital-2019-thailand-january-2019-v01

15 | Article 253639



11381INRIINBIRBATUASUNIILIal a1 Tnereaasuazinalulad U9 16 a1fuf 31 unau-Iu1uwu 2567

[16] Suntaphun, P., Bussahong, S., and Srisoem, C. (2019). Adolescent Depression: Nursing Roles.
Kuakarun Journal of Nursing, 26(1), 187-199.

[17] Nielsen, J., and Landauer, T. K. (1993). A mathematical model of the finding of usability problems.
In Proceedings of the INTERACT'93 and CHI'93 Conference. pp. 206-213.

[18] Public Relations Department of Mental Health. (2018). Depression Assessment (9Q). Retrieved from
https://www.dmh.go.th/test/download/files/2Q%209Q%208Q%20(1).pdf

[19] Mahittivanicha, N. (2020). Global social media usage statistics and behavior Q1. Retrieved from
https://www.twfdigital.com/blog/2020/02/global-social-media-usage-stats-q1-2020/

[20] Kralj Novak, P., Smailovic, J., Sluban, B., and Mozetic, I. (2015). Sentiment of Emojis. PLoS ONE,
10(12), e0144296. https://doi.org/10.1371/journal.pone.0144296

[21] Vateekul, P., and Koomsubha, T. (2016). A study of sentiment analysis using deep learning
techniques on Thai Twitter data. /n Proceedings of 2016 13th International Joint Conference
on Computer Science and Software Engineering (JCSSE). pp 1-6.

[22] Islam, M. R., Kabir, M. A., Ahmed, A., Kamal, A. R. M., Wang, H., and Ulhaq, A. (2018). Depression
detection from social network data using machine learning techniques. Health Information
Science and Systems, 6(8), 1-12.

[23] Hutto, C., and Gilbert, E. (2014). VADER: A parsimonious rule-based model for sentiment analysis
of social media text. In Proceedings of the 8th International Conference on Weblogs and Social
Media, ICWSM 2014, pp. 216-225. Ann Arbor, MI, USA.

[24] Stephen, J. J., and Prabu, P. (2019). Detecting the magnitude of depression in Twitter users using
sentiment analysis. International Journal of Electrical and Computer Engineering (IJECE), 9(4),

3247-3255. https://doi.org/10.11591/ijece.v9i4.pp3247-3255

16 | Article 253639



