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Abstract

This research presents a system identification and mathematical modeling approach for an
automotive window mechanism using Least Squares (LS) and Recursive Least Squares (RLS) estimation
techniques due to the linearity of the automotive window mechanism system. The objective is to select
the suitable dynamic model that can predict the position of the window mechanism and compare two
parameter estimation methods between Least Squares (LS) and Recursive Least Squares (RLS) method.
The experiment involves collecting input - output data using an ultrasonic sensor and Arduino-based data
acquisition system. The collected data is used to estimate the system parameters for different model
structures, including Autoregressive exogenous (ARX) and Autoregressive moving average exogenous inputs
(ARMAX) models, at various model orders. The performance of each model is evaluated by comparing the
simulated outputs with experimental data. The results indicate that the 4" order ARMAX model
with Recursive Least Square achieves the highest accuracy of 95.563%. When the 4" order ARMAX model
with Least Square achieves the accuracy of 94.862%. The findings of this research demonstrate that the
selection of an appropriate model structure and estimation method significantly impacts the accuracy of

system identification for an automotive window mechanism.

Keywords: mathematical model; window mechanism; system identification; ultrasonic sensor

Introduction

A mathematical model depends on the selected model structure, such as AR (Autoregressive),
ARMA  (Autoregressive  moving-average), ARMAX (Autoregressive moving average exogenous),
ARX (Autoregressive exogenous) and FIR (Finite impulse response) models, while the model parameters
depend on the order of the model structure. A higher order of the model structure indicates a mathematical
model with numerous system parameters. The primary distinction among these models lies in their
utilization of past inputs, past outputs, and noise dynamics in system identification and time-series
modeling. The Autoregressive (AR) model relies solely on past output values to predict future outputs,
making it suitable for time-series forecasting in the absence of external inputs. The Autoregressive Moving-
Average (ARMA) model extends AR by incorporating a moving-average (MA) component, which accounts for
stochastic noise, thereby enhancing its capability to model time-dependent data. However, both AR
and ARMA do not consider external input variables, limiting their applicability in dynamic systems influenced
by external factors. To address this limitation, the Autoregressive Moving-Average with Exogenous Inputs
(ARMAX) model builds upon ARMA by incorporating past input values, allowing for more accurate modeling
of systems where external inputs significantly impact system behavior. In contrast, the Finite Impulse

Response (FIR) model differs fundamentally from the aforementioned models as it exclusively considers
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past input values while disregarding past outputs. The FIR model is preferable when past outputs are not
required, while ARX and ARMAX are more suitable for dynamic system identification involving external
inputs. Conversely, AR and ARMA models are most effective for time-series forecasting when exogenous
inputs are absent. The appropriate choice among these models significantly influences the accuracy
and efficiency of system identification and predictive modeling. In system identification process, input data
and output data are measured from numerous experiments when u(t) represents time series input signal
to the real system and y(t) represents time series output signal from the real system. All collected data
sets are utilized to identify the system parameters when model structure has been selected. However,
if the model structure does not match the real system, model errors may occur. Therefore, it is imperative
to ensure that the selected model structure and model order must align with the characteristics of the real
system [1]. The model error between output from the real system and estimated output from the
mathematical model can be expressed as é(t) = y(t) — y(t), when J(t) represents time series output
from the mathematical model. In general, a higher model order can better predict the time series of the
output signal from the mathematical model than a lower model order. However, this leads to the
mathematical model having numerous system parameters. Therefore, the optimum model order of the
selected model structure is an essential factor in the system identification process, aiming to minimize the
model error and the number of system parameters.

The model structure consists of a time series of input and output data at different time steps,
characterized by constant parameters. For example, ARMAX (Autoregressive-moving-average model with

exogenous input model) is one kind of time series model and can be expressed as shown in equation (1).
y(t) =ay(t—1) 4+ +a,y(t —n) + bju(t — 1) + +bu(t —n) (1)

when u(t) represents time series input signal and y(t) represents time series output signal.
The system parameters ay, -+, ay,, by, -+, b, represent the dynamic behavior of the system, when n
represents the model order of the system and the parameters t, t — 1, t —n are current time step, delay
1-time step and delay n-time step, respectively. Equation (1) can be rewritten as equation (2) when vector
Y represents the time series of the output signal from timestep t to timestep t + N when N is total number
of data points from the experiment. A regression matrix @ can be formed by delayed time series of the
input and output data. The vector 8 consists with unknown parameters ay,-+,a,, by, -+, b, and is
constructed into a column vector. The number of unknown parameters depends on the model order.
As shown in equation (2), the third-order model of the model structure can be written with three-time
delay steps of the input and output signal, so the six parameters of the model structure are utilized for

predicting the dynamic behavior of the system.
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The column vector 8 can be extracted using the least square method, which is a mathematical
technique used to find the minimum sum of the squares of the differences between measured
and predicted values. This method is applied to estimate parameters from all collected input and output
data of experiments to form the mathematical model that predicts the dynamic behavior of the system

[1], as demonstrated in Equation (3).
s = (@TP)1PTY (3)

Furthermore, another model structure is FIR (Finite Impulse Response). This model utilizes only
time delay steps of the input signal, with unknown parameters in each input time delay step, as shown in

equation (4).

91
y(©) = [u(t = 1) u(t —2) —ut —M)]|% @)
2 ps )
ﬁ%
0

The least square method is a type of offline identification, where a batch of input and output data
from a single experiment is utilized to identify the system parameters. Another least square method is
known as the recursive least squares (RLS) method. Unlike traditional least squares, recursive least squares
method is an adaptive filtering algorithm used to estimate the system parameter of a model structure.
The recursive least squares method is useful where the data is changing over time or where real-time
processing is required. The main objective of this method is to minimize the error between the measured
and predicted values generated by the model structure [2]. The algorithm updates the unknown parameters

iteratively as new data becomes available as shown in equation (5).
(t) = 6(t—1) + K,é(t) (5)
When K represents the Kalman gain at iterative step k, it is utilized to update the unknown

parameters @ based on the error between the measured values from the real system and the predicted

values from the mathematical model. The Kalman gain can be calculated as shown in equation (6)
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When P,_, represents the covariance matrix at iterative step k — 1, the least squares method
requires the inversion of the entire data matrix. On the other hand, the recursive least squares method
eliminates the need for the computationally intensive matrix inversion. The parameter 4 is a forgetting
factor that controls the trade-off between the influence of past observations and current observations on
the parameter estimates. A smaller value of 4 gives more weight to recent observations, while a larger value
gives more weight to past observations. The covariance matrix P, at iterative step k updates based on a
forgetting factor 4, the Kalman gain K}, a regression matrix ¢, at iterative step k consists of input and
output data used to estimate parameters in a linear model and the matrix is continuously updated as new
data arrives as shown in equation (7), and the past covariance matrix P,_; at iterative step k —1.

The updated covariance matrix can be calculated as shown in equation (8)
¢ = [yt =1) -yt —n) u(t—1) -ult-n)] M
1
Pr =5 (Pe-1 — Kk Pr—1) ®)

The update algorithm used to converge the value of the unknown parameters 8 to the true value
as the number of observations increases each iterative step. However, the rate of convergence may vary
depending on factors such as the selected forgetting factor and the characteristics of the experimental data.
The least squares (LS) and recursive least squares (RLS) methods are suitable for linear time-invariant (LTI)
systems that can be modeled using linear equations, such as the AR, ARMA, and ARMAX models. The least
squares method requires batch data processing, where all data is collected first and then analyzed through
offline computation. In contrast, the recursive least squares method is suitable for real-time system
identification, as it updates system parameters continuously as new data arrives. An automotive window
mechanism is an example of a linear time-invariant system. When a time-series input signal is applied to
the window mechanism motor, the position of the window varies depending on the direction of the input
signal. The behavior of an automotive window mechanism can be modeled using linear equations, making
it suitable for system identification using the least squares and recursive least squares methods.
From literature review in system identification, numerous researchers have applied system identification
process in various applications, including mechanical system such as translation and rotation systems,
as well as thermal systems. For example, researcher proposed a system identification process for a thermal
process using a step input to the system and measured the output respond to derive a first-order transfer
function from experiment data [3, 4]. In control of direct current motor with the PID controller, Researchers
utilized the second-order transfer function to represent motor model. All system parameters were identified

by open-loop step response test method [5]. Another researcher used state space model as a model
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structure and used the least square method to identify the system parameters of a thermal system [6].
In a rotational mechanical system, the researcher utilized a system identification toolbox in MATLAB
program to synthesize a second-order transfer function model of the studied rotational system. The model
can predict the output with 96.87% accuracy when compared with experimental output [7]. Some literature
has proposed a comparison study of different model structure such as, ARX, SSEST, N4SID, ERA and OKID in
rotational single link robot, with the ARX model demonstrating higher accuracy with 95.8% [8]. Another
researcher proposed a rotational mathematical model from physical laws using second-order differential
equations and defined numerous energy loss terms in the mathematical model. The results showed that
the model with all terms of energy loss has higher accuracy compared to the mathematical model with
only some terms of energy loss [9]. In a translational mechanical system, literature reviews revealed that a
number of the system identification techniques have been proposed. For example, Researchers proposed
the transfer function model to represent the translational mechanical system with subspace-based system
identification methods [10], Researchers proposed an on-line algebraic parameter identification method in
the time domain for multiple linear mass-spring-damper mechanical systems [11], and the identification of
the translational mechanical system using the amplitude dependent frequency and damping extracted
from a free decay response [12].

The literature reviews also revealed that many more research studies have utilized system
identification in numerous linear time-invariant system. The main focus of these studies is the comparison
among various differential model structures to select the most suitable model for predicting the output.

This paper presents the implementation of the least square and recursive least square methods
from an automotive window mechanism, which is a kind of linear time-invariant system, with differential
model structures and varying model orders. Data is collected from experiments utilizing ultrasonic distance-
measuring sensor to measure the displacement of the window as an output data and level of voltage signal
from microcontroller as input data. To assess model accuracy, this paper compares the accuracy among
different model structures and model orders to select the most suitable model for predicting the position
output of an automotive window mechanism. The remaining sections of this paper include the Objective
of the research, which define the main purpose of the research. The Methods section discusses the
implementation of various equipment for the experimental study. This is followed by the Results section,

which presents the results of the experimental study. Finally, the last section concludes the paper.

Objectives

1. To determine the most suitable model for predicting the position output of an automotive
window mechanism by comparing FIR and ARMAX models of 2", 4" and 6" orders.

2. To compare two parameter estimation methods: Least Squares and Recursive Least Squares to

identify the most suitable system parameters for the mathematical model.
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Methods

Before conducting experiments to record the position of an automotive window mechanism,
numerous electronic devices, including Arduino, a joystick, a circuit board, an ultrasonic sensor, a motor
control device, a 12-volt DC power supply, and an automotive window mechanism, are utilized to set up
the experiment for the system identification process of an automotive window mechanism as shown in
Figure 1. The joy stick is utilized to control the position of car window as the time series of input signal,
while the ultrasonic sensor measures the position of the car window as the time series of output signal.
All input and output data were collected using an Arduino UNO with a sampling time of 0.25 second over
a 60 second test period or 244 data pair of input and output signal were collected. The joy stick is utilized
to control the direction of the car window via a motor control device. The device is utilized to connect a
source of 12-volt DC power supply to power the window motor. when the joy stick moved forward, the car
window moves upward, and when it is moved downward, the car window moves downward due to the
changing of current flow direction of the source via a motor control device. The experiments are conducted
with two batches of testing. The two batches of data sets are defined over different time sequences by
varying the duration of the input signal. The first set of experimental tested data is used to train the
characteristics of the mathematical model, while the second set of experimental tested data is used to
validate the accuracy of the model. The validation dataset consists of data that the model has not been
exposed to during the parameter estimation process. This ensures that the evaluation of the model's

performance is unbiased and not influenced by the data used for training.

‘ An ultrasonic sensor

. A circuit board h—

Arduino UNO

A joy stick

A 12-volt DC power
~ supply

220 VAC

Figure 1 the schematic diagram of the experimental setup.
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After collecting the position data of an automotive window mechanism from experiments, the
system identification process begins with the selecting the appropriate model structure and model order
that suits the dynamic behaviors of the system. To identify the mathematical model from the training
dataset, the least squares method is used to find the unknown variables of the mathematical model. Before
applying the least squares method, the ARMAX and FIR structures with order of 2" 4™ and 6™ must be
rewritten in the from of equation (2) for the ARMAX structure, while the FIR structures must be rewritten as
equation (4). Then, the experimental data at each time step must be substituted into the rewritten from of
the ARMAX and FIR structures to determine the column vector Y and a regression matrix ¢, respectively.
Consequently, the unknown variables for each model structures and order can be computed using equation
(3), and each model structure with its corresponding order can be used to simulate the model output ;.
After obtaining all the mathematical model outputs, their outputs are compared with the second batch of

experiment data to validate the model accuracy, according to equation (9).
N |y.—%:
%Best fit = (1 - %) x 100 (©)

When N is the total number of the data points, y; represents the validated data at data point i
and y; represents the model output data at data point i. A higher value of equation (9) indicates higher
model accuracy [2]. Another method in the system identification process is the recursive least squares
method. This method is useful in situations where data is changing over time, requiring real-time
identification, unlike the least square method [1]. The algorithm starts by initializing the estimated system
parameters data (t — 1), the covariance matrix P, and the forgetting factor A, respectively. It then
processes these data to estimate the system parameter A(t) at the current time based on the Kalman gain
and the model error é(t), as shown in Figure 2. The estimated parameters change over time due to the
varying input levels, and all estimated parameters will converge to the true system parameter values in
finite time. In the recursive least squares method, the initializations of the system parameters are the
identified parameters from the conventional least squares method at the same model order. The true
system parameter values obtained from the recursive least squares method are used to calculate the
percentage relative error between the parameters estimated by the least squares method and the true

parameters from the recursive least squares method, as shown in Equation (10).
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Figure 2 the schematic diagram of the recursive least square method.
. Ors—06
% Percentage relative error = lLse—R”l x 100 (10)
RLS

When 8, represents a parameter estimated by the Least Squares method, and 6, represents a
parameter estimated by the Recursive Least Squares method, a lower percentage relative error indicates
that the parameter obtained from the Least Squares method is closer to the true parameter from the
Recursive Least Squares method. After all experiments, Analysis of Variance (ANOVA) is used to compare
the means of model accuracy between two parameter estimation methods. The null hypothesis (Hg) states
that the means of model accuracy for the two parameter estimation methods are equal, while the
alternative hypothesis (H1) states that they are not equal. The hypothesis is tested at a 0.05 level of

significance.

Results

The validation and training data are shown in Figure 3. To ensure unbiased conditions, the input
signal durations in the validation and training datasets were defined differently. The system parameters are
identified by the least square method from training data on the ARMAX and FIR model structures with 2",
4" and 6™ order, as shown in Table 1. The FIR model and ARMAX structures with 2“d, 4" and 6™ order have
2, 4 and 6 system parameters, respectively. The parameters in the FIR model focus on the sequence of the
input signal, while the parameters in the ARMAX model focus on both of the input and output signal
sequence. The model accuracies of the FIR model are 41.23%, 54.88% and 62.55% for 2”d, 4" and 6" order,
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respectively. A higher order of model structures indicates better model accuracy. In ARMAX model
structures, the accuracies are 78.12%, 94.86% and 95.13% for Z”d, 4" and 6™ order, respectively. The model
accuracy of the 4™ model order is close to that of the 6™ model order, but the system parameters of the

4" model order are less than those of the 6" model order.

Validation and Training data

>
o
w

Output Y L) (meter)
o e o a
= I [ n

o
o
[}

(=]

4.5 r.]

3.5

25

Input L) (Voltage)

15

05 U

05 5 10 15

20

U

25 30 35

Time (Second)

|

40 45

—Validation data ——Training data

50

55 60

Figure 3 the validation and training data sets: (A) Output of validation and training data;

(B) Input of validation and training data.

Table 1 the system parameters of the ARMAX and FIR model structures with 2", 4™ and 6" order.

System
System FIR Model ARMAX Model
parameters 2" order 4™ order 6™ order 2" order 4" order 6™ order
ay - - - 0.85462 1.54922 1.46522
aq - - - - -0.83173 -0.83432
a, - - - - - -0.00541
bO 0.00841 0.01478 0.01863 0.00421 0.00482 0.00863
bl 0.03793 0.01603 0.01772 - 0.00433 -0.00092
b2 - 0.01601 0.01352 - - 0.00782
b - 0.00522 -0.00261 - - -
b, - - 0.00481 - - -
bs - - 0.00192 - - -
% Fit 41.233% 54.884% 62.552% 78.121% 94.862% 95.132%
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Experimental model performance of the FIR model in an automotive window mechanism is
presented in Figure 4. Solid and dashed lines represent the validation data and the output of the FIR model,
respectively. The output of the FIR models can predict only the level of the real system responses. A higher
order of the FIR model structures can only raise the level of the output responses of the FIR model,
but the responses of all FIR model cannot track the validation data consistently throughout the comparison

study of the models.

0.3
0.25 - r
1 v [
~ ' !
s 02 1 \ L
g l? \“ ; 1
< 0.15 ‘ ' '
s ) ) }
01 ! } {
E | ) f
2 j ) |
S 0.05 |
[} ! i
0 =Y |
-0.05
0 5 10 15 20 25 30 35 40 45 50 55 60
Time (Second)
Validation data FIR2Order ----FIR4Order - - -FIRG6 Order

Figure 4 the comparison study of the validation data and the FIR models.

In the comparison study of the ARMAX model, the model performance of the ARMAX model in an
automotive window mechanism is presented in Figure 5. Solid and dashed lines represent the validation
data and the output of the ARMAX model, respectively. From experimental results, a higher order of the
ARMAX model structures can predict the output response better than the lower order when compare
between the validation data and the output of the ARMAX models. The patterns of the 4" model order
are similar to those of the 6" model order. The 2™ model order can predict only the trend and has a
significant gap between the validation data and the model response consistently throughout the
comparison study of the models. The system parameters of the 4th order ARMAX model are used as the
initial parameters 8(t — 1) for the recursive least square method, and the forgetting factor 1 is set to 0.97,
where a larger value of the forgetting factor gives more weight to the past measured data. The system
parameters and model accuracy for both of least square method can be shown in Table 2. The model
accuracy of the 4™ order ARMAX model by least square method is 94.862%, while the model accuracy of
the 4™ order ARMAX model by recursive least square method is 95.563%.
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Figure 5 the comparison study of the validation data and the ARMAX models.

The result of the analysis of variance (ANOVA) at the 0.05 level of significance can be shown in
Table 3. The P-value is 1.496 x 10", which is smaller than the 0.05 level of significance. Therefore,
the means of model accuracy between two parameter estimation methods not have the same value.
The model accuracy of the recursive least square method is significantly better than that of the
conventional least square method. In the recursive least square method, the system parameters a, and a,
change over time from their initial values. After 15 seconds, the system parameters a, and a, converge to
their true values as shown in Figure 6. Figure 7 illustrates the convergence of the system parameters b,

and b,. After 12 second, the system parameters b, and b; converge to their true values.

Table 2 the system parameters of the least square method for 4™ ARMAX model and the recursive least

square method for 4™ ARMAX model.

the recursive Percentage relative error
the least square method
System least square method
for 4™ ARMAX model
parameters for 4" ARMAX model
4™ order a4 order % relative error
ap 1.54921 1.55131 0.13537%
a, -0.83172 -0.81922 1.52584%
bO 0.00481 0.00491 2.03666%
bl 0.00432 0.00452 4.42477%
% Fit 94.862% 95.563%
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The system parameters by and b; converge to their true values faster than a, and a; .
This is because the initial values of by and b, are closer to their true values compared to a, and a,.
The percentage relative error of ay, a;, by and by are 0.13537%, 1.52584%, 2.03666% and 4.42477%,

respectively.

Table 3 Analysis of variance of two parameter estimation methods.

Source of variation SS df MS F P-value
Between methods 3.9445 1 3.9445 109.0950 1.496 x 10!
Within methods 1.0761 30 0.0359
Total 6629 55

Convergence of the system parameters

1.6
]
S —al
= A
=
wn _/\/\—_,__\
& 1.55
[4]
E
8
o
o
1.5
-0.4
© B
=
S .06
&
[ —al
2
E '03 M
L1
o

0 5 10 15 20 25 30 35 40 45 50 55 60

Time (Second)

Figure 6 the convergence of the system parameters: (A) the system parameter a,

and (B) the system parameter a;.
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Convergence of the system parameters
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0.0055

—b1 —b0
0.005

Parameters value
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Figure 7 the convergence of the system parameters by and b;.

The experimental model accuracy of the different least square methods is presented in Figure 8.
Solid and dash lines represent the measurement data and the output of the 4™ order ARMAX model using
both least square methods. The output from the recursive least square method is closer to the
measurement data than the output from the conventional least square method. In the first 10 seconds,
both outputs exhibit the same trend and have significant gap from the measurement data. After 10 seconds,
the output of recursive least square method starts to track the measurement data. Therefore, the model

accuracy of the recursive least square method is better than that of the conventional least squares method.

h I
1 . 1
i)
1 & T:‘ 1
14 1
|." 1
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= 0.25 /\ \
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Measurement data 4 order LS = =4 order RLS

Figure 8 the comparison study of the different least square methods.
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Conclusions and Discussion

This paper has applied the least square method to compare different model structures, specifically
the FIR model and ARMAX model for Z”d, 4" and 6™ model order in an automotive window mechanism.
In comparison study, higher-order model structures generally result in better model accuracy for both of
the FIR and ARMAX model structures. However, The ARMAX model structures outperforms the FIR model
structures. The model accuracy of the 4" order ARMAX model is comparable to that of the 6" order ARMAX
model, but the number of system parameters of the 4" order ARMAX model is lower than that of the 6"
ARMAX model. Hence, the most suitable model for predicting the output of an automotive window
mechanism is the 4" order ARMAX model. This selection is based on both the lower number of system
parameters and the comparable model accuracy to that of the 6" order ARMAX model. The model order
refers to the number of past input and output terms included in the model equation. In low-order models,
the FIR model incorporates only a few past input terms, whereas the ARMAX model includes both past
input and output terms. Due to the absence of past output terms, the FIR model is preferred when past
system states are not critical or when the system exhibits weak internal dynamics. In contrast, the ARMAX
model can capture internal dynamics more effectively due to the inclusion of feedback from past outputs.
In high-order models, the FIR model accounts for more past inputs but still lacks feedback from past
outputs, whereas the ARMAX model incorporates both past inputs and outputs, enhancing accuracy in
complex systems by leveraging feedback mechanisms. Higher order improves accuracy but increases
computation time.

To enhance the model accuracy performance, this paper has applied the recursive least square
method to the 4™ order ARMAX model in an automotive window mechanism. Unlike the conventional least
square method, this approach begins by initializing the estimated system parameters data obtained from
the conventional least squares method. All estimated parameters then converge to their true system
parameter values within 15 seconds. The experimental results showed that the model accuracy achieved
using the recursive least square method surpasses that of the conventional least square method in an
automotive window mechanism. Future work will focus on deriving the dynamic mathematical model from
physical law and will apply system identification methods to determine the values of the system’s physical
parameters.

The comparative analysis of various system identification methodologies applied to different
mechanical systems highlights the advantages and limitations of each approach in terms of accuracy,
complexity, and applicability as shown in table 4. [3] proposed a nonlinear neural network model for a
thermal system, achieving a mean squared error of 0.7979. This data-driven approach effectively captures

system dynamics; however, the model's complexity poses challenges in implementation.
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Table 4 Comparative study and analysis of research findings.
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Study

Mechanical

system

Methodology

Results

Advantages

Limitations

Arisariyawong, T.

et al. (2023) [3]

Pothi, N. et al.
(2023) [5]

Mahajan, B. D.
et al. (2016) [7]

Pappalardo, C.
et al. (2023) [8]

Beltran-Carbajal, F.
et al. (2015) [11]

This study

Thermal system

DC motor

Automotive
suspension

system

Flexible robotic

manipulator

Mass spring

damper

Automotive
window

mechanism

Nonlinear neural

network model

2" order transfer
function model
with open-loop
step test
Simulink based

modeling

ARX with 2" order

mechanical model

2" order transfer
function model
with online
parameter
estimate

4™ order ARMAX
model with RLS

Mean squared

error = 0.7979

Best fit =
96.87%

Improved
accuracy with
sine wave
input

Best fit =
95.48%

Best fit =
97.82%

Best fit =
95.56%

Model based on
Data-driven
dynamic
modeling

A few processes
for system

identification

Low complexity
of model

structure

Easy to

implementation

On line
estimation
problem under
noisy
environments
parameters
converge to their

values

Complicating
structure of the

model

Highly sensitive to

noise

Limited to
simulation-based

validation

Relies on a
lumped
parameter
Requires prior
knowledge of the
system’s

bandwidth

Suitable for
online
implementation

only

[5] identified a DC motor system using a 2" transfer function model with an open-loop step test.

This approach achieved a high accuracy of 96.87% and required only a few processes for system

identification. However, the model is highly sensitive to noise, which may affect real-world applications. [7]

developed a Simulink-based model for a car suspension system, demonstrating improved results when

using a sine wave input. The simplicity of the model structure ensures ease of use, but its validity is limited

to simulation studies, lacking experimental verification. [8] applied an ARX-based 2" mechanical model for

a flexible robotic manipulator, achieving a best-fit accuracy of 95.48%. This approach benefits from easy

implementation; however, it relies on a lumped parameter model, which may not fully capture complex

system dynamics. [11] employed a 2" transfer function model with online parameter estimation for a mass-

spring-damper system, achieving the highest accuracy of 97.82%. The method is particularly useful in

handling online estimation problems under noisy environments. Nevertheless, prior knowledge of the
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system’s bandwidth is required for optimal performance. In this study, the 4™ ARMAX model with Recursive
Least Squares (RLS) demonstrated a high best-fit accuracy of 95.56% for an automotive window mechanism,
effectively converging system parameters. However, its application is constrained to online implementation.

Overall, this study emphasizes the importance of selecting an appropriate system identification
technique based on trade-offs between accuracy, computational efficiency, and practical applicability.
Future research should focus on hybrid approaches that integrate multiple identification methods to

enhance performance while mitigating their individual limitations.
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