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บทคัดย่อ 
งานวิจัยนี้นำเสนอแนวทางการหาเอกลักษณ์ของระบบและแบบจำลองทางคณิตศาสตร์สำหรับกลไกหน้าต่างรถยนต์ 

โดยใช้เทคนิคการประมาณค่าตัวแปร Least Squares (LS) และ Recursive Least Squares (RLS) เนื ่องด้วยความเป็น 
เชิงเส้นของระบบกลไกหน้าต่างรถยนต์ วัตถุประสงค์ของการวิจัย คือการเลือกแบบจำลองทางคณิตศาสตร์ที่เหมาะสมที่สุด
สำหรับการทำนายตำแหน่งของกลไกหน้าต่างรถยนต์ และเปรียบเทียบวิธีประมาณค่าตัวแปรระหว่าง Least Squares (LS)  
และ Recursive Least Squares (RLS) ซึ่งการทดลองของงานวิจัยจะเกี่ยวข้องกับการเก็บสัญญาญขาเข้าและสัญญาญขาออก
โดยใช้ตัวตรวจวัดอัลตราโซนิคและระบบเก็บข้อมูลที่ชนิด Arduino โดยข้อมูลที่รวบรวมได้จะถูกนำมาใช้ในการประมาณค่าตัว
แปรของระบบสำหรับโครงสร ้างแบบจำลองที ่แตกต่างกัน ได ้แก่ แบบจำลอง Autoregressive Exogenous (ARX)  
และ Autoregressive Moving Average Exogenous Inputs (ARMAX) ที ่ลำด ับของแบบจำลองที ่แตกต่างกัน โดยที่
ประสิทธิภาพของแต่ละแบบจำลองจะได้รับการประเมินโดยการเปรียบเทียบผลลัพธ์จากการจำลองกับข้อมูลจากการทดลอง 
จากผลการทดลองของงานวิจัยแสดงให้เห็นว่า แบบจำลอง ARMAX ลำดับที่ 4 ที่ใช้วิธี Recursive Least Squares ให้ค่า
ความแม่นยำสูงสุดที่  95.563% ขณะที ่แบบจำลอง ARMAX ลำดับที ่ 4 ที ่ใช้ว ิธ ี Least Squares ให้ค่าความแม่นยำ 
ที่ 94.862% ผลการวิจัยนี้แสดงให้เห็นว่า การเลือกโครงสร้างแบบจำลองและวิธีประมาณค่าตัวแปรที่เหมาะสมมีผลกระทบ
อย่างมีนัยสำคัญต่อความแม่นยำของกระบวนการหาเอกลักษณ์ของระบบสำหรับกลไกหน้าต่างรถยนต์ 
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Abstract 
This research presents a system identification and mathematical modeling approach for an 

automotive window mechanism using Least Squares (LS) and Recursive Least Squares (RLS) estimation 
techniques due to the linearity of the automotive window mechanism system. The objective is to select 
the suitable dynamic model that can predict the position of the window mechanism and compare two 
parameter estimation methods between Least Squares (LS) and Recursive Least Squares (RLS) method.  
The experiment involves collecting input - output data using an ultrasonic sensor and Arduino-based data 
acquisition system. The collected data is used to estimate the system parameters for different model 
structures, including Autoregressive exogenous (ARX) and Autoregressive moving average exogenous inputs 
(ARMAX) models, at various model orders. The performance of each model is evaluated by comparing the 
simulated outputs with experimental data. The results indicate that the 4th order ARMAX model  
with Recursive Least Square achieves the highest accuracy of 95.563%. When the 4th order ARMAX model 
with Least Square achieves the accuracy of 94.862%. The findings of this research demonstrate that the 
selection of an appropriate model structure and estimation method significantly impacts the accuracy of 
system identification for an automotive window mechanism. 
 

Keywords: mathematical model; window mechanism; system identification; ultrasonic sensor 
 

Introduction 
 A mathematical model depends on the selected model structure, such as AR (Autoregressive), 
ARMA (Autoregressive moving-average), ARMAX (Autoregressive moving average exogenous),  
ARX (Autoregressive exogenous) and FIR (Finite impulse response) models, while the model parameters 
depend on the order of the model structure. A higher order of the model structure indicates a mathematical 
model with numerous system parameters. The primary distinction among these models lies in their 
utilization of past inputs, past outputs, and noise dynamics in system identification and time-series 
modeling. The Autoregressive (AR) model relies solely on past output values to predict future outputs, 
making it suitable for time-series forecasting in the absence of external inputs. The Autoregressive Moving-
Average (ARMA) model extends AR by incorporating a moving-average (MA) component, which accounts for 
stochastic noise, thereby enhancing its capability to model time-dependent data. However, both AR  
and ARMA do not consider external input variables, limiting their applicability in dynamic systems influenced 
by external factors. To address this limitation, the Autoregressive Moving-Average with Exogenous Inputs 
(ARMAX) model builds upon ARMA by incorporating past input values, allowing for more accurate modeling 
of systems where external inputs significantly impact system behavior. In contrast, the Finite Impulse 
Response (FIR) model differs fundamentally from the aforementioned models as it exclusively considers 
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past input values while disregarding past outputs. The FIR model is preferable when past outputs are not 
required, while ARX and ARMAX are more suitable for dynamic system identification involving external 
inputs. Conversely, AR and ARMA models are most effective for time-series forecasting when exogenous 
inputs are absent. The appropriate choice among these models significantly influences the accuracy  
and efficiency of system identification and predictive modeling. In system identification process, input data 
and output data are measured from numerous experiments when 𝑢(𝑡) represents time series input signal 
to the real system and 𝑦(𝑡) represents time series output signal from the real system. All collected data 
sets are utilized to identify the system parameters when model structure has been selected. However,  
if the model structure does not match the real system, model errors may occur. Therefore, it is imperative 
to ensure that the selected model structure and model order must align with the characteristics of the real 
system [1]. The model error between output from the real system and estimated output from the 
mathematical model can be expressed as 𝑒̂(𝑡) =  𝑦(𝑡) − 𝑦̂(𝑡), when 𝑦̂(𝑡) represents time series output 
from the mathematical model. In general, a higher model order can better predict the time series of the 
output signal from the mathematical model than a lower model order. However, this leads to the 
mathematical model having numerous system parameters. Therefore, the optimum model order of the 
selected model structure is an essential factor in the system identification process, aiming to minimize the 
model error and the number of system parameters.   

The model structure consists of a time series of input and output data at different time steps, 
characterized by constant parameters. For example, ARMAX (Autoregressive-moving-average model with 
exogenous input model) is one kind of time series model and can be expressed as shown in equation (1). 
 

𝑦(𝑡) = 𝑎1𝑦(𝑡 − 1) +∙∙∙ +𝑎𝑛𝑦(𝑡 − 𝑛) + 𝑏1𝑢(𝑡 − 1) +∙∙∙ +𝑏𝑛𝑢(𝑡 − 𝑛)    (1) 
 

when 𝑢(𝑡)  represents time series input signal and 𝑦(𝑡)  represents time series output signal.  
The system parameters 𝑎1, ⋯ , 𝑎𝑛 , 𝑏1, ⋯ , 𝑏𝑛 represent the dynamic behavior of the system, when 𝑛 
represents the model order of the system and the parameters 𝑡, 𝑡 − 1,   𝑡 − 𝑛 are current time step, delay 
1-time step and delay 𝑛-time step, respectively. Equation (1) can be rewritten as equation (2) when vector 
𝑌 represents the time series of the output signal from timestep 𝑡 to timestep 𝑡 + 𝑁 when 𝑁 is total number 
of data points from the experiment. A regression matrix ∅ can be formed by delayed time series of the 
input and output data. The vector 𝜃  consists with unknown parameters 𝑎1, ⋯ , 𝑎𝑛 , 𝑏1, ⋯ , 𝑏𝑛  and is 
constructed into a column vector. The number of unknown parameters depends on the model order.  
As shown in equation (2), the third-order model of the model structure can be written with three-time 
delay steps of the input and output signal, so the six parameters of the model structure are utilized for 
predicting the dynamic behavior of the system. 
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𝑦(𝑡)⏟
𝑌

= [𝑦(𝑡 − 1)  𝑦(𝑡 − 2) 𝑦(𝑡 − 3)   𝑢(𝑡 − 1)  𝑢(𝑡 − 2)𝑢(𝑡 − 3)]⏟                                    
𝜙

[
 
 
 
 
 
𝑎0
𝑎1
𝑎2
𝑏0
𝑏1
𝑏2]
 
 
 
 
 

⏟
𝜃

        (2) 

The column vector 𝜃 can be extracted using the least square method, which is a mathematical 
technique used to find the minimum sum of the squares of the differences between measured  
and predicted values. This method is applied to estimate parameters from all collected input and output 
data of experiments   to form the mathematical model that predicts the dynamic behavior of the system 
[1], as demonstrated in Equation (3). 
 

𝜃𝐿𝑆 = (𝜙
𝑇𝜙)−1𝜙𝑇𝑌          (3) 

 
Furthermore, another model structure is FIR (Finite Impulse Response). This model utilizes only 

time delay steps of the input signal, with unknown parameters in each input time delay step, as shown in 
equation (4).  

 

𝑦(𝑡)⏟
𝑌

= [𝑢(𝑡 − 1)  𝑢(𝑡 − 2) ⋯𝑢(𝑡 − 𝑀)]⏟                    
𝜙

[

𝑔1
𝑔2
⋮
𝑔𝑀

]

⏟
𝜃

     (4) 

 
The least square method is a type of offline identification, where a batch of input and output data 

from a single experiment is utilized to identify the system parameters. Another least square method is 
known as the recursive least squares (RLS) method. Unlike traditional least squares, recursive least squares 
method is an adaptive filtering algorithm used to estimate the system parameter of a model structure.  
The recursive least squares method is useful where the data is changing over time or where real-time 
processing is required. The main objective of this method is to minimize the error between the measured 
and predicted values generated by the model structure [2]. The algorithm updates the unknown parameters 
iteratively as new data becomes available as shown in equation (5). 
 

𝜃(𝑡) =  𝜃(𝑡 − 1) + 𝐾𝑘𝑒̂(𝑡)        (5) 
 

When 𝐾𝑘  represents the Kalman gain at iterative step 𝑘, it is utilized to update the unknown 
parameters 𝜃̂ based on the error between the measured values from the real system and the predicted 
values from the mathematical model. The Kalman gain can be calculated as shown in equation (6) 
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𝐾𝑘 =
𝑃𝑘−1𝜙𝑘

𝜆+ 𝜙𝑘
𝑇𝑃𝑘−1𝜙𝑘

         (6) 

 
When 𝑃𝑘−1 represents the covariance matrix at iterative step 𝑘 − 1, the least squares method 

requires the inversion of the entire data matrix. On the other hand, the recursive least squares method 
eliminates the need for the computationally intensive matrix inversion. The parameter 𝜆 is a forgetting 
factor that controls the trade-off between the influence of past observations and current observations on 
the parameter estimates. A smaller value of 𝜆 gives more weight to recent observations, while a larger value 
gives more weight to past observations. The covariance matrix 𝑃𝑘 at iterative step 𝑘 updates based on a 
forgetting factor 𝜆, the Kalman gain 𝐾𝑘 , a regression matrix 𝜙𝑘 at iterative step 𝑘 consists of input and 
output data used to estimate parameters in a linear model and the matrix is continuously updated as new 
data arrives as shown in equation (7), and the past covariance matrix 𝑃𝑘−1  at iterative step 𝑘 − 1.  
The updated covariance matrix can be calculated as shown in equation (8) 
 

𝜙𝑘 = [𝑦(𝑡 − 1)⋯  𝑦(𝑡 − 𝑛)   𝑢(𝑡 − 1) ⋯𝑢(𝑡 − 𝑛)]      (7) 
 

𝑃𝑘 =
1

𝜆
(𝑃𝑘−1 − 𝐾𝑘𝜙𝑘

𝑇𝑃𝑘−1)        (8) 
 

The update algorithm used to converge the value of the unknown parameters 𝜃̂ to the true value 
as the number of observations increases each iterative step. However, the rate of convergence may vary 
depending on factors such as the selected forgetting factor and the characteristics of the experimental data. 
The least squares (LS) and recursive least squares (RLS) methods are suitable for linear time-invariant (LTI) 
systems that can be modeled using linear equations, such as the AR, ARMA, and ARMAX models. The least 
squares method requires batch data processing, where all data is collected first and then analyzed through 
offline computation. In contrast, the recursive least squares method is suitable for real-time system 
identification, as it updates system parameters continuously as new data arrives. An automotive window 
mechanism is an example of a linear time-invariant system. When a time-series input signal is applied to 
the window mechanism motor, the position of the window varies depending on the direction of the input 
signal. The behavior of an automotive window mechanism can be modeled using linear equations, making 
it suitable for system identification using the least squares and recursive least squares methods.  
From literature review in system identification, numerous researchers have applied system identification 
process in various applications, including mechanical system such as translation and rotation systems,  
as well as thermal systems. For example, researcher proposed a system identification process for a thermal 
process using a step input to the system and measured the output respond to derive a first-order transfer 
function from experiment data [3, 4]. In control of direct current motor with the PID controller, Researchers 
utilized the second-order transfer function to represent motor model. All system parameters were identified 
by open-loop step response test method [5]. Another researcher used state space model as a model 



วารสารมหาวิทยาลัยศรีนครินทรวิโรฒ สาขาวิทยาศาสตร์และเทคโนโลยี         ปีท่ี 17 ฉบับที่ 2 กรกฎาคม-ธันวาคม 2568 

6 | Article 253724 
 

 

structure and used the least square method to identify the system parameters of a thermal system [6].  
In a rotational mechanical system, the researcher utilized a system identification toolbox in MATLAB 
program to synthesize a second-order transfer function model of the studied rotational system. The model 
can predict the output with 96.87% accuracy when compared with experimental output [7]. Some literature 
has proposed a comparison study of different model structure such as, ARX, SSEST, N4SID, ERA and OKID in 
rotational single link robot, with the ARX model demonstrating higher accuracy with 95.8% [8]. Another 
researcher proposed a rotational mathematical model from physical laws using second-order differential 
equations and defined numerous energy loss terms in the mathematical model. The results showed that 
the model with all terms of energy loss has higher accuracy compared to the mathematical model with 
only some terms of energy loss [9]. In a translational mechanical system, literature reviews revealed that a 
number of the system identification techniques have been proposed. For example, Researchers proposed 
the transfer function model to represent the translational mechanical system with subspace-based system 
identification methods [10], Researchers proposed an on-line algebraic parameter identification method in 
the time domain for multiple linear mass-spring-damper mechanical systems [11], and the identification of 
the translational mechanical system using the amplitude dependent frequency and damping extracted 
from a free decay response [12]. 

The literature reviews also revealed that many more research studies have utilized system 
identification in numerous linear time-invariant system. The main focus of these studies is the comparison 
among various differential model structures to select the most suitable model for predicting the output. 

This paper presents the implementation of the least square and recursive least square methods 
from an automotive window mechanism, which is a kind of linear time-invariant system, with differential 
model structures and varying model orders. Data is collected from experiments utilizing ultrasonic distance-
measuring sensor to measure the displacement of the window as an output data and level of voltage signal 
from microcontroller as input data. To assess model accuracy, this paper compares the accuracy among 
different model structures and model orders to select the most suitable model for predicting the position 
output of an automotive window mechanism. The remaining sections of this paper include the Objective 
of the research, which define the main purpose of the research. The Methods section discusses the 
implementation of various equipment for the experimental study. This is followed by the Results section, 
which presents the results of the experimental study. Finally, the last section concludes the paper.  
 

Objectives 
1. To determine the most suitable model for predicting the position output of an automotive 

window mechanism by comparing FIR and ARMAX models of 2nd, 4th and 6th orders. 
2. To compare two parameter estimation methods: Least Squares and Recursive Least Squares to 

identify the most suitable system parameters for the mathematical model. 
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Methods 
 Before conducting experiments to record the position of an automotive window mechanism, 
numerous electronic devices, including Arduino, a joystick, a circuit board, an ultrasonic sensor, a motor 
control device, a 12-volt DC power supply, and an automotive window mechanism, are utilized to set up 
the experiment for the system identification process of an automotive window mechanism as shown in 
Figure 1. The joy stick is utilized to control the position of car window as the time series of input signal, 
while the ultrasonic sensor measures the position of the car window as the time series of output signal.  
All input and output data were collected using an Arduino UNO with a sampling time of 0.25 second over 
a 60 second test period or 244 data pair of input and output signal were collected. The joy stick is utilized 
to control the direction of the car window via a motor control device. The device is utilized to connect a 
source of 12-volt DC power supply to power the window motor. when the joy stick moved forward, the car 
window moves upward, and when it is moved downward, the car window moves downward due to the 
changing of current flow direction of the source via a motor control device. The experiments are conducted 
with two batches of testing. The two batches of data sets are defined over different time sequences by 
varying the duration of the input signal. The first set of experimental tested data is used to train the 
characteristics of the mathematical model, while the second set of experimental tested data is used to 
validate the accuracy of the model. The validation dataset consists of data that the model has not been 
exposed to during the parameter estimation process. This ensures that the evaluation of the model's 
performance is unbiased and not influenced by the data used for training.      
 

 
 

Figure 1 the schematic diagram of the experimental setup. 
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After collecting the position data of an automotive window mechanism from experiments, the 
system identification process begins with the selecting the appropriate model structure and model order 
that suits the dynamic behaviors of the system. To identify the mathematical model from the training 
dataset, the least squares method is used to find the unknown variables of the mathematical model. Before 
applying the least squares method, the ARMAX and FIR structures with order of 2nd, 4th and 6th must be 
rewritten in the from of equation (2) for the ARMAX structure, while the FIR structures must be rewritten as 
equation (4). Then, the experimental data at each time step must be substituted into the rewritten from of 
the ARMAX and FIR structures to determine the column vector 𝑌 and a regression matrix 𝜙, respectively. 
Consequently, the unknown variables for each model structures and order can be computed using equation 
(3), and each model structure with its corresponding order can be used to simulate the model output 𝑦̂𝑖. 
After obtaining all the mathematical model outputs, their outputs are compared with the second batch of 
experiment data to validate the model accuracy, according to equation (9). 
 

%𝐵𝑒𝑠𝑡 𝑓𝑖𝑡 = (1 −
∑ |𝑦𝑖−𝑦̂𝑖|
𝑁
𝑖=1

𝑁
) × 100       (9) 

 
When 𝑁 is the total number of the data points, 𝑦𝑖 represents the validated data at data point 𝑖 

and 𝑦̂𝑖 represents the model output data at data point 𝑖. A higher value of equation (9) indicates higher 
model accuracy [2]. Another method in the system identification process is the recursive least squares 
method. This method is useful in situations where data is changing over time, requiring real-time 
identification, unlike the least square method [1]. The algorithm starts by initializing the estimated system 
parameters data 𝜃̂(𝑡 − 1) , the covariance matrix 𝑃𝑘 , and the forgetting factor 𝜆 , respectively. It then 
processes these data to estimate the system parameter 𝜃̂(𝑡) at the current time based on the Kalman gain 
and the model error 𝑒̂(𝑡), as shown in Figure 2. The estimated parameters change over time due to the 
varying input levels, and all estimated parameters will converge to the true system parameter values in 
finite time. In the recursive least squares method, the initializations of the system parameters are the 
identified parameters from the conventional least squares method at the same model order. The true 
system parameter values obtained from the recursive least squares method are used to calculate the 
percentage relative error between the parameters estimated by the least squares method and the true 
parameters from the recursive least squares method, as shown in Equation (10). 
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Figure 2 the schematic diagram of the recursive least square method. 

 

% 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
|𝜃𝐿𝑆 − 𝜃𝑅𝐿𝑆|

𝜃𝑅𝐿𝑆
× 100     (10) 

 
 When 𝜃𝐿𝑆 represents a parameter estimated by the Least Squares method, and 𝜃𝑅𝐿𝑆 represents a 
parameter estimated by the Recursive Least Squares method, a lower percentage relative error indicates 
that the parameter obtained from the Least Squares method is closer to the true parameter from the 
Recursive Least Squares method. After all experiments, Analysis of Variance (ANOVA) is used to compare 

the means of model accuracy between two parameter estimation methods. The null hypothesis (H₀) states 
that the means of model accuracy for the two parameter estimation methods are equal, while the 

alternative hypothesis (H₁) states that they are not equal. The hypothesis is tested at a 0.05 level of 
significance. 
 

Results 
 The validation and training data are shown in Figure 3. To ensure unbiased conditions, the input 
signal durations in the validation and training datasets were defined differently. The system parameters are 
identified by the least square method from training data on the ARMAX and FIR model structures with 2nd, 
4th and 6th order, as shown in Table 1. The FIR model and ARMAX structures with 2nd, 4th and 6th order have 
2, 4 and 6 system parameters, respectively. The parameters in the FIR model focus on the sequence of the 
input signal, while the parameters in the ARMAX model focus on both of the input and output signal 
sequence. The model accuracies of the FIR model are 41.23%, 54.88% and 62.55% for 2nd, 4th and 6th order, 
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respectively. A higher order of model structures indicates better model accuracy. In ARMAX model 
structures, the accuracies are 78.12%, 94.86% and 95.13% for 2nd, 4th and 6th order, respectively. The model 
accuracy of the 4th model order is close to that of the 6th model order, but the system parameters of the 
4th model order are less than those of the 6th model order.                    
  

 
 

Figure 3 the validation and training data sets: (A) Output of validation and training data;  
(B) Input of validation and training data. 

 
Table 1 the system parameters of the ARMAX and FIR model structures with 2nd, 4th and 6th order. 
System 

System 
parameters 

FIR Model ARMAX Model 

2nd order 4th order 6th order 2nd order 4th order 6th order 

𝑎0 - - - 0.85462 1.54922 1.46522 

𝑎1 - - - - -0.83173 -0.83432 

𝑎2 - - - - - -0.00541 

𝑏0 0.00841 0.01478 0.01863 0.00421 0.00482 0.00863 

𝑏1 0.03793 0.01603 0.01772 - 0.00433 -0.00092 

𝑏2 - 0.01601 0.01352 - - 0.00782 

𝑏3 - 0.00522 -0.00261 - - - 

𝑏4 - - 0.00481 - - - 

𝑏5 - - 0.00192 - - - 

% 𝐹𝑖𝑡 41.233% 54.884% 62.552% 78.121% 94.862% 95.132% 

B 

A 
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Experimental model performance of the FIR model in an automotive window mechanism is 
presented in Figure 4. Solid and dashed lines represent the validation data and the output of the FIR model, 
respectively. The output of the FIR models can predict only the level of the real system responses. A higher 
order of the FIR model structures can only raise the level of the output responses of the FIR model,  
but the responses of all FIR model cannot track the validation data consistently throughout the comparison 
study of the models.   

 

 
 

Figure 4 the comparison study of the validation data and the FIR models. 
 
 In the comparison study of the ARMAX model, the model performance of the ARMAX model in an 
automotive window mechanism is presented in Figure 5. Solid and dashed lines represent the validation 
data and the output of the ARMAX model, respectively. From experimental results, a higher order of the 
ARMAX model structures can predict the output response better than the lower order when compare 
between the validation data and the output of the ARMAX models. The patterns of the 4th model order 
are similar to those of the 6th model order. The 2nd model order can predict only the trend and has a 
significant gap between the validation data and the model response consistently throughout the 
comparison study of the models. The system parameters of the 4th order ARMAX model are used as the 
initial parameters 𝜃̂(𝑡 − 1) for the recursive least square method, and the forgetting factor 𝜆 is set to 0.97, 
where a larger value of the forgetting factor gives more weight to the past measured data. The system 
parameters and model accuracy for both of least square method can be shown in Table 2. The model 
accuracy of the 4th order ARMAX model by least square method is 94.862%, while the model accuracy of 
the 4th order ARMAX model by recursive least square method is 95.563%.   
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Figure 5 the comparison study of the validation data and the ARMAX models. 
 

 The result of the analysis of variance (ANOVA) at the 0.05 level of significance can be shown in 
Table 3. The P-value is 1.496 x 10-11, which is smaller than the 0.05 level of significance. Therefore,  
the means of model accuracy between two parameter estimation methods not have the same value.  
The model accuracy of the recursive least square method is significantly better than that of the 
conventional least square method. In the recursive least square method, the system parameters 𝑎0 and 𝑎1 
change over time from their initial values. After 15 seconds, the system parameters 𝑎0 and 𝑎1 converge to 
their true values as shown in Figure 6. Figure 7 illustrates the convergence of the system parameters 𝑏0  
and 𝑏1. After 12 second, the system parameters 𝑏0 and 𝑏1 converge to their true values.     
 
Table 2 the system parameters of the least square method for 4th ARMAX model and the recursive least   
square method for 4th ARMAX model. 

System 
parameters 

the least square method 
for 4th ARMAX model 

the recursive 
least square method 
for 4th ARMAX model 

Percentage relative error 

 4th order   4th order  % relative error 

𝑎0 1.54921  1.55131  0.13537% 

𝑎1 -0.83172  -0.81922  1.52584% 

𝑏0 0.00481  0.00491  2.03666% 

𝑏1 0.00432  0.00452  4.42477% 

% 𝐹𝑖𝑡 94.862%  95.563%   
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 The system parameters 𝑏0  and 𝑏1  converge to their true values faster than 𝑎0  and 𝑎1 .  
This is because the initial values of 𝑏0 and 𝑏1  are closer to their true values compared to 𝑎0  and 𝑎1 .  
The percentage relative error of 𝑎0 , 𝑎1 , 𝑏0  and 𝑏1  are 0.13537%, 1.52584%, 2.03666% and 4.42477%, 
respectively.  
 
Table 3 Analysis of variance of two parameter estimation methods. 

Source of variation SS df MS F P-value 

Between methods 3.9445 1 3.9445 109.0950 1.496 x 10-11 

Within methods 1.0761 30 0.0359   

      

Total 6629 55    

 

 
 

Figure 6 the convergence of the system parameters: (A) the system parameter 𝑎0,  
and (B) the system parameter 𝑎1. 

  
 
 
 

A 

B 
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Figure 7 the convergence of the system parameters 𝑏0 and 𝑏1. 
 
 The experimental model accuracy of the different least square methods is presented in Figure 8. 
Solid and dash lines represent the measurement data and the output of the 4th order ARMAX model using 
both least square methods. The output from the recursive least square method is closer to the 
measurement data than the output from the conventional least square method. In the first 10 seconds, 
both outputs exhibit the same trend and have significant gap from the measurement data. After 10 seconds, 
the output of recursive least square method starts to track the measurement data. Therefore, the model 
accuracy of the recursive least square method is better than that of the conventional least squares method.     
 

 
 

Figure 8 the comparison study of the different least square methods. 
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Conclusions and Discussion 
 This paper has applied the least square method to compare different model structures, specifically 
the FIR model and ARMAX model for 2nd, 4th and 6th model order in an automotive window mechanism.  
In comparison study, higher-order model structures generally result in better model accuracy for both of 
the FIR and ARMAX model structures. However, The ARMAX model structures outperforms the FIR model 
structures. The model accuracy of the 4th order ARMAX model is comparable to that of the 6th order ARMAX 
model, but the number of system parameters of the 4th order ARMAX model is lower than that of the 6th 
ARMAX model. Hence, the most suitable model for predicting the output of an automotive window 
mechanism is the 4th order ARMAX model. This selection is based on both the lower number of system 
parameters and the comparable model accuracy to that of the 6th order ARMAX model. The model order 
refers to the number of past input and output terms included in the model equation. In low-order models, 
the FIR model incorporates only a few past input terms, whereas the ARMAX model includes both past 
input and output terms. Due to the absence of past output terms, the FIR model is preferred when past 
system states are not critical or when the system exhibits weak internal dynamics. In contrast, the ARMAX 
model can capture internal dynamics more effectively due to the inclusion of feedback from past outputs. 
In high-order models, the FIR model accounts for more past inputs but still lacks feedback from past 
outputs, whereas the ARMAX model incorporates both past inputs and outputs, enhancing accuracy in 
complex systems by leveraging feedback mechanisms. Higher order improves accuracy but increases 
computation time.     
 To enhance the model accuracy performance, this paper has applied the recursive least square 
method to the 4th order ARMAX model in an automotive window mechanism. Unlike the conventional least 
square method, this approach begins by initializing the estimated system parameters data obtained from 
the conventional least squares method. All estimated parameters then converge to their true system 
parameter values within 15 seconds. The experimental results showed that the model accuracy achieved 
using the recursive least square method surpasses that of the conventional least square method in an 
automotive window mechanism. Future work will focus on deriving the dynamic mathematical model from 
physical law and will apply system identification methods to determine the values of the system’s physical 
parameters.     
  The comparative analysis of various system identification methodologies applied to different 
mechanical systems highlights the advantages and limitations of each approach in terms of accuracy, 
complexity, and applicability as shown in table 4. [3] proposed a nonlinear neural network model for a 
thermal system, achieving a mean squared error of 0.7979. This data-driven approach effectively captures 
system dynamics; however, the model's complexity poses challenges in implementation. 
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Table 4 Comparative study and analysis of research findings. 

 
[5] identified a DC motor system using a 2nd transfer function model with an open-loop step test. 

This approach achieved a high accuracy of 96.87% and required only a few processes for system 
identification. However, the model is highly sensitive to noise, which may affect real-world applications. [7] 
developed a Simulink-based model for a car suspension system, demonstrating improved results when 
using a sine wave input. The simplicity of the model structure ensures ease of use, but its validity is limited 
to simulation studies, lacking experimental verification. [8] applied an ARX-based 2nd mechanical model for 
a flexible robotic manipulator, achieving a best-fit accuracy of 95.48%. This approach benefits from easy 
implementation; however, it relies on a lumped parameter model, which may not fully capture complex 
system dynamics. [11] employed a 2nd transfer function model with online parameter estimation for a mass-
spring-damper system, achieving the highest accuracy of 97.82%. The method is particularly useful in 
handling online estimation problems under noisy environments. Nevertheless, prior knowledge of the 

Study 
Mechanical 

system 
Methodology Results Advantages Limitations 

Arisariyawong, T.  
et al. (2023) [3] 

Thermal system Nonlinear neural 
network model 

Mean squared 
error = 0.7979 

Model based on 
Data-driven 
dynamic 
modeling 

Complicating 
structure of the 
model 

Pothi, N. et al. 
(2023) [5] 

DC motor 2nd order transfer 
function model 
with open-loop 
step test 

Best fit = 
96.87% 

A few processes 
for system 
identification 

Highly sensitive to 
noise 

Mahajan, B. D.  
et al. (2016) [7] 

Automotive 
suspension 

system 

Simulink based 
modeling 

Improved 
accuracy with 
sine wave 
input 

Low complexity 
of model 
structure 

Limited to 
simulation-based 
validation 

Pappalardo, C.  
et al. (2023) [8] 

Flexible robotic 
manipulator 

ARX with 2nd order 
mechanical model 

Best fit = 
95.48% 

Easy to 
implementation 

Relies on a 
lumped 
parameter 

Beltran-Carbajal, F. 
et al. (2015) [11] 

Mass spring 
damper 

2nd order transfer 
function model 
with online 
parameter 
estimate 

Best fit = 
97.82% 

On line 
estimation 
problem under 
noisy 
environments 

Requires prior 
knowledge of the 
system’s 
bandwidth 

This study Automotive 
window 

mechanism 

4th order ARMAX 
model with RLS 

Best fit = 
95.56% 

parameters 
converge to their 
values 

Suitable for 
online 
implementation 
only 
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system’s bandwidth is required for optimal performance. In this study, the 4th ARMAX model with Recursive 
Least Squares (RLS) demonstrated a high best-fit accuracy of 95.56% for an automotive window mechanism, 
effectively converging system parameters. However, its application is constrained to online implementation. 
 Overall, this study emphasizes the importance of selecting an appropriate system identification 
technique based on trade-offs between accuracy, computational efficiency, and practical applicability. 
Future research should focus on hybrid approaches that integrate multiple identification methods to 
enhance performance while mitigating their individual limitations. 
 

References 
[1] Songsiri, J. (2022). System identification. Bangkok: Chulalongkorn University press.  
[2] Liung, L. (1999). System identification theory for the user (2nd ed). Upper Saddle River, NJ: Pearson  

Prentice Hall. 
[3] Arisariyawong, T., Sudsaward, C., Chokewiwattana, N., Sooksomkhan, W., and Kaewluan, S. (2023). Data- 

driven modeling for temperature prediction of biomass burner. Srinakharinwirot University  
Journal of Sciences and Technology, 15(29), 1-14.  

[4] Arisariyawong, T. (2022). Dynamic modeling of plate heat exchanger using artificial neural networks.   
  Srinakharinwirot University Journal of Sciences and Technology, 14(28), 65-78.  
[5] Pothi, N., Jantara, K., Charuenying, P., Butpang, P., and Dawongsa, A. (2023). System identification and  

control of DC motor with PID controller. Industrial Technology Journal, 8(1), 148-158.   
[6] Holland, L., Karayaka, H. B., Tanaka, M. L., and Ball, A. (2014). An empirical method for estimating  

thermal system parameters based on operating data in smart grids. In ISGT 2014, Washington,  
DC, USA, 2014, pp. 1-5, https://doi.org/10.1109/ISGT.2014.6816457 

[7] Mahajan, B. D., and Divekar, A. A. (2016). Modeling and system identification of a quarter car  
suspension using Simulink. 2016 IEEE International Conference on Recent Trends in Electronics,  
Information & Communication Technology (RTEICT), Bangalore, India, 2016, pp. 180-183,  
https://doi.org/10.1109/RTEICT.2016.7807808 

[8] Pappalardo, C. M., Lok. S. I., Malgaca, L., and Guida, D. (2023). Experimental model analysis of a single- 
link flexible robotic manipulator with curved geometry using applied system identification  
methods. Mechanical System and Signal Processing, 200 (1, October).  
https://doi.org/10.1016/j.ymssp.2023.110629  

[9] Brzeski, P., and Virgin, L. N. (2018). System identification of energy dissipation in a mechanical model  
undergoing high velocities: An indirect use of perpetual points. Mechanical System and Signal  
Processing, 108 (August), 115-125. https://doi.org/10.1016/j.ymssp.2018.02.010 

[10] Gres, S., Michael, D., Niels, J., and Laurent, M. (2022). Uncertainty quantification of input matrices and  
transfer function in input/output subspace system identification. Mechanical System and Signal  
Processing, 167(15 March). https://doi.org/10.1016/j.ymssp.2021.108581   



วารสารมหาวิทยาลัยศรีนครินทรวิโรฒ สาขาวิทยาศาสตร์และเทคโนโลยี         ปีท่ี 17 ฉบับที่ 2 กรกฎาคม-ธันวาคม 2568 

18 | Article 253724 
 

 

[11] Beltran-Carbajal, F., and Silva-Navarro, G. (2015). On the algebraic parameter identification of vibrating  
Mechanical systems. International Journal of Mechanical Sciences, 92, 178-186.  
https://doi.org/10.1016/j.ijmecsci.2014.12.006  

[12] Ondra, v., Sever, I. A., and Schwingshackl, C. W. (2021). Identification of complex non-linear modes of  
mechanical system using the Hilbert-Huang transform from free decay responses. Journal of  
Sound and Vibration, 495, Article 115912. https://doi.org/10.1016/j.jsv.2020.115912 

 


