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Abstract

This paper investigates the potential usefulness of the three parameter transmuted generalized
inverted exponential distribution for modelling upside-down bathtub shaped instantaneous failure
rates. Some structural properties of this distribution are discussed. Explicit expressions are derived,
such as quantile, Rényi entropy and the " moment of order statistics. The method of maximum
likelihood is used for estimating the model parameters and illustrate this model through an application
to failure data.
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1. Introduction

The exponential family of distributions are popular for modelling lifetime data in biomedical
sciences, reliability engineering, astronomy, marine sciences, medicine, psychology, agriculture,
botany, zoology, reliability and life testing. The exponential distribution is very popular for modelling
constant instantaneous failure rates. For non-linear cases, the role of the negative exponential
distribution is important for many areas of reliability engineering and failure data. The generalized
inverted exponential distribution was first introduced and studied by Abouammoh and Alshingiti
(2009) as a generalization of one parameter inverted exponential distribution, see Dey 2007. Dey et
al. (2014) obtained the maximum likelihood estimates, and Bayes estimates under squared error loss
function and discussed various structural properties with applications. The cumulative distribution
function (cdf) of the generalized inverted exponential (GIE) distribution is given by

¢
F(t)=1—{1—exp(—§)} , (1)

where 0 is the scale parameter and ¢ is the shape parameter. Using the quadratic rank transmutation

map studied by Shaw et al. (2007), we can obtain the three parameter TGIE distribution. A random
variable T is said to have transmuted distribution if its cdf is given by

F(t)=(1+2)G() - AG@)*, |4 <1, )
where G(t) is the cdf of the baseline model. For A4 =0, we have the distribution of the base random

variable (Shaw et al. 2007). Elbatal (2014) proposed and studied some mathematical properties of the
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transmuted generalized inverted exponential (TGIE) distribution and discussed some mathematical
properties of this model, which includes the moments, moment generating function and method of
maximum likelihood. This paper investigates the potential usefulness of the three parameter
transmuted generalized inverted exponential (TGIE) distribution with an application to reliability

data. This research will discuss the quantile analysis, Rényi entropy, the k" fractional moment of

the r" order statistic. Remarkably, extensive work has been done on the transmuted family of
distributions, such as Gokarna et al. (2011) proposed and studied the transmuted Weibull distribution
with application. Khan and King (2013a, 2013b) developed the transmuted modified Weibull and
transmuted generalized inverse Weibull distributions. Recently, Khan et al. (2014a, 2014b) proposed
the transmuted inverse Weibull distribution and discussed various structural properties with
applications. More recently Khan and King (2015) proposed the transmuted modified Inverse
Rayleigh distribution and discussed some of its mathematical properties with application. Merovci
(2013) studied the transmuted Rayleigh distribution with application to nicotine in cigarettes data.
This article outlines the usefulness of the TGIE distribution with some mathematical properties such

th

as quantile function, Rényi entropy and the k" fractional moment of the »" order statistics. This
paper also presents the graphical analysis of the TGIE distribution.
The article is organized as follows. Section 2 presents the analytical shapes of the probability

density, reliability and hazard functions of the TGIE model. Section 3, discusses the feature of the
quantile function. Entropy is derived in Section 4. In Section 5, we derive the &” moment of the r”
order statistics. Maximum likelihood estimates (MLEs) of the unknown parameters and the
asymptotic confidence intervals of the TGIE models are discussed in Section 6. Section 7 illustrates
the usefulness of the TGIE model by means of an application to real data. Concluding remarks are

addressed in Section 8.

2. Transmuted Generalized Inverted Exponential Distribution
A random variable T is said to have TGIE distribution with parameters 8, ¢ >0, |/1| <1 and

t > 0. The probability density function is given by

g1 y
f(t)z%exp(—?){l—exp[—?)} {l—ﬂ+2l{l—exp(—§j} } 3)

The cumulative distribution function (cdf), reliability function (rf) and hazard function (hf)
corresponding to (3) are given by

Fm:{ i-ew[-2 Hlm exp _gm, @
R(t):1—{1—{1—exp[-éijlM{l_exp[_?jy}, 5)

G e A Rl

h(t) = , (6)

el ) ool

and
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where @ and ¢ are the scale and shape parameters, A is the transmuted parameter representing the

different patterns of the TGIE distribution. If 7 is a random variable having the transmuted
generalized inverted exponential (TGIE) distribution with pdf (3), denoted as T ~ TGIE(t; 9,6, ).
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Figure 1 Plot of the TGIE density function

Figure 1 shows the diverse shape of the TGIE pdf with different choice of parameters. The
transmuted inverse exponential (TIE) distribution proposed by Oguntunde and Adejumo (2015), is
the special case of the TGIE distribution for the shape parameter ¢ =1. The generalized inverted
exponential (GIE) distribution was proposed by Abouammoh and Alshingiti (2009), is the special
case of the TGIE model when the transmuting parameter A =0. If ¢=1, in additionto A =0, the

TGIE distribution reduces to the inverse exponential (IE) distribution.
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Figure 2 Plot of the TGIE reliability function

Figure 2 illustrates the reliability pattern of the TGIE distribution with different choice of
parameters. The reversed hazard function for the TGIE distribution also known as failure rate denoted
by r(¢) defined as
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By definition H (t):L: h(t)dt , the cumulative hazard function of the TGIE distribution

r(t) = @)

corresponding to (3) is given by

r=-toh-f1-f1-cs{ ) 12l 2} ®
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Figure 3 Plot of the TGIE hazard function

Figure 3 illustrates the hazard rates of the TGIE model. These failure rates are defined with
different choices of parameters. The TGIE distribution has strictly increasing and decreasing patterns
of hazard rates.

3. Properties of the Quantile Function
The quantile 7, of the TGIE(#;¢,0,4) is the real solution of the following equation

1

Nrsawemdil
t,=—6|In 1—[1—(”@ (;M Mq] . (€)

q

To substitute ¢ =0.5 in (9), we obtain the median of the TGIE distribution. One can use (9), to

derive the following special cases:
1. The g -th quantile of the transmuted inverse exponential (TIE) distribution by setting the shape

parameter =1 as

q

. elln{(lJr/l)_‘/(l”)z —4q Hl
o 22 '
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2. The ¢ -th quantile of the generalized inverted exponential (GIE) distribution by setting the

: =—9{ln{l—[l—q];H_l.

$=30=1

transmuting parameter 4 =0 as
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Figure 4 Plot of the TGIE Median

Figure 4 shows the median life to illustrate the effect of transmuted parameter. Figure 5 shows
the coefficient of quartile deviation as a function of the transmuting parameter A. To illustrate the

effect of transmuting parameter on skewness and kurtosis, we consider the measure based on
quantiles. The skewness and kurtosis measures can now be calculated from the quantiles using

Bowley (B) and Moors (M) well known relationships. Graphical representations of the Bowley
(B) skewness and Moors (M) kurtosis when ¢=3 and 8=1, as a function of the transmuting
parameter A are illustrated in Figures 6 and 7, respectively.

The Bowley’s skewness and Moors kurtosis are given by
3 1 2
o(3)eli)2li)
B= ; 1 , (10)
o(i)-el)

o alele)-ei)-e) 0
el

1
8
6

Q(g ‘Q(

and

0[N |oo |
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Figure 5 Plot of the TGIE A vs. coefficient of Q.D.
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Figure 6 Plot of the TGIE A4 vs. Bowley (B) skewness
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Figure 7 Plot of the TGIE A vs. Moors (M) kurtosis

4. Entropy
The entropy of a random variable 7' with density f(¢) is a measure of variation of the

uncertainty. A large value of entropy indicates the greater uncertainty in the data. The Rényi entropy
is defined as

l—lp 1og{j f(t)pdt}, (12)

where p>0 and p=#1. Theintegralin /,(p) of the TGIE(t;¢,6,1) can be defined as

P AP p(p-1) v
J rera={ o eXp[_pg)[l_exp(_gﬂ {1—ﬂ+2ﬂ{1—exp[_gﬂ } dt
0 0 2P ¢ : .

" B P p(p-1)+k
= ZW;»,H,M,K IO £ [l—exp[—?ﬂ dt,

k=0

I (p)=

here w,, . =gror P[22 -2y
where W, , ,  =¢ N2 (1-2)",

_[:f(t)p dt = i VV:ﬁ,o,p,A,K (,0(¢ _1) + ¢k

k,1=0

/
Using equations (12) and (13), we obtain the Rényi entropy as

Ie(p) = ﬁlog@) +ﬁlog(9> w2 ~

2 -1 k
IOg{Z (/:j(p(¢ Z)+¢ j(_1)1 (%}0‘““1‘2”*31“(2,0—1)}. (14)

J(—D’ 0P 2P PT(2p - 1). (13)

log(1-4)

+

I-p

k=0
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Table 1 Quartile measures of the TGIE distribution for the parameter vector ®

0 4 1 Estimates
o} 0, 0 IOR oD coD
0.5 1 -1.0 1.6609 3.3219 8.0039 6.3429 3.1714  0.6562
-0.5 1.1455 2.3924 5.9055 4.7600 2.3800  0.6750
0.5 0.6651 1.1962 2.5261 1.8610 0.9305  0.5831
1.0 0.5727 0.9375 1.6609 1.0882 0.5441  0.4871
1 1 -1.0 3.3219 6.6438 16.007 12.685 6.3429  0.6562
-0.5 2.2910 4.7849 11.811 9.5201 47600  0.6750
0.5 1.3302 2.3924 5.0523 3.7220 1.8610  0.5831
1.0 1.1455 1.8751 3.3219 2.1764 1.0882  0.4871
1 2 -1.0 1.8751 2.9553 5.0523 3.1771 1.5885  0.4586
-0.5 1.4474 2.3924 4.2155 2.7680 1.3840  0.4887
0.5 0.9688 1.4927 2.4789 1.5100 0.7550  0.4379
1.0 0.8630 1.2526 1.8751 1.0120 0.5060  0.3696
2 3 -1.0 29175 4.2212 6.4245 3.5069 1.7534  0.3753
-0.5 2.3502 3.5615 5.5845 3.2343 1.6171  0.4076
0.5 1.6649 2.4121 3.6653 2.0003 1.0001  0.3752
1.0 1.5042 2.0786 29175 1.4133 0.7066  0.3196
2 4 -1.0 2.5052 34611 4.9578 2.4525 1.2262  0.3286
-0.5 2.0664 2.9855 4.4017 2.3352 1.1676  0.3610
0.5 1.5120 2.1150 3.0614 1.5493 0.7747  0.3387
1.0 1.3774 1.8502 2.5052 1.1278 0.5639  0.2904
2 5 -1.0 2.2525 3.0210 4.1655 1.9130 0.9565  0.2980
-0.5 1.8869 2.6429 3.7474 1.8604 0.9302  0.3301
0.5 1.4109 1.9279 2.7038 1.2928 0.6464  0.3141
1.0 1.2925 1.7033 2.2525 0.9599 0.4799  0.2707

5. Order Statistics
The pdf of the 7" order statistic {,, of random sample f7,7,,...,7, drawn from the TGIE

distribution is given by

S0 = [FOI [1-FOI 1. (15)

n!
(r—=DlW(n-r)

Substituting (3) and (4) in (15), by setting u, =1~ exp(—?) , defined as

fo()= n["_ljni(";)(—l)” (- et ] %exp(—?)uw (1-4+24%)

r=1)3

_ n(n_:JZ S, (0. ), (16)
.

p=0¢,5=0
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- +p-1\[r+p-1 prqts
where . :(n FJ[F D J(’” p J(_l)/ 9525 and
p q s

1 ’ +s+1)-1
J(0,¢,u,ﬂ)=¢9{ln[gﬂ (1=u)u? D7 (1= A+ 22u%).

Using (16), the k" fractional moment of the " order statistic of ¢

(18 given by

um = [ jzz W, 0on LA= DT, (0,6,4.5,v,k)+ 24T, (0,¢.q.5.v.k)], (17)

p=0¢,s=0

(Pg+s+g)—1
v

where T, (6,4,9,5,v,k)=)_ H-1)'0 (v+1)'T(1-k), g=12.

v=0

6. Maximum Likelihood Estimation
This section examines the method of maximum likelihood and also provides expressions for the
associated Fisher information matrix. Consider the random samples ¢,,¢,,...,¢, consisting of n

n

observations from the TGIE distribution having probability density function. The log-likelihood
function L' =1n L of (3) is given by

_nln¢+nln¢9+Zln[t sz +(¢+1)Zln{1 exp[_gﬂ

tl,

¢
+Zln{1 ,1+2,1{1 exp(—gﬂ } (18)

By differentiating (18) with respectto 8, ¢ and A then equating it to zero, we obtain the estimating

g1
1exp[—fj . ZE[I—GXp[—fﬂ tlexp(_fj
) 2 DA

equations as follows.

oL’

_n =0, (19)
0 60 ,:ltl 0) S oI
'1-exp - 1—/1+2}{1—exp(—tﬂ
¢
o ) {l—exp{—fﬂ ln{l—exp[—fﬂ
no N i /] _
spftte T
QA {1-1+24 l—exp[—tﬂ
¢
. ) —1+2{1—exp(—fﬂ
a_ 1. 1)

on & [’
1-4+24 l—exp[—t]

By solving this nonlinear system of equations (19), (20) and (21), these solutions will yield the

ML estimators é, ¢3 and A. For estimating the parameters of the TGIE distribution, one can use the
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numerical iterative methods and statistical software can be used to solve them numerically such as
R-Package (Adequacy Model), R language (2013).

Finally, simulation study performed to access the cost of additional transmuting parameter A4 in
(3) by using the method of maximum likelihood. We simulated samples of size » from the TGIE
distribution for fixed choice of parameters =1, ¢=2 and A=0.5. Table 2 shows the mean

estimates, standard error, bias and mean square error of the TGIE model. The performances of most
of the parameters estimates are quite good when the sample sizes are large.

Table 2 Mean, standard error, bias and MSE of the TGIE distribution

n Parameter Mean S.E Bias MSE

0 0.8922 0.1460 -0.1078 0.0329

50 ¢ 1.9294 0.5715 -0.0706 0.3315

A 0.2562 0.4785 -0.2438 0.2884

0 0.9872 0.1041 -0.0128 0.0110

100 ¢ 1.9133 0.5035 -0.0867 0.2610
A 0.4578 0.3587 -0.0422 0.1304

0 0.9837 0.0726 -0.0163 0.0055

200 ¢ 1.7864 0.3950 -0.2136 0.2016
A 0.554 0.2773 0.054 0.0798

0 0.9633 0.0492 -0.0367 0.0037

400 ¢ 1.9216 0.2625 -0.0784 0.0750
A 0.5578 0.1624 0.0578 0.0297

7. Application

This section examines the real data analysis in order to assess the goodness-of-fit of the TGIE
model in practice. The data set is obtained from Lawless (1982) represents the survival times for the
50 devices, the data are as follows.

0.1,0.2,1.0,1.0,1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0,

32.0, 36.0, 40.0, 45.0, 46.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0, 72.0, 75.0,

79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0

The transmuted generalized inverted exponential (TGIE), transmuted inverted exponential (TIE),
Generalized inverted exponential (GIE) and inverted exponential (IE) distributions were fitted to this
data set. The MLEs of the parameters with their standard errors and the AIC (Akaike information
criteria) and AICC (Corrected Akaike information criteria) for the survival data is given in Table 3.

The values in Table 3, shows that the TGIE distribution provides a better fit than TIE, GIE and
IE distributions. Because the TGIE distribution has the lowest AIC and AICC measures. Therefore,
the TGIE distribution provides an adequate fit for the failure times of devices data. The likelihood
ratio (LR) statistics for testing the hypothesis Ho: TIE x Ha: TGIE, Ho: GIE x Ha: TGIE and Ho: IE
x Ha: TGIE are 65.8073 (p-value=4.97237E-16), 13.1848 (p-value=0.000282) and 93.4197 (p-value
=4.23019E-22), respectively. Hence reject the null hypothesis in all cases in favour of the TGIE
distribution. These results indicate that the TGIE is superior to using the TIE, GIE and IE distributions
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to fit the reliability data. This application suggests that the TGIE has the ability to fit right-skewed
data set.

Table 3 MLEs of the parameters for devices data and the AIC, AICC measures
Parameter Estimates

Distribution ¢3 P i AIC AICC

N G T
1.84 -0.8411

TIE - (0.2143;; (0(.)1%29) 610.68 610.94

e s o e sy

IE - (0232159952) - 636.29 636.38

8. Concluding Remarks

This article discussed the performance of the transmuted generalized inverted exponential
distribution and study some of its theoretical properties. The analytical shapes of density, reliability,
hazard and quantile functions of the TGIE model are examined. Some mathematical properties were

th

derived such as quantile function, Rényi entropy and the k" fractional moment of the »” order

statistic. The TGIE distribution has increasing and decreasing failure rate patterns for lifetime data.
The usefulness of the TGIE distribution is illustrated in an application to real data set and results
shows the improved fit comparing with other three lifetime distributions.
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