
Thailand Statistician 

January 2018; 16(1): 14-25 

http://statassoc.or.th  

Contributed paper  
 

Transmuted Generalized Inverted Exponential Distribution with 

Application to Reliability Data 

Muhammad Shuaib Khan* 

School of Business, Victoria University, Sydney, Australia. 

*Corresponding author; e-mail: Shuaib.Khan@vu.edu.au 

 

Received: 26 August 2016 

Accepted: 25 May 2017 

 

Abstract 

This paper investigates the potential usefulness of the three parameter transmuted generalized 

inverted exponential distribution for modelling upside-down bathtub shaped instantaneous failure 

rates. Some structural properties of this distribution are discussed. Explicit expressions are derived, 

such as quantile, Rényi entropy and the thr  moment of order statistics. The method of maximum 

likelihood is used for estimating the model parameters and illustrate this model through an application 

to failure data. 

______________________________ 
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1. Introduction 

The exponential family of distributions are popular for modelling lifetime data in biomedical 

sciences, reliability engineering, astronomy, marine sciences, medicine, psychology, agriculture, 

botany, zoology, reliability and life testing. The exponential distribution is very popular for modelling 

constant instantaneous failure rates. For non-linear cases, the role of the negative exponential 

distribution is important for many areas of reliability engineering and failure data. The generalized 

inverted exponential distribution was first introduced and studied by Abouammoh and Alshingiti 

(2009) as a generalization of one parameter inverted exponential distribution, see Dey 2007. Dey et 

al. (2014) obtained the maximum likelihood estimates, and Bayes estimates under squared error loss 

function and discussed various structural properties with applications. The cumulative distribution 

function (cdf) of the generalized inverted exponential (GIE) distribution is given by 

 ( ) 1 1 exp ,F t
t


  

     
  

 (1) 

where   is the scale parameter and   is the shape parameter. Using the quadratic rank transmutation 

map studied by Shaw et al. (2007), we can obtain the three parameter TGIE distribution. A random 

variable T is said to have transmuted distribution if its cdf is given by 

 2( ) (1 ) ( ) ( ) , 1,F t G t G t       (2) 

where ( )G t  is the cdf of the baseline model. For 0,  we have the distribution of the base random 

variable (Shaw et al. 2007). Elbatal (2014) proposed and studied some mathematical properties of the 
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transmuted generalized inverted exponential (TGIE) distribution and discussed some mathematical 

properties of this model, which includes the moments, moment generating function and method of 

maximum likelihood. This paper investigates the potential usefulness of the three parameter 

transmuted generalized inverted exponential (TGIE) distribution with an application to reliability 

data. This research will discuss the quantile analysis, Rényi entropy, the thk  fractional moment of 

the thr  order statistic. Remarkably, extensive work has been done on the transmuted family of 

distributions, such as Gokarna et al. (2011) proposed and studied the transmuted Weibull distribution 

with application. Khan and King (2013a, 2013b) developed the transmuted modified Weibull and 

transmuted generalized inverse Weibull distributions. Recently, Khan et al. (2014a, 2014b) proposed 

the transmuted inverse Weibull distribution and discussed various structural properties with 

applications. More recently Khan and King (2015) proposed the transmuted modified Inverse 

Rayleigh distribution and discussed some of its mathematical properties with application. Merovci 

(2013) studied the transmuted Rayleigh distribution with application to nicotine in cigarettes data. 

This article outlines the usefulness of the TGIE distribution with some mathematical properties such 

as quantile function, Rényi entropy and the thk  fractional moment of the thr  order statistics. This 

paper also presents the graphical analysis of the TGIE distribution. 

The article is organized as follows. Section 2 presents the analytical shapes of the probability 

density, reliability and hazard functions of the TGIE model. Section 3, discusses the feature of the 

quantile function. Entropy is derived in Section 4. In Section 5, we derive the thk  moment of the thr  

order statistics. Maximum likelihood estimates (MLEs) of the unknown parameters and the 

asymptotic confidence intervals of the TGIE models are discussed in Section 6. Section 7 illustrates 

the usefulness of the TGIE model by means of an application to real data. Concluding remarks are 

addressed in Section 8. 

2. Transmuted Generalized Inverted Exponential Distribution 

A random variable T  is said to have TGIE distribution with parameters  , 0  , 1   and 

0.t   The probability density function is given by 

 
1

2
( ) exp 1 exp 1 2 1 exp .f t

t t tt

 
   

 
           

                 
          

 (3) 

The cumulative distribution function (cdf), reliability function (rf) and hazard function (hf) 

corresponding to (3) are given by 

 ( ) 1 1 exp 1 1 expF t
t t

 
 


          

               
          

, (4) 

 ( ) 1 1 1 exp 1 1 expR t
t t

 
 


          

                
          

, (5) 

and 

 

1

2
exp 1 exp 1 2 1 exp

( )

1 1 1 exp 1 1 exp

t t tt
h t

t t

 

 

   
 

 


           
                

          
          

               
          

, (6) 
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where   and   are the scale and shape parameters,   is the transmuted parameter representing the 

different patterns of the TGIE distribution. If T is a random variable having the transmuted 

generalized inverted exponential (TGIE) distribution with pdf (3), denoted as ( ; , , ).T TGIE t     

 

 
Figure 1 Plot of the TGIE density function 

 

Figure 1 shows the diverse shape of the TGIE pdf with different choice of parameters. The 

transmuted inverse exponential (TIE) distribution proposed by Oguntunde and Adejumo (2015), is 

the special case of the TGIE distribution for the shape parameter 1.   The generalized inverted 

exponential (GIE) distribution was proposed by Abouammoh and Alshingiti (2009), is the special 

case of the TGIE model when the transmuting parameter 0.   If 1,   in addition to 0,    the 

TGIE distribution reduces to the inverse exponential (IE) distribution.  

 

 
Figure 2 Plot of the TGIE reliability function 

 

Figure 2 illustrates the reliability pattern of the TGIE distribution with different choice of 

parameters. The reversed hazard function for the TGIE distribution also known as failure rate denoted 

by ( )r t  defined as 
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1

2
exp 1 exp 1 2 1 exp

( )

1 1 exp 1 1 exp

t t tt
r t

t t

 

 

   
 

 


           
                

          
          

              
          

. (7) 

By definition
0

( ) ( )
t

H t h t dt  , the cumulative hazard function of the TGIE distribution 

corresponding to (3) is given by 

 ( ) ln 1 1 1 exp 1 1 expH t
t t

 
 


            

                  
            

. (8) 

 

 
Figure 3 Plot of the TGIE hazard function 

 

Figure 3 illustrates the hazard rates of the TGIE model. These failure rates are defined with 

different choices of parameters. The TGIE distribution has strictly increasing and decreasing patterns 

of hazard rates. 

3. Properties of the Quantile Function 

The quantile qt  of the TGIE( ; , , )t     is the real solution of the following equation 

 

1
1

2(1 ) (1 ) 4
ln 1 1 .

2
q

q
t

  





  

      
      
    

  

 (9) 

To substitute 0.5q   in (9), we obtain the median of the TGIE distribution. One can use (9), to 

derive the following special cases: 

1. The q -th quantile of the transmuted inverse exponential (TIE) distribution by setting the shape 

parameter 1   as  

1
2(1 ) (1 ) 4

ln .
2

q

q
t

  





          
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2. The q -th quantile of the generalized inverted exponential (GIE) distribution by setting the 

transmuting parameter 0   as 

 
1

1

ln 1 1 .qt q 


  

     
  

 

 

 
Figure 4 Plot of the TGIE Median 

 

Figure 4 shows the median life to illustrate the effect of transmuted parameter. Figure 5 shows 

the coefficient of quartile deviation as a function of the transmuting parameter .  To illustrate the 

effect of transmuting parameter on skewness and kurtosis, we consider the measure based on 

quantiles. The skewness and kurtosis measures can now be calculated from the quantiles using 

Bowley ( )B  and Moors ( )M  well known relationships. Graphical representations of the Bowley 

( )B  skewness and Moors ( )M  kurtosis when 3   and 1,   as a function of the transmuting 

parameter   are illustrated in Figures 6 and 7, respectively. 

The Bowley’s skewness and Moors kurtosis are given by 
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   
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Q Q

 (10) 

and 
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Figure 5 Plot of the TGIE   vs. coefficient of Q.D. 

 

 

 
Figure 6 Plot of the TGIE   vs. Bowley ( )B  skewness 
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Figure 7 Plot of the TGIE   vs. Moors ( )M  kurtosis 

4. Entropy 

The entropy of a random variable T  with density ( )f t  is a measure of variation of the 

uncertainty. A large value of entropy indicates the greater uncertainty in the data. The Rényi entropy 

is defined as 

  1
( ) log ( ) ,

1
RI f t dt




   (12) 

where 0   and 1  . The integral in ( )RI   of the TGIE( ; , , )t     can be defined as 

( 1)

20 0
( ) exp 1 exp 1 2 1 expf t dt dt

t t tt

   




    
  


            

                
          

   
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, , , , 0
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W t dt
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
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
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   
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 2 1 2 3
, , , ,0

, 0

( 1)
( ) ( 1) (2 1).l

K
k l

k
f t dt W l

l
  

   

  
 


   



  
    

 
  (13) 

Using equations (12) and (13), we obtain the Rényi entropy as 

     ( ) log( ) log( ) log(1 )
1 1 1
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  

   
  
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  
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1 1
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      
 . (14) 
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Table 1 Quartile measures of the TGIE distribution for the parameter vector   

      
Estimates 

1Q  2Q  3Q  IQR QD CQD 

0.5 1 -1.0 1.6609 3.3219 8.0039 6.3429 3.1714 0.6562 

  -0.5 1.1455 2.3924 5.9055 4.7600 2.3800 0.6750 

  0.5 0.6651 1.1962 2.5261 1.8610 0.9305 0.5831 

  1.0 0.5727 0.9375 1.6609 1.0882 0.5441 0.4871 

1 1 -1.0 3.3219 6.6438 16.007 12.685 6.3429 0.6562 

  -0.5 2.2910 4.7849 11.811 9.5201 4.7600 0.6750 

  0.5 1.3302 2.3924 5.0523 3.7220 1.8610 0.5831 

  1.0 1.1455 1.8751 3.3219 2.1764 1.0882 0.4871 

1 2 -1.0 1.8751 2.9553 5.0523 3.1771 1.5885 0.4586 

  -0.5 1.4474 2.3924 4.2155 2.7680 1.3840 0.4887 

  0.5 0.9688 1.4927 2.4789 1.5100 0.7550 0.4379 

  1.0 0.8630 1.2526 1.8751 1.0120 0.5060 0.3696 

2 3 -1.0 2.9175 4.2212 6.4245 3.5069 1.7534 0.3753 

  -0.5 2.3502 3.5615 5.5845 3.2343 1.6171 0.4076 

  0.5 1.6649 2.4121 3.6653 2.0003 1.0001 0.3752 

  1.0 1.5042 2.0786 2.9175 1.4133 0.7066 0.3196 

2 4 -1.0 2.5052 3.4611 4.9578 2.4525 1.2262 0.3286 

  -0.5 2.0664 2.9855 4.4017 2.3352 1.1676 0.3610 

  0.5 1.5120 2.1150 3.0614 1.5493 0.7747 0.3387 

  1.0 1.3774 1.8502 2.5052 1.1278 0.5639 0.2904 

2 5 -1.0 2.2525 3.0210 4.1655 1.9130 0.9565 0.2980 

  -0.5 1.8869 2.6429 3.7474 1.8604 0.9302 0.3301 

  0.5 1.4109 1.9279 2.7038 1.2928 0.6464 0.3141 

  1.0 1.2925 1.7033 2.2525 0.9599 0.4799 0.2707 

 

5. Order Statistics 

The pdf of the thr  order statistic ( )rt  of random sample 1 2, ,..., nt t t  drawn from the TGIE 

distribution is given by 

    
1

:

!
( ) ( ) 1 ( ) ( ).

( 1)!( )!

 
 

 

r n r

r n

n
f t F t F t f t

r n r
 (15) 

Substituting (3) and (4) in (15), by setting 1 expiu
t

 
   

 
, defined as 

     
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1
: 2
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n r r pp

r n
p
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f t n u u u u

r p tt
    

  
  





      
                      

  

                   , , ,
0 , 0

1
, , , ,

1

n r

p q s
p q s

n
n w J u

r
   

 

 

 
  

 
                                                                          (16) 
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where  , , ,
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Using (16), the thk  fractional moment of the thr  order statistic of ( )rt  is given by 
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6. Maximum Likelihood Estimation 

This section examines the method of maximum likelihood and also provides expressions for the 

associated Fisher information matrix. Consider the random samples 1 2, ,..., nt t t  consisting of n  

observations from the TGIE distribution having probability density function. The log-likelihood 

function ln L L of (3) is given by 
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

n

i it




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By differentiating (18) with respect to  ,   and   then equating it to zero, we obtain the estimating 

equations as follows. 
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                                                                           (21) 

By solving this nonlinear system of equations (19), (20) and (21), these solutions will yield the 

ML estimators ̂ , ̂  and ˆ.  For estimating the parameters of the TGIE distribution, one can use the 
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numerical iterative methods and statistical software can be used to solve them numerically such as 

R-Package (Adequacy Model), R language (2013). 

Finally, simulation study performed to access the cost of additional transmuting parameter   in 

(3) by using the method of maximum likelihood. We simulated samples of size n  from the TGIE 

distribution for fixed choice of parameters 1,  2   and 0.5.   Table 2 shows the mean 

estimates, standard error, bias and mean square error of the TGIE model. The performances of most 

of the parameters estimates are quite good when the sample sizes are large. 

 

Table 2 Mean, standard error, bias and MSE of the TGIE distribution 

n Parameter Mean S.E Bias MSE 

   0.8922 0.1460 -0.1078 0.0329 

50   1.9294 0.5715 -0.0706 0.3315 

   0.2562 0.4785 -0.2438 0.2884 

   0.9872 0.1041 -0.0128 0.0110 

100   1.9133 0.5035 -0.0867 0.2610 

   0.4578 0.3587 -0.0422 0.1304 

   0.9837 0.0726 -0.0163 0.0055 

200   1.7864 0.3950 -0.2136 0.2016 

   0.554 0.2773 0.054 0.0798 

   0.9633 0.0492 -0.0367 0.0037 

400   1.9216 0.2625 -0.0784 0.0750 

   0.5578 0.1624 0.0578 0.0297 

7. Application 

This section examines the real data analysis in order to assess the goodness-of-fit of the TGIE 

model in practice. The data set is obtained from Lawless (1982) represents the survival times for the 

50 devices, the data are as follows. 

0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 

32.0, 36.0, 40.0, 45.0, 46.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0, 72.0, 75.0, 

79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0, 85.0, 85.0, 86.0, 86.0 

The transmuted generalized inverted exponential (TGIE), transmuted inverted exponential (TIE), 

Generalized inverted exponential (GIE) and inverted exponential (IE) distributions were fitted to this 

data set. The MLEs of the parameters with their standard errors and the AIC (Akaike information 

criteria) and AICC (Corrected Akaike information criteria) for the survival data is given in Table 3. 

The values in Table 3, shows that the TGIE distribution provides a better fit than TIE, GIE and 

IE distributions. Because the TGIE distribution has the lowest AIC and AICC measures. Therefore, 

the TGIE distribution provides an adequate fit for the failure times of devices data. The likelihood 

ratio (LR) statistics for testing the hypothesis H0: TIE HA: TGIE, H0: GIE HA: TGIE and H0: IE 

 HA: TGIE are 65.8073 (p-value=4.97237E-16), 13.1848 (p-value=0.000282) and 93.4197 (p-value 

=4.23019E-22), respectively. Hence reject the null hypothesis in all cases in favour of the TGIE 

distribution. These results indicate that the TGIE is superior to using the TIE, GIE and IE distributions 
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to fit the reliability data. This application suggests that the TGIE has the ability to fit right-skewed 

data set. 

 

Table 3 MLEs of the parameters for devices data and the AIC, AICC measures 

Distribution 
Parameter Estimates 

AIC AICC 
̂  ̂  ̂  

TGIE 
0.3763 

(0.0506) 

0.6033 

(0.2057) 

-0.8447 

(0.1249) 
546.88 547.39 

TIE - 
1.8430 

(0.2842) 

-0.8411 

(0.1029) 
610.68 610.94 

GIE 
0.2923 

(0.0468) 

0.8043 

(0.2278) 
- 558.06 558.32 

IE - 
2.2592 

(0.3195) 
- 636.29 636.38 

 

8. Concluding Remarks 

This article discussed the performance of the transmuted generalized inverted exponential 

distribution and study some of its theoretical properties. The analytical shapes of density, reliability, 

hazard and quantile functions of the TGIE model are examined. Some mathematical properties were 

derived such as quantile function, Rényi entropy and the thk  fractional moment of the thr  order 

statistic. The TGIE distribution has increasing and decreasing failure rate patterns for lifetime data. 

The usefulness of the TGIE distribution is illustrated in an application to real data set and results 

shows the improved fit comparing with other three lifetime distributions. 
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