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Abstract 

The recent global financial crisis has highlighted the need for financial institutions to find 

and implement of appropriate models for risk measurement. There was a particular interest of 

investors to increase their positions in the gold market as the risk in equity and bond markets 

was increasing. This study evaluates the effectiveness of various volatility models with respect 

to modeling and forecasting market risk in the gold future market. For this study, last  trading 

price of gold futures are considered from January 1990 to June 2014 with 6,373 observations. 

The  gold  futures  volatility  is  modeled  and  forecasted  using  GARCH-class  models  with  long 

memory and fat-tail distributions, by considering ARMA model as the conditional returns. The 

results reveal that ARMA(1,1) model provides best results for the conditional returns. Among 

the  linear  and  non-linear  GARCH-class  models,  EGARCH  and  FIEGARCH  models  are 

provided  best  results  for  in-sampling  forecasting.  Moreover,  EGARCH  model  gives  bit  of 

higher performance  than FIEGARCH model under model diagnostic  tests. After  that,  futures 

price volatilities of gold are forecasted using EGARCH and FIEGARCH models. Furthermore, 

it  was  found  that  long  memory  effect  is  significant.  Forecasting  accuracy  of  GARCH-class 

models  are  compared  with  different  distributions  of  innovations.  The  results  indicate  that 

GARCH  model  with  skew  t-distribution  outperform  those  with  normal  distribution.  For 

speculations and  noise  traders  in  futures  market,  both  linear  and nonlinear  models  should  be 

taken into account. 
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1. Introduction 

Given the rapid growth in financial markets and the current development of new and more 

complex  financial  instruments,  there  is  an  ever-growing  need  for  theoretical  and  empirical 

knowledge  of  the  volatility  in  financial  time  series.  Therefore,  modeling,  analyzing,  and 
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forecasting  volatility  has  been  the  subject  of  widespread  research  among  academics  and 

practitioners over the last decades. One complicated feature is that, actual realizations of return 

volatility  are  not  directly  observed  like  raw  returns.  A  common  approach  to  deal  with  the 

fundamental  latency  of  return  volatility  is  to  conduct  inference  regarding  volatility  through 

strong  parametric  assumptions:  such  that,  an  autoregressive  conditional  heteroscedasticity 

(ARCH) or a stochastic volatility (SV) model estimated with data at daily or lower frequency. 

However,  SV  models  are  beyond  the  scope  of  this  study  and  GARCH  family  models  are 

considered for modeling conditional variance of returns.   

These  models  (including  ARCH,  GARCH  and  their  many  generalizations)  have  been 

developed to reflect the so-called stylized facts of financial time series. Their properties, which 

include tail heaviness, volatility clustering and serial dependence without correlation, cannot be 

captured  with  traditional  linear  time  series  models.  Moreover,  the  volatility  of  financial 

instruments is rarely constant, and usually varies over time. This creates a phenomenon called 

volatility clustering, where large price movements on one day are followed by similarly large 

movements on successive days, creating  temporal clusters. The GARCH model, which  treats 

volatility as a drift process, is commonly used to capture this behavior. However, Lévy process 

frameworks are failed to capture effect of volatility clustering (Kumari et al. 2013). Therefore, 

study of GARCH class models is more prominent. Under this study, gold futures market data is 

used to model volatility in different manner.  

The  most  important  ambassador  from  the  world  of  commodities  is  gold  except  oil.  The 

world market for gold  is characterized by worldwide  trading. Gold  is  traded over-the-counter 

(OTC) worldwide and financial gold products (ETF’s, Futures and other derivatives) on a wide 

variety  of  organized  exchanges  and  platforms.  The  world  demand  of  newly  mined  gold  is 

roughly divided as follows: 50% for jewelry, 40% for investment, and only 10% for industrial 

purposes (Thompson 2012). 

Over past  few  years,  the  volatile price of gold  has  caused  great  concerns  among  market 

participants and researchers. Volatility  is a major  input in calculating value at risk (VaR) and 

derivative  price,  thereby  forecasting  and  modeling  gold  price  volatility  have  important 

theoretical  and  practical  implications.  Despite  the  importance  of  gold  as  a  hedge  and  a  safe 

haven asset (Baur and Lucey 2010) studies investigating the volatility of gold future market are 

rare. Tully and Lucey (2007) specify an asymmetric component in APGARCH model but they 

find  that  the  asymmetry  is  statistically  insignificant.  Batten  and  Lucey  (2010)  model  the 

volatility of a gold futures market. Moreover, Batten and Lucey (2010) find monetary variables 

to explain gold volatility. Later,  the behavior of gold prices  is covered by Lucey, Larkin and 

O’Connor (2013).  

The sources of variability changes are elusive asset returns without knowing why volatility 

changes.  This  is  the  path  that  will  focus  under  this  study.  Conditional  variance  of  returns  is 

provided  insights  into  the movement of volatility  through  time. This study attempts  to model 

and  forecast  the  volatility  of  gold  futures  trading  at  the  COMEX  during  1990-2014,  using 

various models from the GARCH family. For better capturing the dynamics of gold volatility, 

GARCH-class models  incorporating  long memory were employed. Some extreme events  like 

bad weather and financial crisis can cause large changes in gold price, resulting in the fat-tail 

distribution  and  asymmetry of price  returns. Therefore,  different  type of  error  distribution  to 

model  excess  kurtosis  and  skewness  were  considered. Further,  different GARCH  models  are 
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considered  to  capture  volatility  asymmetry  of  gold.  Finally,  volatilities  are  forecasted  using 

GARCH-class  models  and  out-of-sample  performances  of  models  are  evaluated  based  on 

different statistical tests.  

 

2. Research Methodology 

ARCH  models  define  conditional  distribution  for  returns  that  are  characterized  by  time-

varying conditional variance. ARCH modeling has rapidly become a dominant paradigm when 

discrete-time models are used  to describe  the prices of  financial assets. These models are  the 

basic econometric tools used to estimate and forecast asset returns volatility. In this section, the 

succinctly different ARCH models are discussed. 

 

2.1.  ARCH model 

In a seminal paper, Engle (1982) propose to model time-varying conditional variance with 

the autoregressive conditional heteroscedasticity (ARCH) processes that use past disturbances 

to model the variance of the series. The distribution of all the return for period  ,t  conditional 

on  all  previous  returns,  is  normal  with  mean     and  time-varying  conditional  variance  th  

defined by; 

   1 2|  ,  ,  ,  ,t t t tr r r N h               (1) 

and   2
( 1) .( )t th r                 (2) 

The  volatility  parameters  are  0  and  0.  The  volatility  of  the  returns  in  period  t  

then  depends  solely  on  the  previous  return.  A  large  positive/negative  return  in  period  1t   

implies  higher  than  average  volatility  in  the  next  period  when     is  positive.  Furthermore, 

returns near the mean level    imply lower average future volatility. 

 

2.2.  GARCH model 

Empirical evidence shows that high ARCH order has  to be selected  in order  to catch  the 

dynamic  of  the  conditional  variance.  The  generalized  ARCH  (GARCH)  model  of  Bollerslev 

(1986) is an answer to this requirement as it is based on an infinite ARCH specification which 

reduces  the  number  of  estimated  parameters  from  infinity  to  two.  The  distribution  of  all  the 

return  for  period  ,t   conditional  on  all  previous  returns,  is  defined  GARCH(1,1)  model  as 

follows: 

   1 2|  ,  ,  ,  ,t t t tr r r N h               (3) 

with  2
( 1) 1.( )t t th r h                 (4) 

There are four parameters, namely  , ,    and  .  The constraints  0, 0    and  0   are 

required  to  ensure  that  conditional  variance  is  never  negative.  Therefore,  the  standard 

GARCH(p, q) model expresses the variance at time  t  and  th  is given by:  

  2

1 1

, 
p q

t i t i j t j
i j

h h    
 

               (5) 

where  t i t ir      is  a  residual  at  time  t   and  , ,i j     and     are  the  parameters  to  be 

estimated,  q   is  the number  of  lags  for  past variances,  and  p   is  the number  of  lags  for  past 
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squared residuals. Therefore, GARCH model allows both autoregressive and moving-average 

components  in  heteroscedastic  variance.  It  gives  a  more  parsimonious  representation  of  the 

ARCH model and is much easier to identify and estimate. 

 

2.3.  ARFIMA model 

To  take  into  account  the  role  of  long  memory  in  returns  process,  autoregressive 

fractionally integrated moving average (ARFIMA) model is considered by Baillie (1996). The 

specification of ARFIMA(1,d,1) process can be written as follows: 

        11 ,1 1
d

t tL L r L                  (6) 

where    is  the return mean,  d   is  the  fractional difference operator capturing  long memory, 

and     are parameters  to be  estimated  and  L  is  the  lag operator1. This process  is  stationary 

when  0.5.d   

It is worth nothing that both the models (ARCH & GARCH) are captured leptokurtosis and 

volatility clustering. However, they fail to capture the leverage effect2 and also long memory in 

volatility  process.  To  address  these  problems,  various  extensions  of  nonlinear  GARCH-class 

models have been proposed by many authors and these models are discussed in below.  

 

2.4.  EGARCH model 

The  first  model  to  account  for  such  effects  was  the  exponential  GARCH  (EGARCH) 

model proposed by Nelson  (1991).  It uses a  logarithmic  function  to  treat asymmetric effects, 

and EGARCH(p,q) is given by: 

     
1 1 1

2
ln   ln .

p p q
t i t i

t i i j t j
i i jt i t i

h h
h h

 
   


 


   

   
       

  
  

         (7) 

As claimed by Nelson (1991), there are no restrictions on parameters in EGARCH.  

 

2.5.  APARCH model 

Ding (1993)  introduce  the  Asymmetric  Power  ARCH  (APARCH)  model.  The 

APARCH(p,q) model can be expressed as: 

   / 2 / 2

1 1

, 
p q

t i t i i t i j t j
i j

h h
        

 

               (8) 

where  0, 0, 0, ( 1, 2,..., ),j j q        0i    and  1 1, 1,..., .i i p      The  effect  of 

good and bad news is captured separately through the two coefficients,   and  ,  respectively. 

This model can capture the leverage effect.   

 

                                                           
1  ARMA(1,1) model is defined by: 

      1 1t t t tr r           and according to lag operator  ,L  (defined by)  1,t tLa a   this 

equation can be rewritten as:     1 1 .1 t tL r L        

2  This relates to the tendency of stock returns to be negatively correlated with changes in return 

volatility.  
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2.6.  TARCH model 

Threshold ARCH (TARCH) model (Zakoïan 1994) is given by: 

   1/ 2 1/ 2

1 1

  ,
p q

t i t i i t i j t j
i j

h h      
  

 

               (9) 

where   max , 0     and   min , 0 .     The  effect  of  good  and  bad  news  is  captured 

separately through the two coefficients,   and  ,  respectively.  

 

2.7. FIGARCH and FIEGARCH models 

Unlike the univariate models mentioned above which are based on the hypothesis that the 

volatility  autocorrelation  decays  at  an  exponential  rate.  Apart  from  that,  Baillie  et  al.  (1996) 

propose a fractionally integrated GARCH model (FIGARCH) allowing for the hyperbolic rate 

decaying  of  autocorrelations.  Interestingly,  FIGARCH(1, ,1)   nests  a  GARCH(1,1)  with 

0.   The  FIGARCH(1, ,1)  model can be written as follows: 

     
1 2

1 1 1 ,1 1t t th h L L L


    



       
 

     (10) 

where  0 1,    0,    , 1,        is  the fractional integration parameter and  L   is  the lag 

operator. 

The parameter    characterizes the long memory property in volatility. The advantage of 

the FIGARCH process is that for  0 1,   it is sufficiently flexible to allow for intermediate 

ranges  of  persistence.  If  0    volatility  shocks  decay  with  a  geometric  rate  and  if  1,   

volatility shocks have complete integrated persistence. 

Bollerslev  and  Mikkelsen  (1996)  proposed  a  flexible  fractionally  integrated  EGARCH 

(FIEGARCH)  model  which  allows  for  both  long  memory  in  volatility  process  and  the 

asymmetric effect. The  FIGARCH(1, ,1)  model can be described as: 

        1

1 1 1ln( ) 1 1 1t t t th L L L z z E z


    
 

  
           

    (11) 

where, 
2

2
.

 t
t

t

h
z

 This FIEGARCH model nests the conventional EGARCH for  0,   and the 

IEGARCH model  for  1.   At a slow hyperbolic rate of decay,  the effect of a shock  to  the 

forecast of  ln( )th   is dissipated for  0 1.   

In  summary,  linear  GARCH-class  models  with  five  nonlinear  GARCH-class  models 

(EGARCH, APARCH, TARCH, FIGARCH, FIEGARCH) are employed to model and forecast 

gold  market  volatility  under  different  error  distribution  as  mention  below.  Most  of  the  time, 

financial  time-series often  exhibits  non-normality patterns,  i.e.  skewness  and  excess kurtosis. 

GARCH models do not always  fully embrace  this property of high  frequency  financial  time-

series.  To  overcome  this  drawback  Bollerslev  (1986)  and  Beine  et  al.  (2002)  have  used  the 

Student’s  t-distribution. Similarly  to capture  skewness, Liu and Brorsen  (1995) have used an 

asymmetric stable density. To model both skewness and kurtosis Fernandez and Steel (1998) 

used the skewed Student’s t-distribution which was later extended to the GARCH framework 

by Lambert and Laurent (2001). To improve the fit of the GARCH and EGARCH models into 

international  equity  markets,  Harris  et  al.  (2004)  used  the  skewed  generalized  Student’s  t-
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distribution  to  capture  the  skewness  and  leverage  effects  of  daily  returns.  In  addition  to  the 

Normal distribution, Student  t-distribution  and  skewed Student  t-distributions  are  consider  to 

reduce  the  excess  kurtosis  and  skewness  of  time-series  data  (Kumari  2014)  with  respective 

their log-likelihood functions. 

 

3. Results and Discussions 

3.1. Data and preliminary analysis 

Gold  futures  prices  traded  on  the  COMEX  are  considered  in  this  study.  In  order  to 

calculate  logarithm  of  these  returns,  the  daily  prices  of  these  futures  data  are  used  (Kumari, 

2014) and which are obtained  from  the Bloomberg database. The prices are  taken as  the  last 

trading  daily  price  of  a  given  day.  The  data  on  futures  prices  cover  6373  observations  from 

January  1990  to  June  2014.  The  data  ranging  from  January  1990  to  June  2013  are  used  for 

modeling  purposes,  i.e.,  a  total  of  6135  observations,  which  is  sufficient  for  modeling  daily 

returns. The remaining data from July 2013 to June 2014 (238 observations) are treated as an 

out-of-sample period in order to assess the forecasts made. 

Daily  returns  can  be  calculated  using  this  formula  1ln  ln ,t t tr S S     where,  tr   is  daily 

returns  and  tS   is  gold  price  at  time  t ).  Squared  returns  are  considered  as  the  proxy  of 

volatilities. Both data series are plotted in the Figure 1. The figures demonstrate the association 

between returns and volatility and the occurrence of extreme returns and high volatility. As an 

example,  during  the  sample  period,  four  episodes  of  increased  volatility  and  extreme  return 

shocks can be identified. The first two episodes (1999 and 2001) are relatively short compared 

to  the  second  set  of  episodes  (middle  of  2005  and  2007).  The  highest  episode  of  increased 

volatility can be linked to the global financial crisis of 2007 and 2008.  

 

 
(a) 

 
(b) 

Figure 1 Daily returns of gold (in US$)-(a) and the squared return as a proxy for volatility-(b) 
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Table 1 Descriptive statistics of price returns of gold futures 

Mean (%)  Maximum  Minimum 
Standard 

Deviation (%) 
Skewness 

Excess 

Kurtosis 
Jarque-Bera 

0.0276  0.0971  -0.0865  3.5434  0.1045  9.5721  10,694.2* 

Q(1)  Q(10)  Q2(1)  Q2(10)  ADF  PP  ARCH(2) 

12.963*  37.521*  85.716*  102.841  -35.109*  -36.542*  86.5* 

Note: * Denote rejection of the null hypothesis at the 1% significance level. 

This period shows high volatility levels and extreme realizations of positive and negative 

returns  with  positive  returns  being  more  frequent  than  negative  returns.  The  proxy  for  the 

volatility of gold displays clusters of high and low volatility.  Since dynamics of gold prices are 

volatile; therefore, modeling and forecasting price volatility are of great importance for market 

participants. 

Descriptive statistics of futures price returns are reported in Table 1 with the results of unit 

root  tests  for  return  series based on  the  Augment Dickey  and Fuller  (ADF)  and Phillips  and 

Perron (PP) methods. The Jarque and Bera statistics show the rejections of the null hypothesis 

of  normal  distribution  at  the  1%  significance  level  implying  that  fat-tail  distribution  as 

evidenced by the positive skewness and excess kurtosis. Thus, it is necessary for us to model 

volatilities  by  taking  the  stylized  fact  of  fat-tail  distribution  into  account.  By  performing  the 

further  test  on  stationary  of  the  return  series  using  the  Augmented  Dick  Fuller  test  (ADF) 

(Dickey  and Fuller  1979)  and  Phillips Perron  (Phillips Perron 1988)  (PP) unit  root  tests  and 

results are reported in also Table 1. Both tests indicate that the null hypothesis of a unit root is 

rejected. That means, the return series of gold futures prices can be considered to be stationary. 

The ADF test is set to a lag length 0 using the Schwarz Information Criterion (SIC) and the PP 

test is conducted using the Bartlett Kernel spectral estimation method. Moreover, the Ljung and 

Box’s Q statistics (Ding et al. 1993) consistently show the rejections of no autocorrelations up 

to the first and tenth orders implying the existence of serial correlations in returns and squared 

returns and strong ARCH effects.  

 

3.2. In-sample performance 

In  order  to  model  the  volatility  of  the  returns  the  mean  equation  of  returns3  is  required.  

The  plot  of  ACF  and  plot  of  PACF  in  Figure  2  reveal  that  autoregressive  moving  average, 

ARMA(p,q)  is  more  suitable  to  model  the  mean  returns.  After  considering  several 

parsimonious  models,  ARMA(1,1)  is  found  to be  a  significant  model  for  the  mean equation; 

with a Wald statistic of 254.21 and significant  t-values for  the coefficients. Moreover, higher 

order  terms  in  ARMA  model  are  insignificant. However,  there  is  a  little  evidence  to present 

long memory effect in the return series due to slow decay of ACF plot in Figure 2-(a), (The plot 

of  autocorrelations  looks  little  closer  to  hyperbolic  than  exponential).  To  account  this  fact, 

ARFIMA  model  is  considered  as  a  mean  equation  of  returns  apart  from  ARMA  model  and 

results  are  reported  in  Table  2.  The  parameter  estimate  of  d   in  the  mean  equation  is 

                                                           
3  The  return  for  today  will  depend  on  returns  in  previous  periods  (AR  component)  and  the 

surprise terms in previous periods (MA component). Plotting the autocorrelation and partial 

autocorrelation of the returns series can help determine the order of the mean equation. 
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insignificant. This is implied the absence of significant long memory in gold returns. All other 

parameters  (AR  and  MA)  are  statistically  significant.  The  residuals  of  the  mean  equation 

indicate the absence of autocorrelation through the Q-statistic (Figure 3 (a)-ACF and Figure 3 

(b)-PACF).  Moreover,  Engle  (1982)  ARCH-Lagrange  Multiplier4  (LM)  test  provides  a  Chi-

squared value of 51.24, confirming the presence of ARCH effect. Thus there is a need to model 

this conditional variance using the ARCH class models.  

 

 
(a)  ACF of returns 

 

 

(b)  PACF of returns 

 

Figure 2 Plot of ACF and PACF of return series 

 

Note: 95% Confidence bands [Standard Error = 1/sqrt (no of observations)] 

 

                                                           
4  0 :H  No ARCH effects vs. H1: ARCH(p) disturbance 
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Table 2 Estimated results of ARFIMA(1,d,1) model 

Mean Equation:        1 11
d

t t t tL r r             

Parameters           d  

Coefficients  -0.000075  0.3381  -0.8439  0.3453 

Standard Error  0.00001  0.51536  0.42481  0.18044 

p-value  0.1087  0.0325  0.0254  0.1152 

 

 
(a)  ACF of returns 

 

 
(b) PACF of returns 

Figure 3 Plot of ACF and PACF of residuals of mean equation 

 

Note: 95% Confidence bands [Standard Error = 1/sqrt(no of observations)] 
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Table 3 Estimation results of ARMA(1,1)-GARCH(1,1) model 

Mean Equation:      1 1t t t tr r           

Variance Equation:  2
1 1 t t th h       

Parameters 
Error term distribution 

Normal  Student-t  Skewed-t 

  -0.000075 

(0.00097) 

0.000085  

(0.00081) 

0.000082 

(0.00089) 

  
-0.5028*  

(0.20105) 

-0.1021*  

(0.28871) 

-0.1147*  

(0.24720) 

  
0.4875* 

(0.20307) 

0.0922*  

(0.28938) 

0.0755*  

(0.24788) 

  
0.0000042***  

(0.000059) 

0.0000026**  

(0.000094) 

0.0000031***  

(0.000011) 

  
0.0620***  

(0.0025) 

0.0672***  

(0.0069) 

0.0632***  

(0.0063) 

  
0.9385***  

(0.0023) 

0.9402***  

(0.0051 ) 

0.9377***   

(0.0056) 

  - 
3.85***  

(0.2342) 

3.94***  

(0.2761) 

  
 

- 
-0.0245*  

(0.0287) 

R-squared (%)  7.31  12.29  13.77 

Q(10)  0.458 [0.725]  2.354 [0.851]  2.914 [0.873] 

ARCH(10)  0.9153 [0.531]  0.8217 [0.621]  0.8218 [0.619] 

AIC  -6.54  -6.66  -6.68 

Log-likelihood  19432.1  19781.9  19831.2 

Note:  Standard  errors  are  given  in  parentheses  and  p-values  of  the  statistics  are  reported  in 

square brackets. 

  Q(10)  is  the  Ljung  and  Box  (1978)  Q-statistics  of  orders  10  computed  on  the  squared 

standardized  residuals.  ARCH(10)  is  the  ARCH-Lagrange  Multiplier  (LM)  test  statistics  of 

orders 10. AIC is the Akaike Information value. 

  *, ** and ***, denote the 10%, 5% and 1% level of significance, respectively. 

 

Estimation results of GARCH (1,1) model is reported in Table 3 with the ARMA (1,1) as 

the  underlying  mean  equation  for  futures  price  returns  of  gold.  This  model  is  estimated  by 

approximate quasi-maximum likelihood under normal, Student-t and skewed Student-t errors. 

Both the coefficient of the mean and variance equation is statistically significant. A value of     

for  past  variance  in  GARCH  model  implies  that  the  shock  of  past  volatility  has  a  persistent 

effect on future volatility. The sum of the two coefficients  ( )   is a succinct measure of the 



Sandya N. Kumari and Abby Tan  87 

 

persistence  of  variance,  and  that  its  value  is  close  to  1  implies  that  there  is  significant 

persistence in volatility.  

The regression R-squared is low. It implies that other factors drive changes in price other 

than the AR and MA coefficients. This is consistent with trading in the gold futures market. Q-

statistic  of  standardized  residuals  reveals  that  the  errors  are  white  noise.  This  means  that 

higher-order GARCH models are not required. Therefore, that the GARCH(1,1) model is able 

to appropriately capture the GARCH effects. It is further implied by the ARCH-LM test.   

The Student-t and skewed-t distributions clearly outperformed than Gaussian. Indeed, the 

log-likelihood  function  strongly  increases  when  using  the  Student-t  to  skewed-t,  while  AIC 

values  are  decreases.  Therefore,  Skewed  Student-t  gives  better  results  than  the  symmetric 

Student-t  when  modeling  the gold  future  return. The  addition of  two  asymmetric parameters 

(asymmetric  GARCH  and  asymmetric  distribution)  may  therefore  be  necessary.  Hence, 

GARCH-class models are considered to produce better results. 
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Table 4 Estimated statistics for models comparison under skewed-t distribution 

Parameters 
Estimated Statistics 

GARCH  EGARCH  APARCH  TARCH  FIGARCH  FIEGARCH 

  0.000082 

(0.00089) 

0.000210** 

(0.00094) 

0.00014 

(0.00098) 

0.000123 

(0.000096) 

0.0021 

(0.00501) 

0.00278** 

(0.0011) 

  
-0.1147* 

(0.24720) 

-0.4025** 

(0.18323) 

-0.4842** 

(0.19770) 

-0.5029** 

(0.2071) 

-0.5449* 

(0.30069) 

-0.4529** 

(0.1385 

  
0.0755* 

(0.24788) 

0.3792** 

(0.18501) 

0.46742** 

(0.19964) 

0.4867** 

(0.2092) 

0.5411* 

(0.30152) 

0.4221* 

(0.1411) 

  
0.000031** 

(0.000011) 

-0.1801*** 

(0.01032) 

0.00026* 

(0.00011) 

0.00042** 

(0.00005) 

0.00044** 

(0.000017) 

0.0021  

(0.0049) 

  
0.0612*** 

(0.0063) 

0.0446*** 

(0.0031) 

0.05950** 

(0.0032) 

0.0855** 

(0.00345) 
- 

0.0574** 

(0.0049) 

  
0.9377***  

(0.0056) 

0.9002*** 

(0.00091) 

0.9432*** 

(0.0023) 

0.94130*** 

(0.0021) 

0.8623*** 

(0.0147) 

0.9498*** 

(0.0003) 

   - 
0.0827*** 

(0.01032) 

0.0595* 

(0.0032) 

-0.0548* 

(0.00404) 
- 

0.1190* 

(0.0143) 

   -  - 
1.345* 

(0.5471) 
-  -  - 

   -  -  -  - 
0.315* 

 (2.188) 

-0.157  

(0.298) 

  -  -  -  - 
0.314*  

(2.141) 

0.421*  

(2.991) 

  
3.94*** 

(0.2761) 

3.88*  

(0.2383) 

3.92* 

(0.2436) 

3.92** 

(0.2454) 

3.93** 

(0.2341) 

4.14***  

(0.1868) 

  
-0.054* 

(0.0287) 

-0.067* 

(0.0184) 

-0.034 

(0.0247) 

-0.028 

(0.0224) 

-0.058* 

(0.0158) 

-0.068*  

(0.0098) 

R-squared (%)  13.77  14.97  12.82  13.19  13.11  14.77 

Q(10) 
0.914 

[0.873] 

0.458 

[0.725] 

0.358 

[0.544] 

0.317 

[0.891] 

0.495 

[0.752] 

0.471 

[0.711] 

RCH(10) 
0.8218 

[0.619] 

0.9153 

[0.531] 

0.8117 

[0.604] 

0.3874 

[0.754] 

0.9137 

[0.511] 

0.8446 

[0.485] 

IC  -6.68  -6.97  -6.58  -6.66  -6.65  -6.81 

Log-likelihood  19831.2  20998.1  19801.2  19791.81  19780.0  20241.8 

Note:  Standard errors are given in parentheses and p-values of the statistics are reported in 

square brackets. 

  Q(10) is the Ljung and Box (1978) Q-statistics of orders 10 computed on the squared 

standardized  residuals.  ARCH(10)  is  the  ARCH-Lagrange  Multiplier  (LM)  test  statistics  of 

orders 10. AIC is the Akaike Information value. 

  *, ** and ***, denote the 10%, 5% and 1% level of significance, respectively. 

 

The results of the estimated parameters and diagnostic tests are listed in Table 4. The use 

of  asymmetric  GARCH  models  seems  to  be  justified.  All  asymmetric  coefficients  are 

significant.In  EGARCH  model,  the  asymmetric  coefficient     is  significant,  implying  the 

present of volatility asymmetries in futures volatilities, also confirmed by the estimates of the 
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coefficients    in other models. The estimates of  ( )  of GARCH(1,1) and 
2

 
  

 


  of 

EGARCH  are  less  than  unity,  satisfying  the  conditions  for  existence  of  the  second  moment 

(Ling and McAleer 2003). In addition,  the coefficient     in APARCH model is significant at 

10%  level.  There  is  some  evidence  to  present  leverage  effect  too.  Furthermore,  the  long 

memory parameter     in both FIGARCH and FIEGARCH models are  significantly different 

from  zero  at  least  at  the  10%  significance  level,  implying  the  existence  of  long  memory  in 

volatilities. 

The values of log-likelihood are close to each other across different models. However, the 

Log-likelihood value of EGARCH model  is  slightly  larger  than  those  from other models and 

followed by FIEGARCH model.  For futures price returns, Ljung and Box’s Q statistics cannot 

significantly  reject  the  null  hypothesis  of  no  serial  correlations  in  squared  standardized 

residuals. This evidence indicates that these GARCH-class models can capture the dynamics of 

gold  price volatility  well,  also  as  confirmed by  the  results  of Engle’s  ARCH  test  (Bollerslev 

and Mikkelsen 1996). Overall in-sample-fit, the EGARCH model is performed little better than 

FIEGARCH model. Further, out-of-sample will be considered to find the better results among 

selected models.  

 

3.3. Forecasting futures price volatilities (out-of-sample) 

The  forecasting  performance  of  GARCH-class  models  has  been  comprehensively 

discussed by Poon and Granger in 2003. Compared with the in-sample performance, the out-of-

sample performance  is  important because  market  participants  are more  concerned  about  how 

well  they  can  do  by  employing  these  models.  Moreover,  in-sample  performance  provides 

history performance only. Thus, we forecast gold price volatilities using GARCH-class models 

and compare their out-of-sample performances. 

 

 

 

 

 

 

 

 

 

 
 

Figure 4 Volatility forecasts of futures prices based on GARCH-class models with      

Skew t-distributions from July, 2013 to June, 2014 

 

Figure  4  shows  the  volatility  forecasts  of  futures  prices  of  gold  based on  GARCH-class 

models with skew-t distribution. These models provide perfect prediction of volatilities in some 

period,  whereas  present  the  over-prediction  of  volatilities  during  the  period  of  some  large 

fluctuations. Therefore, GARCH-class  models  can  lead  to  the under-predictions. Most of  the 

GARCH-class models show the similar volatility pattern as in the actual volatility series.   
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To  access  the  performance  of  the  considered  models  in  forecasting  the  conditional 

variance, variety of measures are employed, such as mean absolute error (MAE), mean squared 

error (MSE)5, R2LOG statistics, QLIKE statistic and the Theil’s inequality coefficient (TIC); 
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where  n   is  the  number  of  forecasts, 2
t   and  2ˆ

t are  the  actual  volatility  and  the  volatility 

forecasts obtained from GARCH-class models respectively. 

 

Table 5 Comparisons of out-of-sample forecasting performance of GARCH-class models with 

skewed-t distribution 

Models 
Model Selection Criteria 

MAE  MSE  R2LOG  QLIKE  TIC 

GARCH  5.123 

[0.322] 

85.69 

[0.558] 

1.251 

[0.425] 

1.118 

[0.547] 

0.344 

[0.558] 

EGARCH  4.925 

[0.875] 

80.41 

[0.982] 

1.021 

[0.654] 

0.988 

[0.958] 

0.229 

[0.988] 

APARCH  6.654** 

[0.032] 

99.14** 

[0.045] 

1.896* 

[0.058] 

1.874*** 

[0.009] 

1.000*** 

[0.000] 

TARCH  5.847* 

[0.098] 

101.21*** 

[0.003] 

1.947***  

[0.009] 

1.647** 

[0.021] 

0.854*** 

[0.009] 

FIGARCH  6.194** 

[0.048] 

95.87* 

[0.099] 

1.755* 

[0.061] 

1.541* 

[0.054] 

0.554* 

[0.087] 

FIEGARCH  5.338 

[0.117] 

88.33 

[0.397] 

1.541* 

[0.098] 

0.991 

[0.998] 

0.225  

[1.000] 

Note:   Out-of-sample  forecast  results  for  the  period  July,  2013  to  June,  2014.  Results  are 

reported  for  examined  models  and  the  considered  performance.  p-values  of  the  statistics  are 

reported in square brackets and the highest p-values are in bold face. 

  *, ** and ***, denote the 10%, 5% and 1% level of significance respectively. 

 

                                                           
5 Andersen, T. G., Bollerslev, T., and Lange, S. in 1999, used the MSE and MAE statistics.  
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Table 5  reports  the  results  for an out-of-sample analysis of  the all models by comparing 

one-step-ahead  volatility  from  July,  2013  to  June,  2014  under  five  different  criteria.  For  the 

gold futures, the results support the use of the asymmetric EGARCH model. According to most 

measures in the variance equation, the EGARCH model outperforms6 than FIEGARCH model 

with  the  assumption  of  skewed-t  distributed  innovations.  According  to  the  QLIKE  and  TIC 

statistic,  FIEGARCH  model  is  performed  better  than  the  other  models  while  other  statistics 

give best results except R2LOG. That means; there is some evidence to present long memory 

effect  in  volatilities.  The  GARCH  model  provides  satisfactory  results  while  APARCH  and 

TARCH models provide the poorest forecasts.  

 

4. Conclusions 

The recent global financial crisis has highlighted the need for financial institutions to find 

and  implement  appropriate  models  for  risk  measurement.  There  was  a  particular  interest  of 

investors to increase their positions in the gold market as the risk in equity and bond markets 

was increasing. This study evaluates the effectiveness of various volatility models with respect 

to modeling and forecasting market risk in the gold future market.  

The  gold  futures  volatility  modeled  and  forecasted  by  using  GARCH-class  models  with 

long memory and fat-tail distributions, by considering ARMA model as the conditional returns. 

The  results  reveal  that  ARMA(1,1)  model  provides  best  results  for  the  conditional  returns. 

Among the linear and non-linear GARCH-class models, EGARCH and FIEGARCH models are 

provided  best  results  for  in-sampling  forecasting.  Moreover,  EGARCH  model  gives  bit  of 

higher performance than FIEGARCH model under model diagnostic tests.  

After  that,  futures  price  volatilities  of  gold  are  forecasted  using  linear  and  nonlinear 

GARCH-class  models.  Based  on  the  model  selection  criteria,  EGARCH  and  FIEGARCH 

models are superior to other models in the sense of forecasting accuracy. More importantly, the 

evidence  indicates  that  long  memory  effect  is  significant.  In  addition,  the  simple  linear 

GARCH-class  model  provides  high  accuracy  predictions  than  other  non-linear  models 

(APARCH, TARCH and FIGARCH).  Thus,  for  gold  retailers  who  are  frequently  exposed  to 

the risk of the future market,  the simple linear GARCH-class models are the better choices of 

risk  management.  For  speculations  and  noise  traders  in  futures  market,  both  linear  and 

nonlinear  models  should  be  taken  into  account.  Furthermore,  the  forecasting  accuracy  of 

GARCH-class  models  with  different  distributions  of  innovations  is  compared.  Among  them 

GARCH-class  models  with  skew  t-distribution  model  is  outperform  those  with  normal 

distribution.  By  considering  the  all  selection  criteria  GARCH-class  models  with  skewed-t 

distribution  is best model  for  future forecasting. Thus, market participants should not neglect 

the stylized fact of fat-tail distribution when they perform risk management.  

 
 
 
 
 
 

                                                           
6 The highest p-values are reported under MAE, MSE and R2LOG while p-values of QLIKE 

and TIC criteria are also high. 
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