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Abstract

The recent global financial crisis has highlighted the need for financial institutions to find
and implement of appropriate models for risk measurement. There was a particular interest of
investors to increase their positions in the gold market as the risk in equity and bond markets
was increasing. This study evaluates the effectiveness of various volatility models with respect
to modeling and forecasting market risk in the gold future market. For this study, last trading
price of gold futures are considered from January 1990 to June 2014 with 6,373 observations.
The gold futures volatility is modeled and forecasted using GARCH-class models with long
memory and fat-tail distributions, by considering ARMA model as the conditional returns. The
results reveal that ARMA(1,1) model provides best results for the conditional returns. Among
the linear and non-linear GARCH-class models, EGARCH and FIEGARCH models are
provided best results for in-sampling forecasting. Moreover, EGARCH model gives bit of
higher performance than FIEGARCH model under model diagnostic tests. After that, futures
price volatilities of gold are forecasted using EGARCH and FIEGARCH models. Furthermore,
it was found that long memory effect is significant. Forecasting accuracy of GARCH-class
models are compared with different distributions of innovations. The results indicate that
GARCH model with skew t-distribution outperform those with normal distribution. For
speculations and noise traders in futures market, both linear and nonlinear models should be
taken into account.

Keywords: Modeling, forecasting, gold futures, GARCH-class models.

1. Introduction

Given the rapid growth in financial markets and the current development of new and more
complex financial instruments, there is an ever-growing need for theoretical and empirical
knowledge of the volatility in financial time series. Therefore, modeling, analyzing, and
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forecasting volatility has been the subject of widespread research among academics and
practitioners over the last decades. One complicated feature is that, actual realizations of return
volatility are not directly observed like raw returns. A common approach to deal with the
fundamental latency of return volatility is to conduct inference regarding volatility through
strong parametric assumptions: such that, an autoregressive conditional heteroscedasticity
(ARCH) or a stochastic volatility (SV) model estimated with data at daily or lower frequency.
However, SV models are beyond the scope of this study and GARCH family models are
considered for modeling conditional variance of returns.

These models (including ARCH, GARCH and their many generalizations) have been
developed to reflect the so-called stylized facts of financial time series. Their properties, which
include tail heaviness, volatility clustering and serial dependence without correlation, cannot be
captured with traditional linear time series models. Moreover, the volatility of financial
instruments is rarely constant, and usually varies over time. This creates a phenomenon called
volatility clustering, where large price movements on one day are followed by similarly large
movements on successive days, creating temporal clusters. The GARCH model, which treats
volatility as a drift process, is commonly used to capture this behavior. However, Lévy process
frameworks are failed to capture effect of volatility clustering (Kumari et al. 2013). Therefore,
study of GARCH class models is more prominent. Under this study, gold futures market data is
used to model volatility in different manner.

The most important ambassador from the world of commodities is gold except oil. The
world market for gold is characterized by worldwide trading. Gold is traded over-the-counter
(OTC) worldwide and financial gold products (ETF’s, Futures and other derivatives) on a wide
variety of organized exchanges and platforms. The world demand of newly mined gold is
roughly divided as follows: 50% for jewelry, 40% for investment, and only 10% for industrial
purposes (Thompson 2012).

Over past few years, the volatile price of gold has caused great concerns among market
participants and researchers. Volatility is a major input in calculating value at risk (VaR) and
derivative price, thereby forecasting and modeling gold price volatility have important
theoretical and practical implications. Despite the importance of gold as a hedge and a safe
haven asset (Baur and Lucey 2010) studies investigating the volatility of gold future market are
rare. Tully and Lucey (2007) specify an asymmetric component in APGARCH model but they
find that the asymmetry is statistically insignificant. Batten and Lucey (2010) model the
volatility of a gold futures market. Moreover, Batten and Lucey (2010) find monetary variables
to explain gold volatility. Later, the behavior of gold prices is covered by Lucey, Larkin and
O’Connor (2013).

The sources of variability changes are elusive asset returns without knowing why volatility
changes. This is the path that will focus under this study. Conditional variance of returns is
provided insights into the movement of volatility through time. This study attempts to model
and forecast the volatility of gold futures trading at the COMEX during 1990-2014, using
various models from the GARCH family. For better capturing the dynamics of gold volatility,
GARCH-class models incorporating long memory were employed. Some extreme events like
bad weather and financial crisis can cause large changes in gold price, resulting in the fat-tail
distribution and asymmetry of price returns. Therefore, different type of error distribution to
model excess kurtosis and skewness were considered. Further, different GARCH models are
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considered to capture volatility asymmetry of gold. Finally, volatilities are forecasted using
GARCH-class models and out-of-sample performances of models are evaluated based on
different statistical tests.

2. Research Methodology

ARCH models define conditional distribution for returns that are characterized by time-
varying conditional variance. ARCH modeling has rapidly become a dominant paradigm when
discrete-time models are used to describe the prices of financial assets. These models are the
basic econometric tools used to estimate and forecast asset returns volatility. In this section, the
succinctly different ARCH models are discussed.

2.1. ARCH model

In a seminal paper, Engle (1982) propose to model time-varying conditional variance with
the autoregressive conditional heteroscedasticity (ARCH) processes that use past disturbances
to model the variance of the series. The distribution of all the return for period ¢, conditional
on all previous returns, is normal with mean g and time-varying conditional variance #,
defined by;

rrar s~ N(uh,), (1)

and h =o+a(r, , —u)’. )

The volatility parameters are @ >0and « > 0. The volatility of the returns in period ¢
then depends solely on the previous return. A large positive/negative return in period #-—1
implies higher than average volatility in the next period when « is positive. Furthermore,
returns near the mean level x imply lower average future volatility.

2.2. GARCH model

Empirical evidence shows that high ARCH order has to be selected in order to catch the
dynamic of the conditional variance. The generalized ARCH (GARCH) model of Bollerslev
(1986) is an answer to this requirement as it is based on an infinite ARCH specification which
reduces the number of estimated parameters from infinity to two. The distribution of all the
return for period ¢, conditional on all previous returns, is defined GARCH(1,1) model as

follows:

B lhsh s~ N (b)), ©)
with h=o+a(r, - w) + Bh,_,. 4
There are four parameters, namely y,«,f and w. The constraints @ >0, >0 and >0 are

required to ensure that conditional variance is never negative. Therefore, the standard
GARCH(p, q) model expresses the variance at time ¢ and 4, is given by:

P q
h=o+Yasl,+3 ph )
i=1 Jj=1
where ¢, =7, —p is a residual at time ¢ and u,;,f, and @ are the parameters to be

estimated, ¢ is the number of lags for past variances, and p is the number of lags for past
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squared residuals. Therefore, GARCH model allows both autoregressive and moving-average
components in heteroscedastic variance. It gives a more parsimonious representation of the
ARCH model and is much easier to identify and estimate.

2.3. ARFIMA model

To take into account the role of long memory in returns process, autoregressive
fractionally integrated moving average (ARFIMA) model is considered by Baillie (1996). The
specification of ARFIMA(1,d,1) process can be written as follows:

(1-L) (1-¢L)(r, — ) =(1-6L)s, (6)
where 4 is the return mean, d is the fractional difference operator capturing long memory,
and ¢ are parameters to be estimated and L is the lag operator!. This process is stationary
when d <0.5.

It is worth nothing that both the models (ARCH & GARCH) are captured leptokurtosis and
volatility clustering. However, they fail to capture the leverage effect? and also long memory in

volatility process. To address these problems, various extensions of nonlinear GARCH-class
models have been proposed by many authors and these models are discussed in below.

2.4. EGARCH model

The first model to account for such effects was the exponential GARCH (EGARCH)
model proposed by Nelson (1991). It uses a logarithmic function to treat asymmetric effects,
and EGARCH(p,q) is given by:

P
In(h)=w+) ¢, i
n(h)=w iZ:l:a { -

As claimed by Nelson (1991), there are no restrictions on parameters in EGARCH.

&

-

- Ej_zpy{jh_}iﬂj In(h,_,)- @)

T i=1

2.5. APARCH model
Ding (1993) introduce the Asymmetric Power ARCH (APARCH) model. The
APARCH(p,q) model can be expressed as:

» P
9/ 9/
W=+ (ale |+ ren) + 2B ®)
i=1 Jj=1

where o >0,92> O,ﬂj 20,(j=12,..,9), ;20 and -1<y,<1,i=1,.,p. The effect of
good and bad news is captured separately through the two coefficients, & and y, respectively.

This model can capture the leverage effect.

! ARMA(1,1) model is defined by:
r,—p=¢(r_, —p)+ée +6,_, and according to lag operator L, (defined by) La, =a, , this
equation can be rewritten as: (1-¢L)(r,_, —u) = (1+6L)e,.

2 This relates to the tendency of stock returns to be negatively correlated with changes in return
volatility.
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2.6. TARCH model
Threshold ARCH (TARCH) model (Zakoian 1994) is given by:

q

" =a)+zp‘,(ai8f,i +7i|8;f|)+2ﬁjhff§a ©
i=1 =

J=1
where &" =max(£,0) and & =min(g,0). The effect of good and bad news is captured

separately through the two coefficients, & and y, respectively.

2.7. FIGARCH and FIEGARCH models

Unlike the univariate models mentioned above which are based on the hypothesis that the
volatility autocorrelation decays at an exponential rate. Apart from that, Baillie et al. (1996)
propose a fractionally integrated GARCH model (FIGARCH) allowing for the hyperbolic rate

decaying of autocorrelations. Interestingly, FIGARCH(L, p,1) nests a GARCH(1,1) with
p=0. The FIGARCH(I, p,1) model can be written as follows:

b=+ +[1-(1- LY (1=pL)(1- L) |22, (10)
where 0< p<1, >0, B,p<l, p is the fractional integration parameter and L is the lag

operator.
The parameter p characterizes the long memory property in volatility. The advantage of

the FIGARCH process is that for 0< p <1, it is sufficiently flexible to allow for intermediate
ranges of persistence. If p=0 volatility shocks decay with a geometric rate and if p=1,

volatility shocks have complete integrated persistence.

Bollerslev and Mikkelsen (1996) proposed a flexible fractionally integrated EGARCH
(FIEGARCH) model which allows for both long memory in volatility process and the
asymmetric effect. The FIGARCH(], p,1) model can be described as:

() = w+(1- ALY (1+¢L)(1—L)"’[ z, +a(|zH|—E[|zHHﬂ (11)

2

where, g—’z = h,. This FIEGARCH model nests the conventional EGARCH for p =0, and the

t

IEGARCH model for p=1. At a slow hyperbolic rate of decay, the effect of a shock to the
forecast of In(#,) is dissipated for 0 < p <1.

In summary, linear GARCH-class models with five nonlinear GARCH-class models
(EGARCH, APARCH, TARCH, FIGARCH, FIEGARCH) are employed to model and forecast
gold market volatility under different error distribution as mention below. Most of the time,
financial time-series often exhibits non-normality patterns, i.e. skewness and excess kurtosis.
GARCH models do not always fully embrace this property of high frequency financial time-
series. To overcome this drawback Bollerslev (1986) and Beine et al. (2002) have used the
Student’s t-distribution. Similarly to capture skewness, Liu and Brorsen (1995) have used an
asymmetric stable density. To model both skewness and kurtosis Fernandez and Steel (1998)
used the skewed Student’s t-distribution which was later extended to the GARCH framework
by Lambert and Laurent (2001). To improve the fit of the GARCH and EGARCH models into
international equity markets, Harris et al. (2004) used the skewed generalized Student’s t-
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distribution to capture the skewness and leverage effects of daily returns. In addition to the
Normal distribution, Student t-distribution and skewed Student t-distributions are consider to
reduce the excess kurtosis and skewness of time-series data (Kumari 2014) with respective
their log-likelihood functions.

3. Results and Discussions
3.1. Data and preliminary analysis

Gold futures prices traded on the COMEX are considered in this study. In order to
calculate logarithm of these returns, the daily prices of these futures data are used (Kumari,
2014) and which are obtained from the Bloomberg database. The prices are taken as the last
trading daily price of a given day. The data on futures prices cover 6373 observations from
January 1990 to June 2014. The data ranging from January 1990 to June 2013 are used for
modeling purposes, i.e., a total of 6135 observations, which is sufficient for modeling daily
returns. The remaining data from July 2013 to June 2014 (238 observations) are treated as an
out-of-sample period in order to assess the forecasts made.

Daily returns can be calculated using this formula 7, =InS, —1InS, |, where, r, is daily

returns and S, is gold price at time ¢). Squared returns are considered as the proxy of

volatilities. Both data series are plotted in the Figure 1. The figures demonstrate the association
between returns and volatility and the occurrence of extreme returns and high volatility. As an
example, during the sample period, four episodes of increased volatility and extreme return
shocks can be identified. The first two episodes (1999 and 2001) are relatively short compared
to the second set of episodes (middle of 2005 and 2007). The highest episode of increased
volatility can be linked to the global financial crisis of 2007 and 2008.
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Figure 1 Daily returns of gold (in US$)-(a) and the squared return as a proxy for volatility-(b)
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Table 1 Descriptive statistics of price returns of gold futures

Mean (%) Maximum Minimum Dei:f[liiir?% ) Skewness ;j;gijs Jarque-Bera
0.0276 0.0971 -0.0865 3.5434 0.1045 9.5721 10,694.2*
Q(1) Q(10) Q2(1) Q2(10) ADF PP ARCH(2)
12.963* 37.521%* 85.716* 102.841 -35.109* -36.542* 86.5*

Note: * Denote rejection of the null hypothesis at the 1% significance level.

This period shows high volatility levels and extreme realizations of positive and negative
returns with positive returns being more frequent than negative returns. The proxy for the
volatility of gold displays clusters of high and low volatility. Since dynamics of gold prices are
volatile; therefore, modeling and forecasting price volatility are of great importance for market
participants.

Descriptive statistics of futures price returns are reported in Table 1 with the results of unit
root tests for return series based on the Augment Dickey and Fuller (ADF) and Phillips and
Perron (PP) methods. The Jarque and Bera statistics show the rejections of the null hypothesis
of normal distribution at the 1% significance level implying that fat-tail distribution as
evidenced by the positive skewness and excess kurtosis. Thus, it is necessary for us to model
volatilities by taking the stylized fact of fat-tail distribution into account. By performing the
further test on stationary of the return series using the Augmented Dick Fuller test (ADF)
(Dickey and Fuller 1979) and Phillips Perron (Phillips Perron 1988) (PP) unit root tests and
results are reported in also Table 1. Both tests indicate that the null hypothesis of a unit root is
rejected. That means, the return series of gold futures prices can be considered to be stationary.
The ADF test is set to a lag length 0 using the Schwarz Information Criterion (SIC) and the PP
test is conducted using the Bartlett Kernel spectral estimation method. Moreover, the Ljung and
Box’s Q statistics (Ding et al. 1993) consistently show the rejections of no autocorrelations up
to the first and tenth orders implying the existence of serial correlations in returns and squared
returns and strong ARCH effects.

3.2. In-sample performance

In order to model the volatility of the returns the mean equation of returns?® is required.
The plot of ACF and plot of PACF in Figure 2 reveal that autoregressive moving average,
ARMA(p,q) is more suitable to model the mean returns. After considering several
parsimonious models, ARMA(1,1) is found to be a significant model for the mean equation;
with a Wald statistic of 254.21 and significant t-values for the coefficients. Moreover, higher
order terms in ARMA model are insignificant. However, there is a little evidence to present
long memory effect in the return series due to slow decay of ACF plot in Figure 2-(a), (The plot
of autocorrelations looks little closer to hyperbolic than exponential). To account this fact,
ARFIMA model is considered as a mean equation of returns apart from ARMA model and
results are reported in Table 2. The parameter estimate of d in the mean equation is

3 The return for today will depend on returns in previous periods (AR component) and the
surprise terms in previous periods (MA component). Plotting the autocorrelation and partial
autocorrelation of the returns series can help determine the order of the mean equation.
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insignificant. This is implied the absence of significant long memory in gold returns. All other
parameters (AR and MA) are statistically significant. The residuals of the mean equation
indicate the absence of autocorrelation through the Q-statistic (Figure 3 (a)-ACF and Figure 3
(b)-PACF). Moreover, Engle (1982) ARCH-Lagrange Multiplier4 (LM) test provides a Chi-
squared value of 51.24, confirming the presence of ARCH effect. Thus there is a need to model
this conditional variance using the ARCH class models.

05 - b

. lHHHlHHHTmr

ACF

05 - b

(a) ACEF of returns

0.0 T "'1'. I — — e

PACF

05 - A

0 5 10 15 20 25 30
lag

(b) PACEF of returns

Figure 2 Plot of ACF and PACF of return series

Note: 95% Confidence bands [Standard Error = 1/sqrt (no of observations)]

* H,: No ARCH effects vs. H;: ARCH(p) disturbance
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Table 2 Estimated results of ARFIMA(1,d,1) model
Mean Equation: (1 —L)d ((1; —u)-o(r,, —,u)) =g +0¢

Parameters H o ) d
Coefficients -0.000075  0.3381 -0.8439  0.3453
Standard Error 0.00001 0.51536 0.42481 0.18044
p-value 0.1087  0.0325 0.0254 0.1152
0.5; ;
e i
1o 6 é 16 fs 26 2% 36
lag
(a) ACF of returns
1.0
0.5; ;
e ST TSSO SIS S s

L10.5 - A

o L . . . . . .
0 5 10 15 20 25 30
lag

(b) PACF of returns

Figure 3 Plot of ACF and PACF of residuals of mean equation

Note: 95% Confidence bands [Standard Error = 1/sqrt(no of observations)]
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Table 3 Estimation results of ARMA(1,1)-GARCH(1,1) model
Mean Equation: (i; —,u) = ¢(r_1 —,u) +¢& +0¢,_

t

Variance Equation: h, =@+ ag, + fBh,

Error term distribution

Parameters
Normal Student-t Skewed-t
P -0.000075 0.000085 0.000082
(0.00097) (0.00081) (0.00089)
P -0.5028%* -0.1021* -0.1147*
(0.20105) (0.28871) (0.24720)
0 0.4875* 0.0922* 0.0755*
(0.20307) (0.28938) (0.24788)
o 0.0000042%** 0.0000026** 0.000003 1 ***
(0.000059) (0.000094) (0.000011)
o 0.0620%** 0.0672%%** 0.0632%%**
(0.0025) (0.0069) (0.0063)
A 0.9385%** 0.9402%*** 0.9377*%*
(0.0023) (0.0051) (0.0056)
3.85%** 3.94 %%
v ) (0.2342) (0.2761)
s ) -0.0245%*
(0.0287)
R-squared (%) 7.31 12.29 13.77

Q(10) 0.458[0.725]  2.354[0.851]  2.914[0.873]
ARCH(10) 0.9153[0.531]  0.8217[0.621]  0.8218 [0.619]
AIC -6.54 -6.66 -6.68
Log-likelihood 19432.1 19781.9 19831.2

Note: Standard errors are given in parentheses and p-values of the statistics are reported in
square brackets.

Q(10) is the Ljung and Box (1978) Q-statistics of orders 10 computed on the squared
standardized residuals. ARCH(10) is the ARCH-Lagrange Multiplier (LM) test statistics of
orders 10. AIC is the Akaike Information value.

* *¥* and *** denote the 10%, 5% and 1% level of significance, respectively.

Estimation results of GARCH (1,1) model is reported in Table 3 with the ARMA (1,1) as
the underlying mean equation for futures price returns of gold. This model is estimated by
approximate quasi-maximum likelihood under normal, Student-t and skewed Student-t errors.
Both the coefficient of the mean and variance equation is statistically significant. A value of S
for past variance in GARCH model implies that the shock of past volatility has a persistent
effect on future volatility. The sum of the two coefficients (o + ) is a succinct measure of the
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persistence of variance, and that its value is close to 1 implies that there is significant
persistence in volatility.

The regression R-squared is low. It implies that other factors drive changes in price other
than the AR and MA coefficients. This is consistent with trading in the gold futures market. Q-
statistic of standardized residuals reveals that the errors are white noise. This means that
higher-order GARCH models are not required. Therefore, that the GARCH(1,1) model is able
to appropriately capture the GARCH effects. It is further implied by the ARCH-LM test.

The Student-t and skewed-t distributions clearly outperformed than Gaussian. Indeed, the
log-likelihood function strongly increases when using the Student-t to skewed-t, while AIC
values are decreases. Therefore, Skewed Student-t gives better results than the symmetric
Student-t when modeling the gold future return. The addition of two asymmetric parameters
(asymmetric GARCH and asymmetric distribution) may therefore be necessary. Hence,
GARCH-class models are considered to produce better results.
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Table 4 Estimated statistics for models comparison under skewed-t distribution

Estimated Statistics

Parameters

GARCH EGARCH APARCH TARCH FIGARCH FIEGARCH
u 0.000082  0.000210%%* 0.00014 0.000123 0.0021 0.00278%*
(0.00089) (0.00094) (0.00098)  (0.000096) (0.00501) (0.0011)
p -0.1147* -0.4025%*  -0.4842%** -0.5029** -0.5449%* -0.4529%*
(0.24720) (0.18323) (0.19770) (0.2071) (0.30069) (0.1385
0 0.0755* 0.3792**  0.46742%* 0.4867** 0.5411%* 0.4221%*
(0.24788) (0.18501) (0.19964) (0.2092) (0.30152) (0.1411)
a) 0.000031**  -0.1801%%*%* 0.00026* 0.00042**  0.00044** 0.0021
(0.000011) (0.01032) (0.00011) (0.00005)  (0.000017) (0.0049)
a 0.0612*** 0.0446***  0.05950** 0.0855** ) 0.0574**
(0.0063) (0.0031) (0.0032) (0.00345) (0.0049)
B 0.9377*** 0.9002***  0.9432%*%*  (0.94130***  (.8623%** 0.9498***
(0.0056) (0.00091) (0.0023) (0.0021) (0.0147) (0.0003)
¥ ) 0.0827*%%* 0.0595* -0.0548* ) 0.1190*
(0.01032) (0.0032) (0.00404) (0.0143)
9 i i 1.345%* i i i

(0.5471)
@ ) ) ) ) 0.315% -0.157
(2.188) (0.298)
D ) ) ) ) 0.314* 0.421*
(2.141) (2.991)
v 3.94 %% 3.88* 3.92% 3.92%* 3.93%* 4. 14%**
(0.2761) (0.2383) (0.24306) (0.2454) (0.2341) (0.1868)
5 -0.054* -0.067* -0.034 -0.028 -0.058* -0.068*
(0.0287) (0.0184) (0.0247) (0.0224) (0.0158) (0.0098)
R-squared (%) 13.77 14.97 12.82 13.19 13.11 14.77
Q(10) 0914 0.458 0.358 0.317 0.495 0.471
[0.873] [0.725] [0.544] [0.891] [0.752] [0.711]
RCH(10) 0.8218 0.9153 0.8117 0.3874 0.9137 0.8446
[0.619] [0.531] [0.604] [0.754] [0.511] [0.485]
IC -6.68 -6.97 -6.58 -6.66 -6.65 -6.81
Log-likelihood 19831.2 20998.1 19801.2 19791.81 19780.0 20241.8

Note:  Standard errors are given in parentheses and p-values of the statistics are reported in
square brackets.

Q(10) is the Ljung and Box (1978) Q-statistics of orders 10 computed on the squared
standardized residuals. ARCH(10) is the ARCH-Lagrange Multiplier (LM) test statistics of
orders 10. AIC is the Akaike Information value.

* %% and *** denote the 10%, 5% and 1% level of significance, respectively.

The results of the estimated parameters and diagnostic tests are listed in Table 4. The use
of asymmetric GARCH models seems to be justified. All asymmetric coefficients are
significantIn EGARCH model, the asymmetric coefficient y is significant, implying the

present of volatility asymmetries in futures volatilities, also confirmed by the estimates of the
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coefficients y in other models. The estimates of (« + ) of GARCH(1,1) and (a +p +§) of

EGARCH are less than unity, satisfying the conditions for existence of the second moment
(Ling and McAleer 2003). In addition, the coefficient ¢ in APARCH model is significant at
10% level. There is some evidence to present leverage effect too. Furthermore, the long
memory parameter o in both FIGARCH and FIEGARCH models are significantly different

from zero at least at the 10% significance level, implying the existence of long memory in
volatilities.

The values of log-likelihood are close to each other across different models. However, the
Log-likelihood value of EGARCH model is slightly larger than those from other models and
followed by FIEGARCH model. For futures price returns, Ljung and Box’s Q statistics cannot
significantly reject the null hypothesis of no serial correlations in squared standardized
residuals. This evidence indicates that these GARCH-class models can capture the dynamics of
gold price volatility well, also as confirmed by the results of Engle’s ARCH test (Bollerslev
and Mikkelsen 1996). Overall in-sample-fit, the EGARCH model is performed little better than
FIEGARCH model. Further, out-of-sample will be considered to find the better results among
selected models.

3.3. Forecasting futures price volatilities (out-of-sample)

The forecasting performance of GARCH-class models has been comprehensively
discussed by Poon and Granger in 2003. Compared with the in-sample performance, the out-of-
sample performance is important because market participants are more concerned about how
well they can do by employing these models. Moreover, in-sample performance provides
history performance only. Thus, we forecast gold price volatilities using GARCH-class models
and compare their out-of-sample performances.
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Figure 4 Volatility forecasts of futures prices based on GARCH-class models with
Skew t-distributions from July, 2013 to June, 2014

Figure 4 shows the volatility forecasts of futures prices of gold based on GARCH-class
models with skew-t distribution. These models provide perfect prediction of volatilities in some
period, whereas present the over-prediction of volatilities during the period of some large
fluctuations. Therefore, GARCH-class models can lead to the under-predictions. Most of the
GARCH-class models show the similar volatility pattern as in the actual volatility series.
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To access the performance of the considered models in forecasting the conditional
variance, variety of measures are employed, such as mean absolute error (MAE), mean squared
error (MSE)5, R2LOG statistics, QLIKE statistic and the Theil’s inequality coefficient (TIC);

n
MAE =n""Y |07 - 67,
t=1

MSE=n"Y (0767,

t=1

LIKE = nli[ln(af)+ fi }

t=1
i (i-n)

()

2
t

and TIC =

(12)

where n is the number of forecasts,o; and & are the actual volatility and the volatility

forecasts obtained from GARCH-class models respectively.

Table 5 Comparisons of out-of-sample forecasting performance of GARCH-class models with
skewed-t distribution
Model Selection Criteria

Models =0/ \E MSE  R2LOG QLIKE  TIC
GARCH 5.123 8569 1251 1118 0344
[0322]  [0.558]  [0.425]  [0.547]  [0.558]
EGARCH  4.925 80.41 1021 0988  0.229

[0.875] [0.982] [0.654] [0.958] [0.988]

APARCH  6.654%%* 99.14%* 1.896% 1.874%** 1.000%***

[0.032] [0.045] [0.058] [0.009] [0.000]

TARCH 5.847% 101.21%%*  1.947*¥*  1.647%*% (0.854%**

[0.098] [0.003] [0.009] [0.021] [0.009]

FIGARCH  6.194** 95.87* 1.755% 1.541%* 0.554%*

[0.048] [0.099] [0.061] [0.054] [0.087]

FIEGARCH 5.338 88.33 1.541%* 0.991 0.225

[0.117] [0.397] [0.098] [0.998] [1.000]
Note:  Out-of-sample forecast results for the period July, 2013 to June, 2014. Results are
reported for examined models and the considered performance. p-values of the statistics are

reported in square brackets and the highest p-values are in bold face.
* ** and *** denote the 10%, 5% and 1% level of significance respectively.

5 Andersen, T. G., Bollerslev, T., and Lange, S. in 1999, used the MSE and MAE statistics.
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Table 5 reports the results for an out-of-sample analysis of the all models by comparing
one-step-ahead volatility from July, 2013 to June, 2014 under five different criteria. For the
gold futures, the results support the use of the asymmetric EGARCH model. According to most
measures in the variance equation, the EGARCH model outperforms6 than FIEGARCH model
with the assumption of skewed-t distributed innovations. According to the QLIKE and TIC
statistic, FIEGARCH model is performed better than the other models while other statistics
give best results except R2ZLOG. That means; there is some evidence to present long memory
effect in volatilities. The GARCH model provides satisfactory results while APARCH and
TARCH models provide the poorest forecasts.

4. Conclusions

The recent global financial crisis has highlighted the need for financial institutions to find
and implement appropriate models for risk measurement. There was a particular interest of
investors to increase their positions in the gold market as the risk in equity and bond markets
was increasing. This study evaluates the effectiveness of various volatility models with respect
to modeling and forecasting market risk in the gold future market.

The gold futures volatility modeled and forecasted by using GARCH-class models with
long memory and fat-tail distributions, by considering ARMA model as the conditional returns.
The results reveal that ARMA(1,1) model provides best results for the conditional returns.
Among the linear and non-linear GARCH-class models, EGARCH and FIEGARCH models are
provided best results for in-sampling forecasting. Moreover, EGARCH model gives bit of
higher performance than FIEGARCH model under model diagnostic tests.

After that, futures price volatilities of gold are forecasted using linear and nonlinear
GARCH-class models. Based on the model selection criteria, EGARCH and FIEGARCH
models are superior to other models in the sense of forecasting accuracy. More importantly, the
evidence indicates that long memory effect is significant. In addition, the simple linear
GARCH-class model provides high accuracy predictions than other non-linear models
(APARCH, TARCH and FIGARCH). Thus, for gold retailers who are frequently exposed to
the risk of the future market, the simple linear GARCH-class models are the better choices of
risk management. For speculations and noise traders in futures market, both linear and
nonlinear models should be taken into account. Furthermore, the forecasting accuracy of
GARCH-class models with different distributions of innovations is compared. Among them
GARCH-class models with skew t-distribution model is outperform those with normal
distribution. By considering the all selection criteria. GARCH-class models with skewed-t
distribution is best model for future forecasting. Thus, market participants should not neglect
the stylized fact of fat-tail distribution when they perform risk management.

® The highest p-values are reported under MAE, MSE and R2LOG while p-values of QLIKE
and TIC criteria are also high.



92 Thailand Statistician, 2018; 16(1): 77-93

References
Baillie RT, Bollerslev T, Mikkelsen HO. Fractionally integrated generalized autoregressive

conditional heteroscedasticity. J. Econometrics. 1996: 74(1): 3-20.

Batten J, Lucey BM. Volatility in the gold futures market. Appl. Econ. Lett. 2010; 17(2): 187-
190.

Baur D, Lucey B. Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold.
Financ. Rev. 2010; 45(2): 217-229.

Beine M, Laurent S, Lecourt C. Accounting for conditional leptokurtosis and closing days
effects in figarch models of daily exchange rates. Appl. Financ. Econ. 2002; 12(8): 589-
600.

Bollerslev T. Generalized autoregressive conditional heteroscedasticity. J. Econometrics. 1986;
31(3): 307-327.

Bollerslev T, Mikkelsen HO. Modeling and pricing long memory in stock market volatility. J.
Econometrics. 1996; 73(1): 151-184.

Dickey DA, Fuller WA. Distribution of the estimators for autoregressive time series with a unit
root. J. Am. Stat. Assoc. 1979; 74(366): 427-431.

Ding Z, Granger C, Engle R. A long memory property of stock returns and a new model. J.
Empir. Finance. 1993; 1(1): 83-106.

Engle RF. Autoregressive conditional heteroscedasticity with estimates of the variance of UK.
Econometrica. 1982; 50(4): 987-1007.

Fernandez C, Steel MFJ. On Bayesian modeling of fat tails and skewness. J. Am. Stat. Assoc.
1998; 93(441): 359-371.

Harris R, Ku” cu” ko™ zmen C, Yilmaz F. Skewness in the conditional distribution of daily
equity returns. Appl. Financ. Econ. 2004; 14(3): 195-202.

Kumari SN, Tan A. Characterization of Student’s t-distribution with some application to
finance. Math. Theory Model. 2013; 3(10): 1-9.

Kumari SN, Tan A. Asset return distribution and its application to gold future index. J. Math.
Stat. Oper. Res. 2014; 2(1): 72-76.

Lambert P, Laurent S. Modeling financial time series using GARCH-Type models with a
skewed student distribution for the innovations. Stat Discussion Paper. 2001: 0125; 1-21.

Ling, S, McAleer M. Asymptotic theory for a vector ARMA-GARCH model. Econ. Theo.
2003; 19(2): 280-310.

Liu SM, Brorsen B. Maximum likelihood estimation of a GARCH-stable model. J. Appl.
Econometrics. 1995:10(3); 273-285.

Lucey B, Larkin C, O’Connor F. London or New York: where and when does the gold price
originate?. Appl. Econ. Lett. 2013; 20(8): 813-817.

Nelson DB. Conditional heteroscedasticity in asset returns: a new approach. Econometrica.
1991; 59(2): 347-370.

Phillips PCB, Perron P. Testing for a unit root in time series regressions. Biometrica. 1988;
75(2): 335-346.

Poon S, Granger C. Forecasting financial market volatility: a review. J. Econ. Lite. 2003; 41(2):
478-539.

Thompson Reuters G. Gold survey 2012-technical. London: Thomson Reuters GFMS; 2012.



Sandya N. Kumari and Abby Tan 93

Tully E, Lucey BM. A power GARCH examination of the gold market. Res. Int. Bus. Finance.
2007; 21(2): 316-325.
Zakoian JM. Threshold heteroscedastic models. J. Econ. Dynam. Contr. 1994; 18(5): 931-955.



