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Abstract

In this paper, we continue the work of Ahmed et al. (2006, 2009, 2015) by investigating the
asymptotic expansion approximation for the coverage probability of a confidence set centered at the
positive-part James-Stein estimator. The third order Taylor expansion is the main tool here. The
theoretical part provides a formula of the approximation for the coverage probability in the case of a

noncentrality parameter 7 — 0, where 7° =n||@|’, n is the sample size and @ is the mean
vector of the p — variate normal distribution with independent components and equal unit variances.

In the computational part, we compare the first, second and third orders of the asymptotic expansion
with the exact values of the coverage probabilities in order to obtain the accuracy of estimation. The
results show that all of these approximations are reliable. However, the first order of the asymptotic
expansion gives the best result, especially when the noncentrality parameter 7 is far from 0.

Keywords: Confidence sets, positive part James-Stein estimator, multivariate normal distribution, coverage
probability, asymptotic expansions, third order asymptotic.

1. Introduction
The problem of estimating the mean vector, 8=(6,,...,6,) ofa p—dimensional multivariate

normal distribution with independent components and equal unit variances has begun to receive much

attention after Stein (1962) showed that the usual sample mean estimator X is inadmissible for
p 2 3. The shrinkage estimator defined by

e a P
5(X) = (1 —_—]X,
X
where a is a constant, has smaller risk than X. The value a= p—2 gives the uniformly best

estimator in the class of 0<a <2(p—2). This optimal estimator is called the James-Stein estimator

and is defined by



Sujitta Suraphee et al. 95

5,(%) = 1_1’__‘2])‘;
o ( X

Later, Baranchik (1970) proposed an improved estimator which has uniformly smaller risk than

O ()_(). The positive part James-Stein estimator is defined as

5" (X) = (1—”_—‘22] X,
Xl
where x* =max{x,0}.
We are interested in the coverage probability of the set centered at the positive part James-Stein

estimator
D, =1{0:n]|8-5"(X)|’<c),

where 7 is the sample size. An advantage of Stein-type estimators is that it can be used to construct
a new confidence set with a smaller volume and a higher coverage probability. This fact has been
first proved in Hwang and Casella (1982, 1984) but they did not provide any exact values for the
coverage probability. Therefore, the calculation of this coverage probability becomes a relevant
problem.

Ahmed et al. (2006) investigated the asymptotic expansion of the coverage probability for the
James-Stein estimator. The main tool of their work combines a geometrical and analytical
methodology and based on Taylor expansion. They established that the coverage probability of the
confidence sets centered at the James-Stein estimator and its positive part depends on the
noncentrality parameter 7°> =n||@|*. The same parameter appears in the calculation of the risks of

these estimators. The main result of their work is the simple formulae of the first order approximation
of the coverage probabilities for the cases when 7 — 0 and 7 — .

Later, Ahmed et al. (2009) continue their work by considering only the confidence set centered
at the positive part James-Stein estimator. They investigated the asymptotic behavior of the coverage
probability by using second order Taylor expansion. They found that this second order approximation
has small influence on the accuracy of the estimation.

Thus, the goal of the present work is to estimate the coverage probability of the confidence set
centered at the positive part James-Stein estimator by investigating the asymptotic expansion
approximation using the third order Taylor expansion for the case 7 — 0. Moreover, to show the
accuracy of estimation, we provide numerical illustrations that compare the first, second and third
orders of asymptotic estimation with the exact values of the coverage probabilities.

2. Asymptotic Expansion of the Coverage Probability
In Ahmed et al. (2006), the approximation of the coverage probability by a confidence set
centered at the positive part James-Stein estimator was established that

Q,(x)=P(D_)=K,(w)+R,(2),

where

2
SR -2
w=a+"—"° +\/( 2 ) +ctt —a(r’ - cb). @)
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The term K ,(w) is the chi-square distribution with p degrees of freedom and R,(7) is

represented as a double integral depended on the relation between the radius of the confidence set ¢
and 7.
The coverage probability can be rewritten as
h(

0, (0= K, o0+ [ [ f (e y)dyax - |

v,

W

[ Sy, @)

where (cf. also Budsaba and Suraphee (2012))

Ja!
p_ll 1 (x_yz) e x>0
fx,y(an/): mer(pz_j
0 ; otherwise

and the limits of integration v, and v, are defined as the points of intersection of the right branch
of the hyperbola

(x—a) =t +x(r’ =)

- 27(c* +a—x)

h(x)

and parabola \/; Therefore we need to solve the equation
(x—a)z—czrz+x(12—cz)=21\/;(cz+a—x). 3)
This is a polynomial equation of fourth order which has four roots. We need only points of
intersection v, and v, of the right branch of the hyperbola s(x) with parabola Jx. In order to

find them, it is sufficient to consider only the (3) by making the substitution x = w+ z.
For the solution of (3) for v, and v, we make use of Lemma 1 from the articles Ahmed et al.

(2006, 2009). With minor corrections of typos in these articles and taking into consideration that we
not using function f,, we present this lemma in the following form.

Lemma If ¢ — 0 then the following asymptotic expansion are true for the roots of v, and v,

Vi, =Wt Zﬂk (1),
k=1

k-1 ok / 2,
where 4, —l{(mﬂ k21, fi(z2)= Nwz(c ta-w=2) and w is given in (1).
z=0

k! dz*"! 20w—a)+z+(* =c?)

Note that A :M
2(w—a)-c
2(c2 +a—w)(2(w—a)—(:2)(c2 +a—3w)—4w((32 -i—a—w)2
(Z(W—a)—c2 )3

In previous publications of Ahmed et al. (2006, 2009, 2015), the first and second orders of
approximation for the coverage probabilities for 7 — 0 have been investigated. By using the first

and A, =

order of asymptotic expansion, the term R,(r) as represented in double integrals in (2) was
established that R, (7)= O(7*). For the second order approximation in Ahmed et al. (2009), it has
been established that
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42 +((a—wyw™) 22
Rp (r)y=1° : ( ;(th)/z ) )Al R o).
24 I'(p/2)

2.1. The third order approximation for the coverage probability
To provide the third order of asymptotic expansion of the coverage probability for 7 — 0, we

note that by Lemma the roots of equations #A(x) = +/x can be represented as
Vv =w+A, +O(Z’4) and v, = w+A, +O(T4),
where
A = AT+ A0+ AT 4)
and
A, =-Ar+ 4,07 - A7 (5)

With the preliminaries accounted for, we are now ready to present and prove the main result of
the article.

Theorem If 7 — 0, then for p>4 the following asymptotic expansion of the probability for the
coverage of the true value by the confidence set D(S+ centered at the positive-part James-Stein
estimation, is true
0, (1) = K, (w)+R, (1) +O(z*),
where W is defined in (1) and
42, +((a=wyw™ )4’
22 (p [ 2)

—w/2 -2)/2
Wiy (P22

R,(7)= 7’ -rg(w,7) |e

where
1

A daw ?

(02 +a- w)2 \/EZ“’”/ZF(I);lJ

gw,7) =

Alaw ? (p -3- w)

6(02 +a-— w)2 N2 2(”1)/21"(172_ l)

+

1
Alaw 2

3(6‘2 +a—w)3 52(”1)/21“(172_1]

+

and a=p-2.
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Proof: Let
w+t \/?
SO =] [,/ (xy)dvar,

Ss0=[" | fCeydvas.

By using the Mean Value theorem for the outer integral by dx, we can show that

R,(r)=5,(4,)-5,(A,)+0(7*).

Taylor series expansion for S,(A,) and S,(A,) gives:

2

, LA LA
S,(8,) = 5,00+ 5,(0)A, +8(0) L+ 57 0+ 0(AN), = 1,2,

Substituting values of A, and A, from (4) and (5) and since S,(0)=S,(0)=0, we obtain that

S,(A)=-8,(4,)= ZSI( (0)/1272 +AITT(S|N 0)- S; 0)+ /’Llﬂ"zf3 (Sl O+ S; 0)
(6)

3.3
AT

(5/'(0)+ 55 (0))+ A47°(S,(0) - 5;(0)) + O(z").

Our next step is to find S;(0), S, (0),S, (0),S,(0),S;(0), and S, (0).

We have

S(n== [j‘”j (%) dydx} [ rovetdy

and since A(w) =0,
7w/2w(p72)/2

. Jw
$,(0)= IO Sw, y)dy = 2 (/)

From

p d | et
8= Z[ [ S r)dy}

by Leibniz theorem and the fact that f(w+t,vw+1)=0, we get

Sy (6)=—h (w+1)- f(w+t, h(w+1)) + L(M 5w+t

o(w+
Therefore, since A(w) =0,

E —w/2_ (p-4)/2
o 0 o (a—w)e " w
57 (0) =K (w).f (w,0) + j S D == S 04,0+
From
vy d |
s, (t)_dszwa( tACMCE h(w+t)f(w+th(w+t))}

by Leibniz theorem, we get
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62
o'’

SO = [ L oy~ (00) 2 f ()
How) ow

. , 0
—h (W) f(w,h(w))—h (W)%f(w,h(W))
, 2 0
—(h —_— L h .
(Fon) = ooy ()

In exactly the same way as for derivatives of §,(#), we obtain
(a _ W)efw/ZW(p—éﬂ/Z
2(p+4)/2 F(p / 2)

S:0) = [ FOn )y == ()£ (w,0)~

¥

S
S, (0)= ~H () f(w,0)+ [ a%f(w, )dy = ~h (w) £ (w,0)

(a _ W)e—w/z W(p—4)/2

20921 (p ) 2)

. w2 "
20 = = FOn OO )+ [ 00, 1)y = (0 0, h0)
w hon) Ow
: o . , 0
) 2 PO HOD) = 09 s 7 ),
Note that from the equations above we have
S, (0)+S,(0)=0,
2(61 _ W)efw/ZW(pf4)/2
272 (p/2)

S/ (0)+5;(0) =21 () (,0),

5, (0)-S,(0)=

>

S, (0)+S, (0)=—4h (W)if (w,0)=2h" (w) f (w,0)— 2/ (w)’ Lf (w, h(w)).
ow Oh(w)
Note also that

1,

-w/2. T
fOw,0)=—=~ :
\/Ez(p-l)/zl—(pz_lj
w2 (P92
2y (p=37w)
ow ’ o[ Pl ’
Jrawep| P72
2
1
a[z_cz)
H(w)=<| —14—F ~
(c2+a—w)
2
[lj ¢
O R —
(c2+a—w)

Substituting these formulae to (6), we obtain the result.

99
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3. Numerical Results for Estimating the Coverage Probabilities
The estimates of the coverage probabilities will be compared with the confidence coefficient,

1- ¢, and the exact values, Q; (r), to judge the validity and the accuracy of them, respectively.

The notations are defined by

Q; (7) is the exact coverage probability of the confidence set centered at the positive part James-

Stein estimator.
0 =K,(w,), 0, and Q, are the estimates of coverage probability by the first, second and

third orders of asymptotic expansions, respectively.

A =0,-095A,=0,-0.95 and A, =0, —-0.95 are validity of the estimates of coverage
probability by the first, second and third orders of asymptotic expansions, respectively.

AL =0 (0)-0,A,,=0,(1)-0, and A, , =0, ()0, are the accuracy of the estimates

of coverage probability by the first, second and third orders of asymptotic expansions, respectively.

Table 1 The estimates of the coverage probabilities by the first, second and third orders of
asymptotic expansions and their accuracies in the case p=4,1-a = 0.95, ¢ =3.0802

T 0(7) 9 o o A,

0.0 0.9895907 0.9895907 0.9895907 0.9895907 0.0395907
0.1 0.9895812 0.9895777 0.9895917 0.9895926 0.0395777
0.2 0.9895527 0.9895388 0.9895950 0.9895989 0.0395388
0.3 0.9895053 0.9894739 0.9896011 0.9896101 0.0394739
0.4 0.9894388 0.9893830 0.9896113 0.9896276 0.0393830
0.5 0.9893531 0.9892660 0.9896269 0.9896533 0.0392660
0.6 0.9892482 0.9891230 0.9896498 0.9896894 0.0391230
0.7 0.9891240 0.9889538 0.9896820 0.9897384 0.0389538
0.8 0.9889803 0.9887585 0.9897256 0.9898033 0.0387585
0.9 0.9888169 0.9885372 0.9897828 0.9898872 0.0385372
1.0 0.9886336 0.9882897 0.9898552 0.9899927 0.0382897
2.0 0.9856227 0.9844645 0.9911019 0.9923714 0.0344645
3.0 09795461 0.9788823 0.9809897 0.9880586 0.0288823
4.0 0.9624427 0.9730516 0.9060755 0.9325821 0.0230516
5.0 0.9577025 0.9680648 0.6839772 0.7555455 0.0180648
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Table 1 (Continued)

T Az Az Aa,l Aa72 Aa73
0.0 0.0395907 0.0395907  0.0000000  0.0000000 0.0000000
0.1 0.0395917 0.0395926  0.0000035 -0.0000105 -0.0000114
0.2 0.0395950 0.0395989  0.0000139 -0.0000423 -0.0000462
0.3  0.0396011 0.0396101  0.0000314 -0.0000958 -0.0001048
0.4 0.0396113 0.0396276  0.0000558 -0.0001725 -0.0001888
0.5 0.0396269 0.0396533  0.0000871 -0.0002738 -0.0003002
0.6 0.0396498 0.0396894  0.0001252 -0.0004016 -0.0004412
0.7 0.0396820 0.0397384 0.0001702 -0.0005580 -0.0006144
0.8 0.0397256  0.0398033  0.0002218 -0.0007453 -0.0008230
0.9 0.0397828 0.0398872  0.0002797 -0.0009659 -0.0010703
1.0 0.0398552 0.0399927 0.0003439 -0.0012216 -0.0013591
2.0 0.0411019 0.0423714 0.0011582 -0.0054792 -0.0067487
3.0 0.0309897 0.0380586 0.0006638 -0.0014436 -0.0085125
4.0 -0.0439245 -0.0174179 -0.0106089 0.0563672 0.0298606
5.0 -0.2660228 -0.1944545 -0.0103623 0.2737253  0.2021570

Table 2 The estimates of the coverage probabilities by the first, second and third orders of
asymptotic expansions and their accuracies in the case p =7, 1-a = 0.95, ¢ =3.7506

T

0,(v)

9

)

o

Al

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
2.0
3.0
4.0
5.0

0.9982811
0.9982784
0.9982703
0.9982567
0.9982377
0.9982130
0.9981827
0.9981466
0.9981045
0.9980564
0.9980019
0.9970488
0.9950096
0.9873941
0.9765813

0.9982811
0.9982783
0.9982699
0.9982557
0.9982359
0.9982101
0.9981782
0.9981401
0.9980955
0.9980442
0.9979859
0.9969280
0.9946789
0.9909656
0.9861608

0.9982811
0.9982790
0.9982729
0.9982627
0.9982490
0.9982318
0.9982116
0.9981892
0.9981652
0.9981404
0.9981161
0.9982286
0.9992730
0.9829493
0.8424270

0.9982811
0.9982791
0.9982730
0.9982629
0.9982494
0.9982325
0.9982129
0.9981912
0.9981683
0.9981452
0.9981230
0.9983785
1.0008916
0.9945707
0.9004856

0.0482811
0.0482783
0.0482699
0.0482557
0.0482359
0.0482101
0.0481782
0.0481401
0.0480955
0.0480442
0.0479859
0.0469280
0.0446789
0.0409656
0.0361608
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Table 2 (Continued)
A A A A

3 a_1 a_2 a3

T A,

0.0 0.0482811 0.0482811  0.0000000  0.0000000  0.0000000
0.1 0.0482790 0.0482791  0.0000001 -0.0000006 -0.0000007
0.2 0.0482729 0.0482730 0.0000004 -0.0000026 -0.0000027
0.3 0.0482627 0.0482629  0.0000010 -0.0000060 -0.0000062
0.4 0.0482490 0.0482494  0.0000018 -0.0000113 -0.0000117
0.5 0.0482318 0.0482325 0.0000029 -0.0000188 -0.0000195
0.6 0.0482116 0.0482129  0.0000045 -0.0000289 -0.0000302
0.7 0.0481892  0.0481912  0.0000065 -0.0000426 -0.0000446
0.8 0.0481652 0.0481683  0.0000090 -0.0000607 -0.0000638
0.9 0.0481404 0.0481452 0.0000122 -0.0000840 -0.0000888
1.0 0.0481161 0.0481230 0.0000160 -0.0001142 -0.0001211
2.0 0.0482286 0.0483785 0.0001208 -0.0011798 -0.0013297
3.0 0.0492730 0.0508916  0.0003307 -0.0042634 -0.0058820
4.0 0.0329493  0.0445707 -0.0035715  0.0044448 -0.0071766
5.0 -0.107573 -0.0495144 -0.0095795 0.1341543  0.0760957

Table 3 The estimates of the coverage probabilities by the first, second and third orders of
asymptotic expansions and their accuracies in the case p =10, 1—-a = 0.95, ¢ =4.2787

T 0(7) 9 o o A,

0.0 0.9996469 0.9996469 0.9996469 0.9996469 0.0496469
0.1 0.9996462 0.9996463 0.9996460 0.9996460 0.0496463
0.2 0.9996443 0.9996444 0.9996433 0.9996432 0.0496444
0.3 0.9996410 0.9996412 0.9996388 0.9996386 0.0496412
0.4 09996363 0.9996367 0.9996325 0.9996321 0.0496367
0.5 0.9996303 0.9996309 0.9996245 0.9996239 0.0496309
0.6 0.9996228 0.9996237 0.9996148 0.9996139 0.0496237
0.7 0.9996139 0.9996151 0.9996036 0.9996023 0.0496151
0.8 0.9996035 0.9996049 0.9995906 0.9995890 0.0496049
0.9 0.9995915 0.9995931 0.9995763 0.9995743 0.0495931
1.0 0.9995778 0.9995797 0.9995607 0.9995583 0.0495797
2.0 0.9993246 0.9993193 0.9994064 0.9994093 0.0493193
3.0 09987186 0.9986602 0.9998135 1.0000323 0.0486602
4.0 0.9973294 0.9972363 0.9994045 1.0019881 0.0472363
5.0 0.9902316 0.9947171 0.9641057 0.9836416 0.0447171
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Table 3 (Continued)

T Az Az Aa,l Aa72 Aa73
0.0 0.0496469 0.0496469 0.0000000  0.0000000  0.0000000
0.1 0.0496460 0.0496460 -0.0000001  0.0000002  0.0000002
0.2 0.0496433 0.0496432 -0.0000001  0.0000010  0.0000011
0.3 0.0496388 0.0496386 -0.0000002  0.0000022  0.0000024
0.4 0.0496325 0.0496321 -0.0000004 0.0000038  0.0000042
0.5 0.0496245 0.0496239 -0.0000006  0.0000058  0.0000064
0.6 0.0496148 0.0496139 -0.0000009  0.0000080  0.0000089
0.7 0.0496036 0.0496023 -0.0000012  0.0000103  0.0000116
0.8 0.0495906 0.0495890 -0.0000014 0.0000129  0.0000145
0.9 0.0495763 0.0495743 -0.0000016  0.0000152  0.0000172
1.0 0.0495607 0.0495583 -0.0000019  0.0000171  0.0000195
2.0 0.0494064 0.0494093 0.0000053 -0.0000818 -0.0000847
3.0 0.0498135 0.0500323  0.0000584 -0.0010949 -0.0013137
4.0 0.0494045 0.0519881 0.0000931 -0.0020751 -0.0046587
5.0 0.0141057 0.0336416 -0.0044855 0.0261259  0.0065900
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Numerical illustrations presented in Tables 1-3 show that the estimates of the coverage
probability by the first, second and third orders of the asymptotic expansions with 7 close to 0 are
not significantly different. All of them are close to the exact values. This means that they have high
accuracy. For large 7, the first order asymptotic expansions slowly decrease to nominal coverage
probability 1—a =0.95 but the second and the third orders of asymptotic expansions show that the
estimates are below 1—a =0.95 when 7 becomes close to c¢. In this particular case of 7 close
to ¢, the accuracy of the first order approximation is actually better than the second order and third
order approximations. In the neighborhood of the point 7 = ¢, there is an irregular behavior of the

second and third order approximations.

- T - =] [ -
LU L 0B v |+
™ —e £ — el = —yeal
% s I 2 ! £ o o
:5 [T § 08 T :
< L oo J 08

0010203040506 070409 1 2 3 4 5 0 01020304050607080% 1 2 3 4 5§ 0010203040506070809 1 2 3 4 5

(a) p=4,¢ = 3.0802 () p=T7,c=3.7506 () p=10,c=42787

Figure 1 The comparison of the estimates of coverage probabilities, | -« = 0.95

Figure 1 shows that the estimates of coverage probabilities by the first, second and third orders
of asymptotic expansions produce reliable approximations, but the first order approximation gives
the best result especially when 7 is far from 0.

4. Conclusion and Discussion

The numerical illustrations presented show that all approximations provide high accuracy for the
coverage probability with z — 0. In the case large 7, the third order approximation reduces the
accuracy of both the first and second order approximations. The first order approximation has the
simplest formula. The accuracy depends on both p and 7. Note the accuracy is meaningless in the
neighborhood of the point 7 =c. It looks like there is some relationship between p and 7 that
affects the accuracy. Namely, for larger p the asymptotic probability approaches nominal coverage
probability more slowly than for smaller p. However, it can be confidently stated that all of

estimations provide substantial improvements in the coverage probability than for the confidence set
centered at the usual sample mean.
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