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Abstract 

In this paper, we continue the work of Ahmed et al. (2006, 2009, 2015) by investigating the 

asymptotic expansion approximation for the coverage probability of a confidence set centered at the 

positive-part James-Stein estimator. The third order Taylor expansion is the main tool here. The 

theoretical part provides a formula of the approximation for the coverage probability in the case of a 

noncentrality parameter 0,   where 
2 2= || || ,n n θ  is the sample size and θ  is the mean 

vector of the p  variate normal distribution with independent components and equal unit variances. 

In the computational part, we compare the first, second and third orders of the asymptotic expansion 

with the exact values of the coverage probabilities in order to obtain the accuracy of estimation. The 

results show that all of these approximations are reliable. However, the first order of the asymptotic 

expansion gives the best result, especially when the noncentrality parameter   is far from 0. 

______________________________ 
Keywords: Confidence sets, positive part James-Stein estimator, multivariate normal distribution, coverage 

probability, asymptotic expansions, third order asymptotic. 

 

1.   Introduction 

The problem of estimating the mean vector, 1= ( , , )p θ   of a p  dimensional multivariate 

normal distribution with independent components and equal unit variances has begun to receive much 

attention after Stein (1962) showed that the usual sample mean estimator X  is inadmissible for 

3.p   The shrinkage estimator defined by  

 
2

( ) = 1 ,
|| ||

a


 
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 
X X

X
 

where a  is a constant, has smaller risk than .X  The value = 2a p  gives the uniformly best 

estimator in the class of 0 < < 2( 2).a p  This optimal estimator is called the James-Stein estimator 

and is defined by  



Sujitta Suraphee et al.  95 

 
2

2
( ) = 1 .

|| ||
JS

p


 
 

 
X X

X
 

Later, Baranchik (1970) proposed an improved estimator which has uniformly smaller risk than 

( ).JS X  The positive part James-Stein estimator is defined as  

 
2

2
( ) = 1 ,

|| ||

p



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 
X X
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where max{ ,0}.x x   

We are interested in the coverage probability of the set centered at the positive part James-Stein 

estimator  

 2 2= { : || ( ) || },D n c


 
  θ θ X  

where n  is the sample size. An advantage of Stein-type estimators is that it can be used to construct 

a new confidence set with a smaller volume and a higher coverage probability. This fact has been 

first proved in Hwang and Casella (1982, 1984) but they did not provide any exact values for the 

coverage probability. Therefore, the calculation of this coverage probability becomes a relevant 

problem. 

Ahmed et al. (2006) investigated the asymptotic expansion of the coverage probability for the 

James-Stein estimator. The main tool of their work combines a geometrical and analytical 

methodology and based on Taylor expansion. They established that the coverage probability of the 

confidence sets centered at the James-Stein estimator and its positive part depends on the 

noncentrality parameter 2 2= || || .n θ  The same parameter appears in the calculation of the risks of 

these estimators. The main result of their work is the simple formulae of the first order approximation 

of the coverage probabilities for the cases when 0   and .    

Later, Ahmed et al. (2009) continue their work by considering only the confidence set centered 

at the positive part James-Stein estimator. They investigated the asymptotic behavior of the coverage 

probability by using second order Taylor expansion. They found that this second order approximation 

has small influence on the accuracy of the estimation. 

Thus, the goal of the present work is to estimate the coverage probability of the confidence set 

centered at the positive part James-Stein estimator by investigating the asymptotic expansion 

approximation using the third order Taylor expansion for the case 0.   Moreover, to show the 

accuracy of estimation, we provide numerical illustrations that compare the first, second and third 

orders of asymptotic estimation with the exact values of the coverage probabilities. 

 

2.   Asymptotic Expansion of the Coverage Probability 

In Ahmed et al. (2006), the approximation of the coverage probability by a confidence set 

centered at the positive part James-Stein estimator was established that  

 ( ) = ( ) = ( ) ( ),p p PQ P D K w R


 
   

where  
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The term ( )pK w  is the chi-square distribution with p  degrees of freedom and ( )PR   is 

represented as a double integral depended on the relation between the radius of the confidence set c  

and .  

The coverage probability can be rewritten as  

 
( )2

( )1

( ) = ( ) ( , ) ( , ) ,
v h x w x

p p w x v h x
Q K w f x y dydx f x y dydx


      (2) 

where (cf. also Budsaba and Suraphee (2012)) 
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and the limits of integration 1v  and 2v  are defined as the points of intersection of the right branch 

of the hyperbola  

 
2 2 2 2 2

2

( ) ( )
( ) =

2 ( )

x a c x c
h x

c a x

 



   

 
 

and parabola .x  Therefore we need to solve the equation  

 2 2 2 2 2 2( ) ( ) = 2 ( ).x a c x c x c a x         (3) 

This is a polynomial equation of fourth order which has four roots. We need only points of 

intersection 1v  and 2v  of the right branch of the hyperbola ( )h x  with parabola .x  In order to 

find them, it is sufficient to consider only the (3) by making the substitution = .x w z  

For the solution of (3) for 1v  and 2v  we make use of Lemma 1 from the articles Ahmed et al. 

(2006, 2009). With minor corrections of typos in these articles and taking into consideration that we 

not using function 2 ,f  we present this lemma in the following form. 

 

Lemma  If 0   then the following asymptotic expansion are true for the roots of 1v  and 2v   

 1,2
=1

= ( ) ,k
k

k

v w  


   

where 
1 2

1
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=0

( )1 2 ( )
= , 1, ( ) =

! 2( ) ( )

k k

k k

z

d f z w z c a w z
k f z

k dz w a z c








      
  

      
 and w  is given in (1).  

Note that  
2
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

 

 
  

and  
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2 2( ) 3 4
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c a w w a c c a w w c a w

w a c
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        

 
  

In previous publications of Ahmed et al. (2006, 2009, 2015), the first and second orders of 

approximation for the coverage probabilities for 0   have been investigated. By using the first 

order of asymptotic expansion, the term ( )PR   as represented in double integrals in (2) was 

established that 2( ) = ( ).pR O   For the second order approximation in Ahmed et al. (2009), it has 

been established that  
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2.1.  The third order approximation for the coverage probability 

 To provide the third order of asymptotic expansion of the coverage probability for 0,   we 

note that by Lemma the roots of equations ( ) =h x x  can be represented as  

    4 4
1 1 2 2= and = ,v w O v w O      

 where  

 
3

3
2

211 =    (4) 

 and  

   .= 3
3

2
212    (5) 

With the preliminaries accounted for, we are now ready to present and prove the main result of 

the article. 

 

Theorem If 0  , then for 4p   the following asymptotic expansion of the probability for the 

coverage of the true value by the confidence set D
 

 centered at the positive-part James-Stein 

estimation, is true  

 4( ) = ( ) ( ) ( ),p p pQ K w R O      

where w  is defined in (1) and  

 

 1 2
2 12 / 2 ( 2) / 2

( 4) / 2

4 ( )
( ) = ( , ) ,

2 ( / 2)
w p

p p

a w w
R g w e w

p

 
   



 



  
 
 
 

 

where  

 

 

 

 

 

1

2
1 2

2
2 ( 1) /2

3
3 2

1

2
2 ( 1) /2

1
3 2

1

3
2 ( 1)/2

( , ) =
1

2 2
2

3
              

1
6 2 2

2

              
1

3 2 2
2

p

p

p

aw
g w

p
c a w

aw p w

p
c a w

aw

p
c a w

 
























 
   

 

 


 
   

 


 

   
 

 

and = 2.a p  

 

 

 

 

 



98 Thailand Statistician, 2018; 16(2): 94-105 

Proof: Let  

  
 1( ) = , ,

w t x

w h x
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   

 
 

( )
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w h x

w t x
S t f x y dydx
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By using the Mean Value theorem for the outer integral by ,dx  we can show that  

        4
1 1 2 2= .pR S S O      

Taylor series expansion for 1 1( )S   and 2 2( )S   gives:  
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Substituting values of 1  and 2  from (4) and (5) and since 1 2(0) = (0) = 0,S S  we obtain that  

 

2
2 31

1 1 2 2 1 2 1 2 1 2 1 2

3 3
3 41

1 2 3 1 2
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by Leibniz theorem and the fact that ( , ) = 0,f w t w t   we get  
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by Leibniz theorem, we get  
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In exactly the same way as for derivatives of 1 ( ),S t  we obtain  
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Note that from the equations above we have  
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Substituting these formulae to (6), we obtain the result.  
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3.   Numerical Results for Estimating the Coverage Probabilities 

The estimates of the coverage probabilities will be compared with the confidence coefficient, 

1 ,  and the exact values, ( ),pQ   to judge the validity and the accuracy of them, respectively. 

The notations are defined by 

( )pQ   is the exact coverage probability of the confidence set centered at the positive part James-

Stein estimator. 

1 2 2= ( ),pQ K w Q  and 3Q  are the estimates of coverage probability by the first, second and 

third orders of asymptotic expansions, respectively. 

1 1 2 2= 0.95, = 0.95Q Q     and 3 3= 0.95Q   are validity of the estimates of coverage 

probability by the first, second and third orders of asymptotic expansions, respectively. 

_1 1 _2 2= ( ) , = ( )a p a pQ Q Q Q       and _3 3= ( )a pQ Q   are the accuracy of the estimates 

of coverage probability by the first, second and third orders of asymptotic expansions, respectively. 

 

Table 1 The estimates of the coverage probabilities by the first, second and third orders of 

asymptotic expansions and their accuracies in the case 4,p  1 = 0.95, c  3.0802 

   pQ   1
Q  

2
Q  

3
Q  

1
  

0.0 0.9895907 0.9895907 0.9895907 0.9895907 0.0395907 
0.1 0.9895812 0.9895777 0.9895917 0.9895926 0.0395777 
0.2 0.9895527 0.9895388 0.9895950 0.9895989 0.0395388 
0.3 0.9895053 0.9894739 0.9896011 0.9896101 0.0394739 
0.4 0.9894388 0.9893830 0.9896113 0.9896276 0.0393830 
0.5 0.9893531 0.9892660 0.9896269 0.9896533 0.0392660 
0.6 0.9892482 0.9891230 0.9896498 0.9896894 0.0391230 
0.7 0.9891240 0.9889538 0.9896820 0.9897384 0.0389538 
0.8 0.9889803 0.9887585 0.9897256 0.9898033 0.0387585 
0.9 0.9888169 0.9885372 0.9897828 0.9898872 0.0385372 
1.0 0.9886336 0.9882897 0.9898552 0.9899927 0.0382897 
2.0 0.9856227 0.9844645 0.9911019 0.9923714 0.0344645 
3.0 0.9795461 0.9788823 0.9809897 0.9880586 0.0288823 
4.0 0.9624427 0.9730516 0.9060755 0.9325821 0.0230516 
5.0 0.9577025 0.9680648 0.6839772 0.7555455 0.0180648 
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Table 1 (Continued) 

  2
  

3
  _ 1a

  
_ 2a

  
_ 3a

  

0.0 0.0395907 0.0395907 0.0000000 0.0000000 0.0000000 
0.1 0.0395917 0.0395926 0.0000035 -0.0000105 -0.0000114 
0.2 0.0395950 0.0395989 0.0000139 -0.0000423 -0.0000462 
0.3 0.0396011 0.0396101 0.0000314 -0.0000958 -0.0001048 
0.4 0.0396113 0.0396276 0.0000558 -0.0001725 -0.0001888 
0.5 0.0396269 0.0396533 0.0000871 -0.0002738 -0.0003002 
0.6 0.0396498 0.0396894 0.0001252 -0.0004016 -0.0004412 
0.7 0.0396820 0.0397384 0.0001702 -0.0005580 -0.0006144 
0.8 0.0397256 0.0398033 0.0002218 -0.0007453 -0.0008230 
0.9 0.0397828 0.0398872 0.0002797 -0.0009659 -0.0010703 
1.0 0.0398552 0.0399927 0.0003439 -0.0012216 -0.0013591 
2.0 0.0411019 0.0423714 0.0011582 -0.0054792 -0.0067487 
3.0 0.0309897 0.0380586 0.0006638 -0.0014436 -0.0085125 
4.0 -0.0439245 -0.0174179 -0.0106089 0.0563672 0.0298606 
5.0 -0.2660228 -0.1944545 -0.0103623 0.2737253 0.2021570 

 

 

Table 2 The estimates of the coverage probabilities by the first, second and third orders of 

asymptotic expansions and their accuracies in the case 7,p  1 = 0.95, c  3.7506 

   pQ   1
Q  

2
Q  

3
Q  

1
  

0.0 0.9982811 0.9982811 0.9982811 0.9982811 0.0482811 
0.1 0.9982784 0.9982783 0.9982790 0.9982791 0.0482783 
0.2 0.9982703 0.9982699 0.9982729 0.9982730 0.0482699 
0.3 0.9982567 0.9982557 0.9982627 0.9982629 0.0482557 
0.4 0.9982377 0.9982359 0.9982490 0.9982494 0.0482359 
0.5 0.9982130 0.9982101 0.9982318 0.9982325 0.0482101 
0.6 0.9981827 0.9981782 0.9982116 0.9982129 0.0481782 
0.7 0.9981466 0.9981401 0.9981892 0.9981912 0.0481401 
0.8 0.9981045 0.9980955 0.9981652 0.9981683 0.0480955 
0.9 0.9980564 0.9980442 0.9981404 0.9981452 0.0480442 
1.0 0.9980019 0.9979859 0.9981161 0.9981230 0.0479859 
2.0 0.9970488 0.9969280 0.9982286 0.9983785 0.0469280 
3.0 0.9950096 0.9946789 0.9992730 1.0008916 0.0446789 
4.0 0.9873941 0.9909656 0.9829493 0.9945707 0.0409656 
5.0 0.9765813 0.9861608 0.8424270 0.9004856 0.0361608 
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Table 2 (Continued) 

  2
  

3
  _ 1a

  
_ 2a

  
_ 3a

  

0.0 0.0482811 0.0482811 0.0000000 0.0000000 0.0000000 
0.1 0.0482790 0.0482791 0.0000001 -0.0000006 -0.0000007 
0.2 0.0482729 0.0482730 0.0000004 -0.0000026 -0.0000027 
0.3 0.0482627 0.0482629 0.0000010 -0.0000060 -0.0000062 
0.4 0.0482490 0.0482494 0.0000018 -0.0000113 -0.0000117 
0.5 0.0482318 0.0482325 0.0000029 -0.0000188 -0.0000195 
0.6 0.0482116 0.0482129 0.0000045 -0.0000289 -0.0000302 
0.7 0.0481892 0.0481912 0.0000065 -0.0000426 -0.0000446 
0.8 0.0481652 0.0481683 0.0000090 -0.0000607 -0.0000638 
0.9 0.0481404 0.0481452 0.0000122 -0.0000840 -0.0000888 
1.0 0.0481161 0.0481230 0.0000160 -0.0001142 -0.0001211 
2.0 0.0482286 0.0483785 0.0001208 -0.0011798 -0.0013297 
3.0 0.0492730 0.0508916 0.0003307 -0.0042634 -0.0058820 
4.0 0.0329493 0.0445707 -0.0035715 0.0044448 -0.0071766 
5.0 -0.107573 -0.0495144 -0.0095795 0.1341543 0.0760957 

 

 

Table 3 The estimates of the coverage probabilities by the first, second and third orders of 

asymptotic expansions and their accuracies in the case 10,p  1 = 0.95, c  4.2787 

   pQ   1
Q  

2
Q  

3
Q  

1
  

0.0 0.9996469 0.9996469 0.9996469 0.9996469 0.0496469 
0.1 0.9996462 0.9996463 0.9996460 0.9996460 0.0496463 
0.2 0.9996443 0.9996444 0.9996433 0.9996432 0.0496444 
0.3 0.9996410 0.9996412 0.9996388 0.9996386 0.0496412 
0.4 0.9996363 0.9996367 0.9996325 0.9996321 0.0496367 
0.5 0.9996303 0.9996309 0.9996245 0.9996239 0.0496309 
0.6 0.9996228 0.9996237 0.9996148 0.9996139 0.0496237 
0.7 0.9996139 0.9996151 0.9996036 0.9996023 0.0496151 
0.8 0.9996035 0.9996049 0.9995906 0.9995890 0.0496049 
0.9 0.9995915 0.9995931 0.9995763 0.9995743 0.0495931 
1.0 0.9995778 0.9995797 0.9995607 0.9995583 0.0495797 
2.0 0.9993246 0.9993193 0.9994064 0.9994093 0.0493193 
3.0 0.9987186 0.9986602 0.9998135 1.0000323 0.0486602 
4.0 0.9973294 0.9972363 0.9994045 1.0019881 0.0472363 
5.0 0.9902316 0.9947171 0.9641057 0.9836416 0.0447171 

 

 

 

 

 

 

 

 

 

 

 

 



Sujitta Suraphee et al.  103 

Table 3 (Continued) 

  2
  

3
  _ 1a

  
_ 2a

  
_ 3a

  

0.0 0.0496469 0.0496469 0.0000000 0.0000000 0.0000000 
0.1 0.0496460 0.0496460 -0.0000001 0.0000002 0.0000002 
0.2 0.0496433 0.0496432 -0.0000001 0.0000010 0.0000011 
0.3 0.0496388 0.0496386 -0.0000002 0.0000022 0.0000024 
0.4 0.0496325 0.0496321 -0.0000004 0.0000038 0.0000042 
0.5 0.0496245 0.0496239 -0.0000006 0.0000058 0.0000064 
0.6 0.0496148 0.0496139 -0.0000009 0.0000080 0.0000089 
0.7 0.0496036 0.0496023 -0.0000012 0.0000103 0.0000116 
0.8 0.0495906 0.0495890 -0.0000014 0.0000129 0.0000145 
0.9 0.0495763 0.0495743 -0.0000016 0.0000152 0.0000172 
1.0 0.0495607 0.0495583 -0.0000019 0.0000171 0.0000195 
2.0 0.0494064 0.0494093 0.0000053 -0.0000818 -0.0000847 
3.0 0.0498135 0.0500323 0.0000584 -0.0010949 -0.0013137 
4.0 0.0494045 0.0519881 0.0000931 -0.0020751 -0.0046587 
5.0 0.0141057 0.0336416 -0.0044855 0.0261259 0.0065900 
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Numerical illustrations presented in Tables 1-3 show that the estimates of the coverage 

probability by the first, second and third orders of the asymptotic expansions with   close to 0 are 

not significantly different. All of them are close to the exact values. This means that they have high 

accuracy. For large ,  the first order asymptotic expansions slowly decrease to nominal coverage 

probability 1 = 0.95  but the second and the third orders of asymptotic expansions show that the 

estimates are below 1 = 0.95  when   becomes close to .c  In this particular case of   close 

to ,c  the accuracy of the first order approximation is actually better than the second order and third 

order approximations. In the neighborhood of the point = ,c  there is an irregular behavior of the 

second and third order approximations. 

 

 
     (a) = 4, = 3.0802p c        (b) = 7, = 3.7506p c         (c) =10, = 4.2787p c  

Figure 1 The comparison of the estimates of coverage probabilities,1 = 0.95   

 

Figure 1 shows that the estimates of coverage probabilities by the first, second and third orders 

of asymptotic expansions produce reliable approximations, but the first order approximation gives 

the best result especially when   is far from 0. 

 

4.   Conclusion and Discussion 

The numerical illustrations presented show that all approximations provide high accuracy for the 

coverage probability with 0.   In the case large ,  the third order approximation reduces the 

accuracy of both the first and second order approximations. The first order approximation has the 

simplest formula. The accuracy depends on both p  and .  Note the accuracy is meaningless in the 

neighborhood of the point = .c  It looks like there is some relationship between p  and   that 

affects the accuracy. Namely, for larger p  the asymptotic probability approaches nominal coverage 

probability more slowly than for smaller .p  However, it can be confidently stated that all of 

estimations provide substantial improvements in the coverage probability than for the confidence set 

centered at the usual sample mean. 

 

Acknowledgements 

 This research supported by Faculty of Science, Mahasarakham University. 

 

References 

Ahmed SE, Saleh AKME, Volodin AI, Volodin IN. Asymptotic expansion of the coverage 

probability of James-Stein estimators. Theor Probab Appl. 2006; 51: 683-895. 

Ahmed SE, Volodin AI, Volodin IN. High order approximation for the coverage probability by a 

confident set centered at the positive-part James-Stein estimator. Stat Probab Lett. 2009; 79: 



Sujitta Suraphee et al.  105 

1823-1828. 

Ahmed SE, Kareev I, Suraphee S, Volodin AI, Volodin IN. Confidence sets based on the positive 

part James-Stein estimator with the asymptotically constant coverage probability. J Stat Comput 

Simulat. 2015; 85: 2506-2513.  

Baranchik AJ. A family of minimax estimators of the mean of a multivariate normal distribution. 

Ann Math Statist.1970; 41: 642-645. 

Budsaba K, Suraphee S. Addendum to “Asymptotic Expansion of the Coverage Probability of James-

Stein Estimators”, Theory of Probability and Its Applications, 51(4) (2007), 683-695. J Prob Stat 

Sci. 2012; 10: 205-208. 

Hwang JT, Casella G. Minimax confidence sets for the mean of a multivariate normal distribution. 

Ann Statist.1982; 10: 868-881. 

Hwang JT, Casella G. Improved set estimators for a multivariate normal mean. Recent results in 

estimation theory and related topics. Statist Decisions suppl.1984;1: 3-16. 

Stein C. Confidence sets for the mean of a multivariate normal distribution. J Roy Statist Soc, Ser 

B.1962; 24: 265-296. 

  


