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Abstract 

Multi-state  models  are  a  flexible  tool  for  analyzing  complex  time-to-event  problems  with 

multiple endpoints, especially in chronic diseases where the patients move through different states. 

It provides a more detailed insight into the disease process as compared to other statistical models. 

The primary objective of this paper  is to study the significance of CA15-3 as a disease marker in 

monitoring  and  evaluating  the  diseases  progression  of  breast  cancer  patients  using  a  multistate 

Markov model. Based on ranges of CA15-3 marker (< 25 U/ml and ≥ 25 U/ml ) states have been 

defined and  transition  intensities,  transition probabilities and expected state specific  survival  time 

have been estimated. Also, the effect of prognostic factors viz. age, tumor size, tumor grade, involve 

lymph nodes, ER status, PR status etc., on transition intensities have been explored. 

______________________________ 
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1.  Introduction 

Cancer is one of the leading causes of adult deaths worldwide. According to IARC (International 

Agency for Research on Cancer) about 635,000 (indirect estimate) people died from cancer in 2008 

in India. This is approximately 8% of all estimated global cancer deaths and about 6% of all deaths 

in  India  (Ferlay  et  al.  2010).  Breast  cancer  is  the  most  commonly  diagnosed  malignancy  among 

women and has become a big threat to human beings globally. As per Indian population census data, 

the rate of mortality due to cancer in India is high and alarming with about 806,000 existing cases by 

the end of the last century (Ali et al. 2011). The rising graph of breast cancer both in developed and 

developing countries is a great challenge for biomedical researchers, especially in India it is the first 

common cancer of urban women and second of rural women.  

The global breast cancer incidence has significantly increased from 641,000 (95% confidence 

intervals  610,000-750,000)  cases  in  1980  to  1,643,000  (1,421,000-1,782,000)  cases  in  2010,  an 

annual rate of increase of 3.1% (Foreman et al. 2011). It has been suggested that both earlier diagnosis 

and treatment change contributes to improve breast cancer survival (Webb et al. 2004). Over the past 

few  decades,  there  has  been  appreciable  progress  in  therapeutic  strategies  for  early  stage  (i.e., 

localized  and  operable,  as  opposed  to  metastatic)  breast  cancer,  with  a  well-developed  array  of 
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treatment options. Due to increased screening vigilance and disease awareness, currently over 75% 

of  women diagnosed have  early  stage  tumors. Despite  this  progress,  the  clinical  course  of breast 

cancer after diagnosis remains heterogeneous from patient to patient and thus highly unpredictable 

for individuals (Dukic and Dignam 2007).  

Traditional  prognostic  markers  such  as  auxiliary  lymph  node  status,  tumor  size,  histological 

grade, hormone receptor expression are helpful to stage the disease, predict overall survival of patient 

and response to hormonal therapy. However, all these factors need tissue sampling, which is costly 

and results also depend on the expertise of histopathologist. None of these factors can single handedly 

predict risk of development of distant metastasis in individual patient, overall survival of patient and 

patients  needing  close  surveillance  and  follow-up.  So  in  this  scenario  soluble  circulating  tumor 

marker if found to be accurate prognostic factors, would be ideal candidates for predicting outcome 

and  monitoring  treatment  response  (Colomer  et  al.  1989).  Serum  CA15-3  has  been  the  most 

frequently investigated tumor marker in breast cancer. Although it has low sensitivity and specificity 

and  has  no  value  for  primary  diagnosis  (Tondini  et  al.  1988),  but  it  can,  however  be  useful  in 

predicting prognosis, measuring treatment response in advanced breast cancer patients. 

Tumor markers are a potentially powerful means of obtaining information about cancers whilst 

causing  minimal  morbidity,  inconvenience  and  cost.  CA15-3  has  been  suggested  as  a  marker  of 

distant metastasis in breast cancer. In general, the higher the CA15-3 level, the more advanced the 

breast cancer and heavier the tumor burden. CA15-3 concentrations tend to increase as the cancer 

grows. In metastatic breast cancer, the highest levels of CA15-3 often are seen when the cancer has 

spread to the bones and/or the liver. Elevated pre-operative CA15-3 level is directly related to tumor 

burden and independent prognostic factors for breast cancer. A highly significant correlation exist 

between elevated CA15-3 levels (> or = 30 U/ml) and metastasis disease (Tomlinson et al. 1995). 

Currently,  it  has  been  used  for  the  surveillance  and  monitoring  the  treatment  of  patients  with 

advanced disease (Duffy et al. 1997). It could be considered for clinical use such as predicting patient 

outcome and determining adjuvant treatment for better outcome (Berruti et al. 1994).  

To the best of our knowledge, no study has been conducted for evaluating the disease progression 

of breast cancer patients using CA15-3 as a disease marker in multistate Markov model. We have 

developed a three state Markov model based on ranges of CA15-3 values to evaluate the progression 

of  breast  cancer  patients.  Multistate  models  have  extensively  been  used  to  evaluate  disease 

progression. It enables us to estimate transition intensities and transition probabilities between states 

of the disease. 

Multistate models are particularly used in biomedical applications in which stages or levels of a 

disease are  represented by  the  states  in  the  model. A  wide  range of  situations viz.,  in HIV/AIDS 

(Longini et al. 1989, Aalen et al. 1997, Hendriks et al. 1998, Grover et al. 2013), breast cancer (Duffy 

et al. 1997, Putter et al. 2006), psoriatic arthritis (Cook et al. 2004, O’Keeffe et al. 2011), dementia 

(Joly et al. 2002), diabetic retinopathy (Marshall and Jones 1995), and liver cirrhosis (Andersen et al. 

1991, Grover et al. 2014). 

Putter et al. (2006) developed a multistate model for breast cancer patients to estimate transition 

rates between the states in the model and later used these estimates to predict the future progression 

of disease for patients with a given history. Taghipour et al. (2013) used a multistate model to describe 

invasive breast cancer progression in the Canadian National Breast Screening Study and constructed 

progression models with and without covariates. They suggested that the modeling and estimating 

the  parameters  of  cancer  progression  are  essential  steps  towards  evaluating  the  effectiveness  of 

screening policies. Broet et al. (1999) used a multistate model to study prognostic factors associated 

with each transitions in breast cancer disease. Ventura et al. (2014) provided an illustration of the 
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application of multi-state Markov models  for breast cancer progression  to data  from  the  first  two 

rounds of the Florentine screening programme (1991-1993). Authors extensively discussed the pros 

and  cons of  three  different  estimation procedures  (non-linear  least  squares,  maximum  likelihood, 

Bayesian approach) widely used in multistate model.  

In  this paper we have developed a  three state Markov model based on  the ranges of CA15-3 

marker  for disease progression of breast cancer patients. Moreover, we have  tried  to estimate  the 

transition  intensities  and  probabilities  between  various  states  and  also  estimated  the  effect  of 

prognostic factors on transitions using Cox proportional hazards model. 

The remaining parts of the paper have been divided into the following sections, in Section 2 the 

material  and  methods  used  are  discussed,  Section  3  deals  with  results  and  the  discussion,  and 

conclusion is given in Section 4.  

 

2.  Materials and Methods 

The study population includes all female primary breast cancer patients treated at breast clinic. 

(Dept  of  General  Surgery,  IPGMER,  SSKM  Hospital,  Kolkata)  from  January  2009  to  December 

2010, and had their pre-op serum CA15-3 measured and it was repeated on 7th, 30th post-op day and 

every 6 months for 2 years. Patients were excluded if any other malignancy was known from their 

previous  history or  if  staging  investigations  at  the  time  of  diagnosis  revealed  evidence  of  instant 

metastasis. A  total of 85 patients  fulfilled  the criteria  for  this analysis. Patients were  treated with 

either modified radical mastectomy (MRM) or quandrantectomy and auxiliary lymph node dissection 

with  local  radiotherapy  (RT).  After  completion  of  surgery,  RT  and  appropriate  adjuvant 

chemotherapy or hormone therapy was not altered according to marker levels but was administered 

as indicated based on international guidelines. All the statistical analysis has been performed using 

msm  package  in  R  software  (Jackson  2011).  In  all  case  p-value  <  0.05  has  been  considered  as 

statistical significant.  

2.1.  Multi state Markov model 

Multi-state  model  (MSM)  is  a  model  for  a  continuous  time  stochastic  process  allowing 

individuals  to  move  among  a  finite  number  of  states. In  this  analysis  the  three  states  of  disease 

progression of breast cancer patients are defined based on the established cut-off value of CA15-3 

tumor marker (Ebeling et al. 2002). The two reversible transient states are defined as follows; State 

1; CA15-3 < 25 U/ml, state 2; CA15-3 > 25 U/ml; and one absorbing death state. The death state is 

an absorbing state i.e a patient is in the death state she/he will remain in that state forever. The elapse 

time between state transitions are calculated using the difference (in months) between the dates of 

CA15-3 measurements. The schematic representation of the proposed model is shown in Figure 1. 

The possible transitions along with intensities have been illustrated in the diagram. 
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Figure 1 Schematic representation of three states Markov model 

More formally, let us suppose that there are  n  breast cancer patients under study, and a patient 

may move in the three state Markov model with discrete state space  {1,2,3},S   where 1 and 2 are 

transient states, and 3 is absorbing state. If  ( )X t r  be the state of a patient at any time  ,t  then the 

intensity with which the patient moves to state  s  during the interval  ( , )t t t   is defined as 

 
0

( ( ) / ( ) )
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t
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 
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The transition intensity matrix, defined as   
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where  ij ’s are the transition intensities, and the corresponding 3-states  transition probability matrix 

can be defined as: 
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where  11 12 21 22, , andP P P P  are  the  illness  transition  probabilities  and  13 23andQ Q are  the  death 

absorbing probabilities. The transition probability  ( )rsP t  is defined as of a patient being in state  s  at 

time  ( , )t t t   given  that  the  patient  was  at  state  r  at  time  .t  More  specifically,  that  can  be 

calculated as: 

 

 

State 1 

CA15-3 < 25 

State 2 

CA15-3 ≥25 

State 3 

Death 

12(t) 
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λ13(t)  λ23(t) 
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The detailed mathematical derivation and also maximum likelihood estimation procedure has 

been given (Chiang 1968, Kalbfleish and Lawless 1985).   

The Incorporation of Covariates: The effect of covariate vector z on transition i j  for a breast 

cancer patient is modeled by ( ),ij t  using Cox proportional regression model the transition hazard is 

given by   

   ,0[ | ] ( ) exp ,T
ij ij ijt z t z                                                      (2) 

where  ,0 ( )ij t  is  the  baseline  hazard  of  transition  ,i j  and  ij  is  the  vector  of  regression 

coefficients that describe the effect of z on transition  .i j  An alternative way of writing this model 

(Andersen et al. 1991) is as  

   ,0( | ) ( ) exp ,T
ij ij ij ijt z t z                                        (3) 

where  ijz  is  a  vector  of  covariates  specific  to  transition  ,i j   defined  for  the  patients  based  on 

his/her covariates  .z  The estimates  ̂  can be obtained by maximizing the partial likelihood function 

as given by 

 
,
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                                               (4) 

where  ,ij kz  is  the  covariate  vector  for  patient  ,k and  ,( )ij kR t  is  the  risk  set  at  time  t  for  making 

transition from  .i j  The detailed estimation procedure is stated in (Kalfleisch and Lawless 1985, 

Kay 1986).  

3.  Results 

The study population includes 85 breast cancer patients, who were diagnosed during January, 

2009  to  December,  2010.  Out  of  total  69  (81.2%)  were  alive  at  the  end  of  the  study  and  being 

considered  as  censored  for  the  analysis.  The  mean  age  of  patients  at  diagnosis  was  50.09  years 

(SD=12.82),  ranging  from 25  to 85 years. The descriptive  characteristics of  important prognostic 

factors are summarized in Table 1.  
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Table 1 Descriptive characteristics of breast cancer patients (N=85) 

Factors  Categories(Code)  Frequency  Percentage 

Age (in years)  <50 (0)  46  54.1 

≥50 (1)  39  45.9 

Tumor size (cm)  <2 (0)  24  27.9 

2-5 (1)  48  55.8 

≥5 (2)  13  15.1 

Lymph nodes  0-3 (0)  50  58.8 

4-9 (1)  19  22.4 

≥9  (2)  16  18.8 

Tumor Grade  I (1)  23  27.1 

II (2)  42  49.4 

III (3)  20  23.5 

ER Status  Negative (0)  40  47.1 

Positive (1)  45  52.9 

PR Status  Negative (0)  48  56.5 

Positive (1)  37  43.5 

HN2 Status  Negative (0)  53  62.4 

Positive (1)  32  37.6 

 

 

Table 2 Number of observed transitions between states (rows to columns) 

 

 

 

 

 

Table 3 Estimate of transitions Intensities with 95% CI using multistate Markov models 

States  State 1  State 2  State3 

State 1  -0.116 ( -0.802, -0.014)  0.104 (0.013, 0.810)  0.012 (0.001, 1.210) 

State 2  0.461 (0.073, 3.150)  -0.493 (-3.174, -0.072)  0.032 (0.001, 3.336) 

 

 

Table 4 Estimated one year transition probabilities 

States  State 1  State 2  State 3 

State 1  0.91934  0.06043  0.02236 

State 2  0.34437  0.63528  0.03532 

 

 

 

 

 

States  State 1  State 2  Death  Censored 

State 1  238  14  9  44 

State 2  74  56  7  7 
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Table 5 Estimates of hazard ratio with 95% CI for breast cancer patients 

  State 1-State 2  State 1-State 3  State 2-State 1  State 2-State 3 

  HR ( 95% CI)  HR ( 95% CI)  HR ( 95% CI)  HR ( 95% CI) 

Age (≥50 years)  2.71 (0.12 - 59.67)  1.08 (0.03 - 33.78)  1.61 (0.08 - 30.94)  4.64 (1.01 - 121.60)* 

Tumor size  2.09 (0.58 - 7.54)  1.02 (0.56 - 1.84)  1.60 (0.45 -5.62)  1.41 (0.24 - 8.21) 

Lymph nodes  1.51 (0.87 - 2.61)  1.40 (1.13 - 1.74)*  1.42 (0.82 - 2.45)  1.42 (0.81 - 2.48) 

Tumor grade         

     II  5.77 (0.81 - 40.16)  0.07 (0.01 -1.15)  2.75 (0.49 - 9.54)  3.33 (1.01 - 66.20)* 

     III  13.87 (0.01 - 184.0)  1.08 (0.11 - 9.18)  14.32 (0.12 - 171.0)  0.31 (0.01 - 49.10) 

ER Status  13.97 (0.54 - 361.4)  0.12 (0.01 - 1.62)  20.70 (9.96 - 443.0)  0.81 (0.01 - 17.35) 

PR Status  0.04 (0.00 - 1.25)  2.19 (0.27 - 17.92)  0.07 (0.01 - 0.12)*  1.34 (0.04 - 44.37) 

HN2 Status  3.14 (0.38 - 25.83)  0.34 (0.02 - 4.66)  0.88 (0.12 - 6.55)  2.87 (0.05 - 15.30) 

 

The Table 2 shows  that  the  observed  transitions between  states  (rows  to  column)  during  the 

follow up visits. There are 14 transitions from State 1 (CA 15-3 < 25) to State 2 (CA 15-3 > 25) and 

9 deaths occurred from the same state during the study. A total of 74 transitions occurred from higher 

to lower i.e back transition from State 2 to State 1, which shows a decline in CA 15-3 values post-

operatively. At the end of the study period 44 and 7 transitions were censored from State 1 and State 

2, respectively, i.e, their exact states were not known.   

Initially,  the  Markov  model  without  covariate  has  been  used  to  study  the  overall  disease 

progression.  The  estimates  of  transition  intensities  ( )ij  with  95%  confidence  intervals  (CI)  are 

presented in Table 3. It reveals that a patient in State 1  is 8.66 (0.104/0.012) times more likely to 

move to State 2 than dying in State 1. Similarly, a patient in State 2 is 14.40 (0.461/0.032) times more 

likely to move to State1 than of dying in State 2. 

The estimated transitions probabilities are presented in Table 4. It can be seen from the Table 4 

that there are 91% chances of remaining in State1 as compared to 6% and 2% of moving to State 2 

and of dying respectively. Similarly a patient has 63% chances of remaining in State 2 than 34% and 

3% of moving to State 1 and of dying respectively at end of one year. The estimated total length of 

estimated survival time for patients in State 1 is found to be 8.8 years and for patients in State 2 is 

2.1 years, respectively.  

Table 5 summarizes the hazard ratios (HR) for each covariate (i.e age, tumor grade, tumor size, 

lymph  nodes,  ER  Status,  PR  Status  and  HN2  status)  on  each  transition  along  with  their  95% 

confidence interval (CI). Covariates viz., age, lymph nodes, tumor grade and ER status are found to 

be significantly associated with hazard of death of breast cancer patients. The higher age group (> 50 

years) is significantly associated with transition 2 → 3. More precisely, patients (> 50 years age) in 

State 2 have 4.64 times more likely  to move to State 3 as compared to patients of aged below 50 

years. Patients with tumor grade II are 3.33 times more likely to leave State 2 than patients having 

tumor grade I, given that they move to State 3 (death). Patients having Progesterone Receptor (PR) 

status positive have 97% less chances of transition from State 2 to State 1. The numbers of involved 

axilary lymph nodes are significantly associated with the transition 2 → 3. However, the factors like 

tumor size, ER status and HN2 status are not found to be significant in our analysis. Also we have 

made an attempt  to  assess  the goodness of  fit of our  multistate Markov model by comparing  the 

observed prevalence of states with expected prevalence under  the model at a series of  times. The 
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model was found to be fitting well (confirmed by prevalence.msm plot, not shown here) to this breast 

cancer data set. 

 

4.  Discussion 

CA15-3 is most useful tumor marker for monitoring patients post–operatively for recurrence in 

metastatic  carcinoma.  Serum  CA15-3  has been  the  most  frequently  investigated  marker  in breast 

cancer. However, it can be useful in predicting prognosis, measuring treatment response in advanced 

breast cancer patients and for early detection of metastasis (Dnistrian et al. 1991, Lamerz et al. 1991, 

Robertson et al. 1991, Safi et al. 1991, and Vizcarra et al. 1994). In order to understand the role of 

pre-operative  CA15-3  in  identifying  patients  with  low and  high  risk  with  respect  to  their  overall 

prognosis and time to occurrences of distant metastasis relapse or death from the disease. We have 

developed a multistate Markov model for breast cancer patients using the value of CA15-3 marker. 

Since the multistate model is the natural choice for the study of disease progression and also it enable 

us to estimate transition intensities and transition probabilities between the states. To the best of our 

knowledge this is  the very first attempt  to model CA15-3 marker in disease progression of breast 

cancer patients using a multistate Markov model. Although some previous studies viz. Broet et al. 

(1999), Putter et al. (2006), Ventura et al. (2014), have used multistate model in the applications of 

breast cancer disease but in different scenario. By exploiting the properties of Markov models, we 

have illustrated the usefulness of multi stage illness death model in the analysis of follow-up study 

of breast cancer diseases.  

As discussed in the results section the significant findings of our analysis is the estimated survival 

time for patients in State 1 (CA15-3 < 25)   is found to be 8.8 years and for State 2 (CA15-3 > 25) is 

2.1 years respectively. Hence the elevated CA15-3 values highly associated with lower survival of 

the patient. Covariates viz., age, lymph nodes, tumor grade and ER status are found to be significantly 

associated with hazard of death of breast cancer patients. All the results are in agreement with the 

medical literature, except for the effect of tumor size which is not found to be significant predictor in 

our analysis. 

Despite some controversies, CA15-3 level could provide independent prognostic information to 

be  taken  together  with  conventional  markers  measured  in  tumor  tissues  (Gasparini  1998). 

Furthermore, Duffy (2006) reported that pre-op concentration could be combined with existing early 

treatment  based  exclusively  on  increasing  marker  concentration  showed  improved  prognosis 

compared with controls. 

There are some limitations in our study, the sample size of the study population is small so the 

strict generalization of our findings needs to be substantiated by from other large scale study. Many 

ways  this  study  could  be  extended  to  a  hidden or  semi-Markov  model  to  obtain  more  detail  and 

flexible results. 
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