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Abstract 

A multivariate cumulative sum (MCUSUM) control chart is one type of multivariate control 

chart for monitoring the mean vector. A multivariate normal distribution is an important assumption 

that is used to describe a behavior of a set of quality characteristics of interest. This research explores 

the sensitivity of ARLs and SDRLs when the MVN assumption is incorrect. ARLs and SDRLs for 

data from multivariate t,  uniform, beta, and lognormal distributions are estimated and compared to 

ARLs and SDRLs under the MVN assumption. The ratios of SDRL/ARL are also computed to 

consider a relationship between ARL and SDRL. 

______________________________ 
Keywords: MCUSUM control chart, average run length, standard deviation of run length, multivariate 

distributions. 

 

1.  Introduction 

In statistical process control, a control chart is one of the graphical techniques used to monitor a 

manufacturing process for detecting any change in a process that may affect a product’s quality. A 

quality characteristic of a manufactured product that is measured on a numerical scale is called a 

variable. There are many situations in which the simultaneous monitoring of two or more related 

variables is necessary. Monitoring these variables independently can lead to inaccurate conclusions. 

Process monitoring in which several related quality characteristics are of interest is known as 

multivariate statistical process control. A useful tool of multivariate statistical process control is the 

multivariate control chart. Various types of multivariate control charts have been widely applied, 

including the multivariate Shewhart, multivariate exponentially weighted moving average 

(MEWMA), and multivariate cumulative sum (MCUSUM) control charts. Generally the multivariate 

Shewhart control chart uses information only from a current sample to calculate the test statistic and 

it is insensitive to small and moderate shifts in a mean vector. In addition a practical problem with 

multivariate Shewhart control charts is their lack of robustness. They are sensitive to multivariate 

outliers. A multivariate outlier is an observation vector X  that has a large 2T  statistic. The MEWMA 

control chart uses weighted averages of previously observed random vectors to monitor the mean 

vector of the process. The MCUSUM control chart proposed by Crosier (1988) is derived by 
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replacing the scalar quantities of a univariate CUSUM control chart by vectors and offers the 

advantage of a CUSUM chart over a Shewhart chart such as an ability to design the control chart to 

detect a specific shift in the mean vector. Therefore the MCUSUM control chart is an alternative 

method which has been developed to overcome the disadvantages of multivariate Shewhart control 

charts. 

For most multivariate control charts, a multivariate normal distribution is an important 

assumption that is used to describe the behavior of a quality characteristic of interest. In many real 

situations, however, that assumption is not always met. The violations of the multivariate normality 

assumption affect the performance of multivariate Shewhart and MEWMA control charts in different 

ways (Nidsunkid et al. 2017). In this research, the performance of the MCUSUM control chart for 

multivariate non-normal distributions is investigated for different shifts in the mean vector. The 

average run length (ARL) and the standard deviation of run length (SDRL) of the MCUSUM are 

estimated and reported to consider how robust or sensitive a MCUSUM control chart is to violations 

of the multivariate normal assumption. 

 

2. The Multivariate Cumulative Sum Control Charts 

Woodall and Ncube (1985) studied the performance of a bivariate CUSUM procedure that 

consists of two one-sided univariate CUSUM procedures. In this case they found that the bivariate 

CUSUM procedure can detect small and moderate shifts in the means more quickly than the Shewhart 

procedure. In addition they also compared a bivariate cumulative score procedure based on the 

principle components to a Shewhart chart. For this case they concluded that the bivariate cumulative 

score procedure with the principle components detects small shifts more quickly than the Shewhart 

chart. 

To study p  response variables ( 2)p   consider the following multivariate assumptions. Let

,iX 1,2,...i , be a 1p  random vector that follows p -variate normal distribution with the 1p  in-

control mean vector 0  and a p p  covariance matrix .  Let 1  be a 1p  out-of-control mean 

vector. For the following multivariate CUSUM procedures, an out-of-control signal occurs when the 

CUSUM statistic exceed a (scalar) decision interval .H  The choice of a value for H  can be found 

from simulations. Healy (1987) discussed the CUSUM procedures assuming the multivariate normal 

distribution and proposed two cases; the CUSUM for detecting a shift in a mean vector and the 

CUSUM for detecting a shift in a covariance matrix. The CUSUM at sample i  for detecting a shift 

in the mean vector 0  towards 1  can be written as 

 
 1 0max ( ) 0.5 , 0 ,i i iS S D

     a X   (1) 

where
 
 1

1 0= ( ) /    D a   and D  is the noncentrality parameter defined as 

 
1

1 0 1 0( ) ( ) .D =       (2) 

This CUSUM procedure signals when iS H.  Since iS  for this multivariate CUSUM procedure 

reduces to a univariate CUSUM procedure, Healy (1987) suggested that all of the available theory 

for calculating ARL, H  and 0S  for the univariate CUSUM procedure can be used for this 

multivariate CUSUM. 

For detecting a shift in a covariance matrix .  Healy (1987) proposed a CUSUM for detecting 

a change from   to ,C   where C  is a real constant. The CUSUM procedure statistic for sample 

i  is  
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 1

1max ( ) ( ) , 0 ,i i i iS S 


       a X X K   (3) 

where   is a mean vector,  = log( ) / ( 1) .p C C C K  This CUSUM procedure signals when 

iS H.  

Crosier (1988) proposed two schemes for a multivariate CUSUM. The first is a CUSUM of T  

(COT) statistics scheme which is based on the square root of the multivariate Shewhart statistic. The 

COT scheme is given by 

 
 1max , 0 ,i i iS S T k      (4) 

where 0 0,S   0,k   and 
1 21( ) ( ) .i i iT      X X   The COT scheme signals when 

iS H.  

The second CUSUM scheme proposed by Crosier (1988) is derived by replacing the scalar 

quantities of a univariate CUSUM scheme by vectors. Let  

 
   

1 2
1

1 1 ,i i i i iC 
 

     
  

S X S X   (5) 

and  

 
  1

if
,

1 if

i

i

i i i i

C k

k C C k


 

   

0
S

S X 
 (6) 

where 
 
is the in-control mean vector,   is the covariance matrix, 0 , 0S  and reference value 

0.k   Crosier (1988) stated that the choice of 2k = D  where D  is defined in (2), appears to 

minimize the ARL at D  for a given in-control ARL. The multivariate CUSUM is given by 

 

1 2
1 .i i iY  

 
S S    (7) 

The scheme signals when iY H.  Moreover Crosier (1988) compared these two schemes of 

multivariate CUSUM with the multivariate Shewhart chart and concluded that the CUSUM vector-

valued scheme has a better ARL performance than the COT scheme.  

Pignatiello and Runger (1990) proposed two other multivariate CUSUM charts, CUSUM #1 

( 1)MC  and CUSUM #2 ( 2).MC  The 1MC  chart can be defined for sample i  as 

 
 

1 211 max , 0 ,i i i iMC kn  
  

C C   (8) 

where 0
1

( ),
i

i

i l
l=i n 

 C X   the reference value 0,k   and in  is the number of subgroup defined as 

 

1 11 , 1 0
.

1 , otherwise

i i

i

n MC
n   

 


  (9) 

The ARL performance of the 1MC  chart depends only on the noncentrality parameter. The second 

scheme, 2MC  control chart, is defined as 

 
 2

12 max 0, 2 ,i i iMC MC D k
      (10) 

where 02 0,MC  2 1
0 0( ) ( ).i i iD   X X   The upper control limits for the 1MC  and 2MC  

charts are investigated by simulation, and they also provide a discussion about choice of the reference 

value .k  
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Pignatiello and Runger (1990) used the Markov chain approach and Monte Carlo simulation to 

compare the ARL performance of several schemes such as 1,MC 2,MC  several multiple univariate 

CUSUM charts as developed by Woodall and Ncube (1985), and a multivariate Shewhart chart for 

monitoring a multivariate normal process. The ARL performance of these charts showed that 1MC

is a good control chart for detecting a variety of shifts in the mean of a multivariate normal process. 

For detecting large shifts in the process mean, a multivariate Shewhart control chart appears to be a 

good procedure. Both 1MC  and several multiple univariate CUSUM charts perform well compared 

to the multivariate Shewhart chart for detecting a small shift in the mean. 

Mahmoud and Maravelakis (2013) studied the effect of estimating the vector of means and the 

covariance matrix on the ARL performance of the multivariate CUSUM chart proposed by Crosier 

(1988) and the 1MC  chart proposed by Pignatiello and Runger (1990). They found that when 

parameters are unknown and replaced by parameter estimates, the 1MC  chart has better in-control 

and out-of-control ARL performance than the multivariate CUSUM chart, especially when the 

number of Phase I samples m  is small. 

 

3.  Multivariate Distributions 

Suppose we have p  random variables, given by 1 2, , ..., ,pX X X  and write these random 

variables in terms of random vector 1 2( , , ..., ) .pX X X X  If 1 2, ,..., pX X X  are independent normal 

random variables with mean i  and variance 2 ,  then the multivariate probability density function 

of X  is given by 

 

 
121

( ) ( )
2

1 22 2

1
( ) , .

(2 )

p

p
f e



 


  

 
x I x

x x
I

 
 (11) 

The vector X has an independent multivariate normal (MVN) distribution (Rencher 2002), and is 

denoted 2( , ).pN X I  

In general, if iX  are not independent, random vector X has a multivariate normal (MVN) 

distribution with mean vector 1 2( , ,..., ) p    and p p  covariance matrix ,  and the 

multivariate probability density function of X  is given by 

 

11
( ) ( )

2
1 22

1
( ) , .

(2 )

p

p
f e



  

 
x x

x x
 


 (12) 

The MVN distribution can be defined in various ways, one is with its stochastic representation 

(Hofert 2013) 

 
,A X Z    (13) 

where 1 2( , ,..., )kZ Z ZZ  is a k -dimensional random vector with ,iZ {1,..., },i k  being 

independent standard normal random variables,   p kA  is a ( , )p k -matrix, and   p  is the 

mean vector. The covariance matrix of X  is .AA  We assume ,k p  if   is positive definite 

(thus has full rank and is therefore invertible). 

A random vector X  is said to follow a p -variate t  distribution with degrees of freedom ,  mean 

vector ,  and correlation matrix R  (and with   denoting the corresponding covariance matrix) if 

its probability density function is given by 
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1 2

1 22

( ) ( )2
( ) 1

( )
2

p

p

p

p

f , .



 





 
        

    
 


x R x

x x

R

 
           (14) 

The degrees of freedom   is referred to as the shape parameter (Kotz and Naradajah 2004), and we 

can denote ( , ).tX    

Hofert (2013) stated that the multivariate t  (MVT) distribution with degrees of freedom   can 

be defined by the stochastic representation 

 ,W A X Z  (15) 

where 2 ,W    and 2
  is a random variable following a chi-squared distribution with degrees of 

freedom 0.   W  is independent of ,Z  and all other quantities are as in (13). By introducing the 

additional random factor ,W  the MVT distribution with   degrees of freedom is more flexible than 

the MVN distribution (which can be recovered by taking the limit )    especially in the tails 

which are heavier for ( , )t    than for ( , ).pN    If W  and Z  are independent and 1,   the mean 

vector of X is ( )E  X   and the covariance matrix of X  is Cov( ) .
2







X   

The structure of dependence between two or more related variables can be defined in terms of 

their joint distribution. One way to obtain a multivariate distribution is joining the univariate 

distribution through copulation, which is one of the most useful tools when the marginal distributions 

are known or given. The use of copula functions enables the representation of various types of 

dependence between variables. Nelsen (2006) defined a copula function as a joint distribution 

function 

 1 2 1 1 2 2( , ,..., ) ( , ,..., ),p p pC u u u P U u U u U u     (16) 

where 0 1ju   and jU  for 1,2,...,j p  are marginally uniformly distributed in the interval (0,1). 

Sklar's Theorem shows how to obtain a joint distribution using marginal distribution functions iF  

and the copula .C  

 

Sklar’s Theorem Let H  be a p -dimensional distribution function with marginal distribution 

functions 1 2, , ..., .pF F F  Then there exists a p -dimensional copula C  such that for all 

1 2( , , ..., ) [ , ] ,p
py y y      

 1 2 1 1 2 2( , ,..., ) [ ( ), ( ),..., ( )].p p pH y y y C F y F y F y  (17) 

If 1 2, ,..., pF F F  are all continuous, then C  is unique; otherwise C  is uniquely determined on 

1 2Range Range ... Range ,pF F F    the cartesian product of the ranges of the marginal cdf’s. 

Conversely, if C  is a p -copula and 1 2, ,..., pF F F  are distribution functions, then the function H  

defined by (17) is a p -dimensional distribution function with marginal distribution functions

1 2, , ..., .pF F F  

There are several families of copulas such as elliptical copulas (Gaussian and t copulas are known 

as elliptical copulas) and Archimedean copulas (e.g., Clayton, Frank, and Gumbel copulas) (Trivedi 

and Zimmer 2005). Sukparungsee et al. (2015) studied the performance of MCUSUM control chart 
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when the observations are drawn from an exponential distribution by using Gaussian, Clayton and 

Frank copulas. The level of dependence between random variables is measured by Kendall’s tau. 

Their results implied that, for small and large dependencies, it is necessary to detect the observation 

dependence to indicate the copula and use that detection to fit the observation on the MCUSUM 

chart. 

In this research, we use the Gaussian copula to construct the multivariate distributions. Let R

is the joint cumulative distribution function of a multivariate normal distribution with mean vector 

zero and covariance matrix equal to the correlation matrix R . Then ,RC  the Gaussian copula 

corresponding to ,R  is given by  

 
1 1 1

1 2 1 2( , , ..., ) ( ( ), ( ), ..., ( )),R p R pC u u u u u u         (18) 

where 1  is the inverse cumulative distribution function of a standard normal. 

If 1 2, ,..., pU U U  are independent, 1 2 1 2( , , ..., ) .p pC u u u u u u     Therefore, for independent 

case, we can construct many multivariate distributions, such as a multivariate lognormal (MVL), a 

multivariate beta (MVB), and a multivariate uniform (MVU) distribution, by using a copula function 

and their marginal univariate distributions. The details of these three univariate distributions are now 

presented. 

If log( )Z X  is normally distributed, the distribution of X  is said to be lognormal (Johnson et 

al. 1994). Thus, X  is a positive random variable, and the probability density function of X  is given 

by 

 

2

2

(log )

2
1

, 0
( ) 2

0 , otherwise,

x

e x
f x x





 





 




   (19) 

where ,     and      

The standard beta distribution is a distribution defined on the interval [0,1]. The probability 

density function of the standard beta with parameters a  and b  is given by 

 

1 1( )
(1 ) , 0 1

( ) ( )( )

0 , otherwise,

a ba b
x x x

a bf x

  
  

  



 (20) 

where 0,a   and 0b  (Johnson et al. 1995). 

The continuous uniform distribution is a member of the family of symmetric probability 

distributions, and is defined by the two parameters a  and ,b  which are its minimum and maximum 

values. The probability density function is given by 

 

1
,

( )

0 , otherwise.

a x b
f x b a


 

 


  (21) 

The case where 0a  and 1b  is called the standard uniform distribution which is a special case of 

standard beta distribution when the parameters a  and b  are both equal to one (Johnson et al. 1995). 
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4.  Run Length Properties 

For a control chart, the run length is a random variable and is defined to be the number of 

subgroups, which must be collected (or equivalently, the number of charting statistics that must be 

plotted) until the first signal is observed suggesting a change from the in-control process. 

A control chart is useful in detecting if a process is or is not in a state of statistical control. In 

practice, the performance of a control chart is considered in terms of certain measures associated with 

its run length distribution, including the average run length (ARL) and standard deviation of the run 

length (SDRL). The ARL and the SDRL are an average and the standard deviation of the number of 

subgroups sampled (or number of charting statistics needed to be plotted) before an out-of-control 

signal is detected, respectively. 

The ARL and SDRL are widely used to show the performance of control charts. Somran et al. 

(2015) presented ARL results for a negative CUSUM chart for a lower-sided case when the 

observations are from exponential distribution. Mahmoud and Maravelakis (2013) used ARLs and 

SDRLs to study the effect of estimating the vector of means and the variance-covariance matrix on 

the performance of two of the MCUSUM chart proposed by Crosier (1988) and the 1MC  chart 

proposed by Pignatiello and Runger (1990) 

 

5.  Research Methodology and Simulation Study 

For studying the performance of MCUSUM control chart when the multivariate normality 

assumption is violated, we consider MCUSUM control charts is proposed by Crosier (1988) for 

individual observations which monitor the mean vector of the process where 2, 3 and 5 quality 

characteristics are controlled jointly in which mean vector and covariance matrix are known. The 

reference values, k  = 0.5, 1.0, and 1.5 are specified and the values of decision interval ( h ) are 

obtained by simulation which are shown in Table 1. Without loss of generality, the in–control mean 

vectors are (5, 5), (5, 5) and (5, 5, 5, 5, 5), and the covariance are diag (5, 5), diag (5, 5, 5) and (5, 5, 

5, 5, 5) for 2, 3 and 5 variables, respectively. Thus, only uncorrelated random variables are consider 

in this study. The ARLs and SDRLs were then estimated for various shifts in the noncentrality 

parameter ( ) = 0.00, 0.45, 1.01, 1.58, 2.06 and 3.00 for 2 variables,  = 0.00, 0.45, 1.03, 1.52, 2.10 

and 3.10 for 3 variables and  = 0.00, 0.45, 1.03, 1.55, 2.02 and 3.00 for 5 variables. 

 

Table 1 The decision interval ( h ) for MCUSUM to achieve an in-control ARL of 200 

 
k  

0.5 1.0 1.5 

2 variables 5.49 3.01 1.93 

3 variables 6.88 3.77 2.42 

5 variables 9.38 5.20 3.36 

 

The random vectors X  considered in the simulation come from multivariate normal (MVN), 

multivariate t  (MVT) with 3, 6, 12, 24, and 48 degrees of freedom, multivariate uniform (MVU), 

multivariate beta (MVB) with shape parameter vector (4, 2), and multivariate lognormal (MVL) 

distributions. Thus, the comparisons will include several symmetric (MVN, MVT, MVU) 

distributions, a left-skewed distribution (MVB) and a right-skewed distribution (MVL) with the 

MVN, MVL, MVU and MVB having the same in-control means and variances. Each simulation is 

replicated 50,000 times to provide accurate results. 
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6.  Results 

The estimated ARLs and SDRLs of the MCUSUM control charts for monitoring the mean vector 

for each distribution and noncentrality parameters when k = 0.5, 1.0, and 1.5 are shown in Tables 2-

7. Note that   = 0.00 corresponds to the in-control ARLs for all 2, 3 and 5 process variables. For 

MVN distributions, the in-control ARLs are approximately the same value, 200, and the out-of-

control ARLs vary inversely as a size of noncentrality parameter, because the out-of-control ARLs 

depend on the noncentrality parameter. 
From Tables 2-4, we can see that when k  = 0.5 in 2, 3 and 5 variables, the in-control ARLs for 

the MVU and MVB are greater than the in-control ARLs of MVN, while the out-of-control ARLs for 

the MVU and MVB close to the out-of-control ARLs of MVN. For MVT, the in-control ARLs are 

shorter than the in-control ARLs of MVN, moreover, as the degrees of freedom increase, the 

distribution approaches normality, and the in-control ARLs approach 200. However, the out-of-

control ARLs for MVT are greater than MVN out-of-control ARLs, and when the degrees of freedom 

increase, the out-of-control ARLs for MVT approach MVN out-of-control ARLs. For MVL, the in-

control ARLs are smaller than the in-control ARLs of MVN, while the out-of-control ARLs are close 

to the out-of-control ARLs of MVN. 

When k  = 1.0, the in-control and the first out-of-control ARLs for the MVU and MVB are 

greater than the in-control ARLs of MVN, and the other out-of-control ARLs are close to MVN out-

of-control ARLs. And for MVU, in some cases ARLS were very large, for instance, the estimated in-

control ARLs for MVU are 839.25 and 29,045.34. The in-control and the first out-of-control MVT 

ARLs are smaller than MVN ARLs, while the other out-of-control ARLs are slightly greater than 

MVN ARLs. For MVL, the in-control and the first out-of-control ARLs are smaller than the ARLs 

of MVN, and the other out-of-control ARLs are close to MVN ARLs. 

When k  = 1.5, the ARLs are similar to k  = 1.0 for all multivariate distributions. 
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Table 2 The ARLs of the MCUSUM control charts for monitoring the mean vector in 2 variables 

k  distributions 
  

0.00 0.45 1.01 1.58 2.06 3.00 

0.5 

MVN 200.11 35.60 9.75 5.41 3.99 2.69 

MVT(3) 132.03 90.48 26.70 11.85 7.93 4.85 

MVT(6) 150.78 50.20 13.37 7.01 5.03 3.30 

MVT(12) 176.84 41.65 11.17 6.05 4.42 2.95 

MVT(24) 188.99 38.52 10.39 5.71 4.18 2.80 

MVT(48) 195.35 36.93 10.07 5.55 4.08 2.74 

MVU 241.67 35.06 9.68 5.40 3.99 2.68 

MVB 209.11 35.34 9.60 5.38 3.97 2.66 

MVL 142.70 35.94 10.07 5.50 4.02 2.70 

1.0 

MVN 200.48 60.77 11.80 4.91 3.25 2.02 

MVT(3) 61.88 58.65 43.23 19.71 9.75 4.36 

MVT(6) 79.59 57.19 19.27 7.26 4.48 2.57 

MVT(12) 119.02 60.25 14.48 5.79 3.72 2.24 

MVT(24) 152.85 61.50 13.00 5.30 3.45 2.12 

MVT(48) 175.21 61.44 12.33 5.08 3.34 2.07 

MVU 839.25 71.46 11.30 4.81 3.23 2.02 

MVB 225.90 82.39 11.29 4.78 3.20 2.01 

MVL 65.37 37.07 12.34 5.15 3.34 2.04 

1.5 

MVN 199.84 92.07 19.14 6.08 3.40 1.81 

MVT(3) 44.43 43.22 38.19 29.28 18.81 5.88 

MVT(6) 54.99 48.08 27.29 11.15 5.59 2.50 

MVT(12) 86.00 63.17 23.31 7.84 4.14 2.07 

MVT(24) 123.46 75.74 21.16 6.82 3.73 1.92 

MVT(48) 153.32 84.09 20.18 6.43 3.56 1.86 

MVU 29045.34 353.82 19.31 5.76 3.32 1.76 

MVB 278.92 261.21 21.84 5.91 3.28 1.75 

MVL 45.54 33.17 16.31 6.47 3.63 1.86 

 

In addition to the ARL performance, we consider the SDRL for all scenarios. From Tables 5-7, 

the SDRLs have the same behavior as the ARLs for both in-control and out-of-control processes. 

That is, the ARLs and SDRLs are highly correlated. Although the ARL and SDRL values appear very 

similar, their differences can be seen by examining the ratios of SDRL/ARL. These ratios are 

summarized in Table 8. For 2 variables cases, the ratios of SDRL/ARL 1 for the noncentrality 

parameter value is 0.00, the ratios decrease as the noncentrality parameter increases but the rate of 

change decreases as k  increases. The patterns of the ratios for 3 and 5 variables are very similar to 

those in Table 8. 
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Table 3 The ARLs of the MCUSUM control charts for monitoring the mean vector in 3 variables 

k  distributions 
  

0.00 0.45 1.03 1.52 2.10 3.10 

0.5 

MVN 198.60 37.76 10.78 6.61 4.58 3.08 

MVT(3) 134.32 93.04 27.40 14.27 8.98 5.53 

MVT(6) 153.75 52.03 14.41 8.52 5.76 3.77 

MVT(12) 178.36 43.76 12.25 7.37 5.07 3.37 

MVT(24) 191.54 40.56 11.43 6.98 4.81 3.21 

MVT(48) 196.02 39.16 11.10 6.78 4.70 3.15 

MVU 227.83 37.51 10.72 6.59 4.60 3.08 

MVB 205.09 37.47 10.64 6.57 4.56 3.08 

MVL 151.89 38.21 11.04 6.71 4.64 3.09 

1.0 

MVN 198.87 61.52 11.70 5.73 3.57 2.24 

MVT(3) 58.40 55.65 40.44 21.78 9.94 4.65 

MVT(6) 77.43 56.02 18.34 8.38 4.81 2.81 

MVT(12) 117.00 60.85 14.16 6.73 4.03 2.46 

MVT(24) 154.12 62.27 12.79 6.17 3.77 2.34 

MVT(48) 175.98 61.77 12.11 5.94 3.66 2.28 

MVU 523.52 71.00 11.31 5.63 3.54 2.25 

MVB 222.54 74.75 11.44 5.61 3.50 2.25 

MVL 69.31 40.22 11.94 5.96 3.66 2.25 

1.5 

MVN 200.44 92.55 17.90 6.85 3.52 1.92 

MVT(3) 37.84 37.35 33.75 28.10 17.33 5.68 

MVT(6) 47.71 42.35 24.94 11.95 5.52 2.60 

MVT(12) 77.70 58.50 21.70 8.71 4.23 2.18 

MVT(24) 115.35 73.67 19.53 7.63 3.82 2.04 

MVT(48) 149.27 82.35 18.91 7.20 3.65 1.97 

MVU 4819.11 260.10 18.53 6.65 3.47 1.90 

MVB 262.72 183.60 20.65 6.68 3.42 1.88 

MVL 42.72 32.62 14.83 7.14 3.71 1.97 

 

7.  Discussion 

The results in this simulation study highlight the sensitivity (or lack of robustness) of ARLs and 

SDRLs to violations of the multivariate normality assumptions.  

If the violation of the MVN assumption occurs when sampling from a more heavy-tailed MVT 

distributions then there is a significant reduction in the in-control ARLs (and in the first out-of-control 

when k =1.0 and 1.5). Thus, the in-control ARL for the MVN case is an overestimate of the true 

ARLs for the MVT distributions with the bias decreasing as the degrees of freedom increase. 

However, ARLs for the MVN is an underestimate for all out-of-control cases for k =0.5, and for all 

cases for k =1.0 and 1.5 when the noncentrality parameter is greater than 1. 

If the violation of the MVN assumption occurs when data are sampled from the MVU and MVB 

distributions, there are now a significant increase in the in–control ARLs. Thus, the ARLs for the 

MVN are an underestimate of the ARLs for MVU and MVB when the noncentrality parameter is 

0.00 but the ARLs for MVU and MVB are very close to MVN ARLs for the cases with the 

noncentrality parameter is greater than 1. And because of the symmetry and finite support for the 
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MVU distributions, if the noncentrality parameter was not sufficiently large, then the in–control 

ARLs are very large, especially when k =1.0 and 1.5.  

 

Table 4 The ARLs of the MCUSUM control charts for monitoring the mean vector in 5 variables 

k  distributions 
  

0.00 0.45 1.03 1.55 2.02 3.00 

0.5 

MVN 199.04 41.41 13.09 8.08 6.02 4.03 

MVT(3) 140.95 96.09 30.69 16.70 11.65 7.26 

MVT(6) 158.07 55.70 17.12 10.25 7.52 4.93 

MVT(12) 181.76 47.13 14.71 9.00 6.65 4.41 

MVT(24) 191.77 44.10 13.84 8.51 6.30 4.20 

MVT(48) 195.63 42.59 13.42 8.27 6.16 4.12 

MVU 215.50 41.26 13.02 8.06 6.00 4.02 

MVB 203.78 41.08 12.98 8.04 5.99 4.02 

MVL 167.41 41.73 13.30 8.18 6.06 4.05 

1.0 

MVN 200.00 62.27 12.68 6.43 4.47 2.81 

MVT(3) 58.41 55.90 40.81 21.40 12.07 5.91 

MVT(6) 78.02 56.65 19.11 9.09 5.96 3.55 

MVT(12) 122.45 61.49 15.09 7.45 5.06 3.11 

MVT(24) 157.47 63.05 13.72 6.95 4.73 2.94 

MVT(48) 178.81 62.14 13.20 6.66 4.60 2.88 

MVU 352.51 68.81 12.51 6.41 4.45 2.80 

MVB 218.92 69.04 12.52 6.39 4.43 2.78 

MVL 84.01 45.21 12.94 6.64 4.56 2.85 

1.5 

MVN 199.92 90.61 17.50 6.86 4.18 2.37 

MVT(3) 34.16 33.46 30.89 25.91 18.27 6.75 

MVT(6) 43.42 39.22 23.38 11.17 6.31 3.15 

MVT(12) 73.40 55.47 20.51 8.51 4.93 2.66 

MVT(24) 113.30 71.39 18.99 7.58 4.53 2.50 

MVT(48) 149.09 80.74 18.14 7.22 4.34 2.43 

MVU 1181.51 176.32 17.78 6.78 4.14 2.38 

MVB 242.63 133.38 18.56 6.75 4.10 2.35 

MVL 45.99 34.81 15.30 7.13 4.34 2.42 

 

If the violation of the MVN assumption occurs when data are sampled from skewed-right MVL 

distributions, then once again there is a significant reduction in the in-control ARLs. Thus, the process 

engineer may have a very biased overestimates of the in-control ARLs while the out-of-control ARLs 

are very close to MVN ARLs. 

Tables 2-7 each highlight the potential for extreme differences for the in-control ARLs and 

SDRLs when MVN is assumed. Typically, the process engineer has a desired in-control ARL when 

determining the upper control limit and an ARL for a desired shift to be detected quickly. Thus, is 

can be very risky to use these upper control limits when samples are based in individual 

measurements.  
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Table 5 The SDRLs of the MCUSUM control charts for monitoring the mean vector in 2 variables 

k  distributions 
  

0.00 0.45 1.01 1.58 2.06 3.00 

0.5 

MVN 192.00 28.41 4.71 1.91 1.20 0.67 

MVT(3) 129.87 86.46 18.84 5.73 3.12 1.45 

MVT(6) 146.41 43.02 7.45 2.81 1.67 0.87 

MVT(12) 172.83 34.03 5.75 2.25 1.39 0.75 

MVT(24) 182.27 30.96 5.17 2.07 1.28 0.70 

MVT(48) 190.65 29.47 4.94 1.99 1.23 0.69 

MVU 234.37 27.55 4.74 1.92 1.22 0.67 

MVB 202.96 27.52 4.63 1.87 1.17 0.67 

MVL 139.48 29.81 5.01 2.02 1.23 0.67 

1.0 

MVN 199.30 58.09 8.92 2.66 1.41 0.68 

MVT(3) 61.12 58.08 42.08 16.65 6.43 1.91 

MVT(6) 79.26 56.09 16.51 4.55 2.24 0.93 

MVT(12) 117.61 57.71 11.69 3.34 1.72 0.77 

MVT(24) 151.21 58.83 10.16 2.95 1.55 0.72 

MVT(48) 173.34 58.42 9.50 2.78 1.47 0.70 

MVU 836.36 67.53 8.43 2.59 1.40 0.71 

MVB 224.16 78.17 8.24 2.46 1.33 0.68 

MVL 64.58 35.52 9.99 2.98 1.51 0.69 

1.5 

MVN 198.89 91.19 17.38 4.53 2.03 0.80 

MVT(3) 43.90 42.51 37.35 28.47 17.57 3.88 

MVT(6) 54.38 47.12 26.35 9.64 3.97 1.21 

MVT(12) 85.30 62.30 21.97 6.23 2.68 0.96 

MVT(24) 122.29 74.17 19.70 5.24 2.30 0.87 

MVT(48) 151.14 82.80 18.75 4.87 2.17 0.83 

MVU 29159.95 352.07 17.31 4.13 1.98 0.85 

MVB 277.49 258.17 19.64 4.10 1.85 0.79 

MVL 44.77 32.61 15.20 5.14 2.30 0.82 

 

Tables 2-7 also confirm what is expected as the noncentrality paremeter become larger. That is, 

the ARLs converge to zero for all distributions as the magnitude in the shift vector increases. 
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Table 6 The SDRLs of the MCUSUM control charts for monitoring the mean vector in 3 variables 

k  distributions 
  

0.00 0.45 1.03 1.52 2.10 3.10 

0.5 

MVN 189.62 27.89 4.61 2.16 1.23 0.68 

MVT(3) 131.25 86.98 17.82 6.57 3.19 1.50 

MVT(6) 147.22 42.69 7.21 3.17 1.74 0.90 

MVT(12) 170.76 33.97 5.63 2.57 1.42 0.76 

MVT(24) 183.26 30.85 5.07 2.37 1.32 0.71 

MVT(48) 186.87 29.50 4.85 2.28 1.28 0.69 

MVU 217.12 27.63 4.63 2.17 1.23 0.69 

MVB 196.78 27.28 4.47 2.11 1.19 0.66 

MVL 145.80 29.87 5.00 2.29 1.30 0.70 

1.0 

MVN 195.89 57.56 8.11 2.87 1.39 0.65 

MVT(3) 57.76 54.94 38.57 18.32 6.02 1.84 

MVT(6) 75.88 54.13 14.98 5.03 2.16 0.93 

MVT(12) 114.49 57.69 10.48 3.65 1.67 0.76 

MVT(24) 151.27 58.74 9.16 3.23 1.51 0.70 

MVT(48) 172.58 57.85 8.44 3.05 1.45 0.67 

MVU 525.14 65.80 7.64 2.83 1.39 0.65 

MVB 218.69 69.71 7.53 2.70 1.29 0.60 

MVL 68.20 38.15 8.88 3.21 1.51 0.69 

1.5 

MVN 199.47 90.67 15.77 4.85 1.87 0.77 

MVT(3) 37.38 36.58 33.04 27.50 15.67 3.39 

MVT(6) 47.11 41.72 23.62 10.15 3.58 1.14 

MVT(12) 76.63 57.56 19.89 6.67 2.46 0.89 

MVT(24) 113.79 72.05 17.58 5.61 2.13 0.82 

MVT(48) 147.79 81.14 16.92 5.20 2.00 0.79 

MVU 4808.25 257.29 16.01 4.59 1.84 0.79 

MVB 260.67 181.98 17.80 4.46 1.70 0.74 

MVL 42.09 31.81 13.48 5.48 2.18 0.81 
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Table 7 The SDRLs of the MCUSUM control charts for monitoring the mean vector in 5 variables 

k  distributions 
  

0.00 0.45 1.03 1.55 2.02 3.00 

0.5 

MVN 185.11 27.52 4.86 2.27 1.43 0.78 

MVT(3) 137.91 87.56 17.95 6.84 3.89 1.84 

MVT(6) 147.93 42.29 7.49 3.34 2.05 1.06 

MVT(12) 168.88 33.18 5.87 2.69 1.68 0.88 

MVT(24) 178.07 30.12 5.32 2.46 1.56 0.83 

MVT(48) 181.69 28.76 5.05 2.36 1.49 0.80 

MVU 200.50 27.22 4.83 2.27 1.42 0.78 

MVB 188.95 26.70 4.73 2.22 1.38 0.76 

MVL 155.79 28.96 5.19 2.42 1.52 0.82 

1.0 

MVN 195.34 56.77 7.68 2.75 1.54 0.75 

MVT(3) 57.64 54.67 38.12 16.39 6.89 2.20 

MVT(6) 75.22 53.58 14.25 4.79 2.46 1.07 

MVT(12) 118.39 57.20 10.05 3.50 1.89 0.88 

MVT(24) 152.95 57.53 8.70 3.12 1.69 0.81 

MVT(48) 176.02 56.75 8.28 2.91 1.62 0.78 

MVU 345.80 61.93 7.48 2.73 1.54 0.76 

MVB 213.52 61.84 7.33 2.60 1.46 0.72 

MVL 81.90 41.80 8.57 3.10 1.71 0.82 

1.5 

MVN 196.89 87.46 14.48 4.21 1.99 0.81 

MVT(3) 33.30 32.78 29.94 24.68 16.29 3.85 

MVT(6) 42.32 38.40 21.48 8.60 3.80 1.26 

MVT(12) 71.56 53.93 18.00 5.80 2.59 0.98 

MVT(24) 111.60 69.16 16.07 4.89 2.26 0.88 

MVT(48) 147.66 78.63 15.10 4.57 2.12 0.85 

MVU 1175.74 171.71 14.35 4.05 1.93 0.80 

MVB 240.17 130.24 14.79 3.90 1.84 0.72 

MVL 44.85 33.66 13.35 4.87 2.35 0.91 
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Table 8 The ratios of SDRL/ARL of the MCUSUM control charts for monitoring the mean vector 

in 2 variables 

k  distributions 
  

0.00 0.45 1.01 1.58 2.06 3.00 

0.5 

MVN 0.96 0.80 0.48 0.35 0.30 0.25 

MVT(3) 0.98 0.96 0.71 0.48 0.39 0.30 

MVT(6) 0.97 0.86 0.56 0.40 0.33 0.26 

MVT(12) 0.98 0.82 0.51 0.37 0.31 0.25 

MVT(24) 0.96 0.80 0.50 0.36 0.31 0.25 

MVT(48) 0.98 0.80 0.49 0.36 0.30 0.25 

MVU 0.97 0.79 0.49 0.36 0.31 0.25 

MVB 0.97 0.78 0.48 0.35 0.29 0.25 

MVL 0.98 0.83 0.50 0.37 0.31 0.25 

1.0 

MVN 0.99 0.96 0.76 0.54 0.43 0.34 

MVT(3) 0.99 0.99 0.97 0.84 0.66 0.44 

MVT(6) 1.00 0.98 0.86 0.63 0.50 0.36 

MVT(12) 0.99 0.96 0.81 0.58 0.46 0.34 

MVT(24) 0.99 0.96 0.78 0.56 0.45 0.34 

MVT(48) 0.99 0.95 0.77 0.55 0.44 0.34 

MVU 1.00 0.95 0.75 0.54 0.43 0.35 

MVB 0.99 0.95 0.73 0.51 0.42 0.34 

MVL 0.99 0.96 0.81 0.58 0.45 0.34 

1.5 

MVN 1.00 0.99 0.91 0.75 0.60 0.44 

MVT(3) 0.99 0.98 0.98 0.97 0.93 0.66 

MVT(6) 0.99 0.98 0.97 0.86 0.71 0.48 

MVT(12) 0.99 0.99 0.94 0.79 0.65 0.46 

MVT(24) 0.99 0.98 0.93 0.77 0.62 0.45 

MVT(48) 0.99 0.98 0.93 0.76 0.61 0.45 

MVU 1.00 1.00 0.90 0.72 0.60 0.48 

MVB 0.99 0.99 0.90 0.69 0.56 0.45 

MVL 0.98 0.98 0.93 0.79 0.63 0.44 

 

8.  Conclusions 

The simulation results in this study are meant to provide a warning to process engineers who rely 

on MCUSUM control charts to monitor a process having multiple responses and assume the MVN 

assumption is reasonable. The type of skewness for a distribution, whether or not the distribution has 

a finite interval for support for continuous responses, all affect the ARLs and SDRLs in different 

ways when the MVN assumption has been violated. 

 

 

 



Sudarat Nidsunkid et al. 155 

References 

Crosier RB. Multivariate generalizations of cumulative sum quality-control schemes. Technometrics. 

1988; 30: 291-303. 

Healy JD. A note on multivariate CUSUM procedures. Technometrics. 1987; 29: 409-412. 

Hofert M. On Sampling from the Multivariate t  Distribution. The R Journal. 2013; 5: 129-136. 

Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions Volume 1. 2nd edition. 

New York: John Wiley & Sons; 1994. 

Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions Volume 2. 2nd edition.  

New York: John Wiley & Sons; 1995. 

Kotz S, Naradajah S. Multivariate t Distributions and Their Applications. Cambridge: Cambridge 

University Press; 2004. 

Mahmoud MA, Maravelakis PE. The performance of Multivariate CUSUM control charts with 

estimated parameters. J Stat Comput Simulat. 2013; 83: 721-738. 

Nelsen RB. An Introduction to Copulas. 2nd edition. New York: Springer; 2006. 

Nidsunkid S, Borkowski JJ, Budsaba K. The effects of violations of the multivariate normality 

assumption in multivariate Shewhart and MEWMA control charts. Qual Reliab Eng Int. 2017; 

33: 2563-2576. 

Pignatiello JJ, Runger GC. Comparisons of multivariate CUSUM charts. J Qual Tech. 1990; 22: 173-

186. 

Rencher AC. Methods of Multivariate Analysis. 2nd edition. New York: John Wiley & Sons; 2002. 

Somran S, Areepong Y, Sukparungsee S. Analytic and numerical solutions of ARLs of CUSUM 

procedure for exponentially distributed observations. Thail Stat. 2015; 14: 83-91. 

Sukparungsee S, Kuvattana S, Busababodhin P, Areepong Y. Multivariate copulas on the MCUSUM 

control chart. Cogent Math.  2015; 4: 1-9. 

Trivedi, PK, Zimmer DM. Copula modeling: An introduction for practitioners. Foundation and 

Trends in Econometrics. 2005; 1: 1-111. 

Woodall WH, Ncube MM. Multivariate CUSUM quality control procedures. Technometrics. 1985; 

27: 285-292. 

 

 

 

 

 

 

 

 


