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Abstract

A multivariate cumulative sum (MCUSUM) control chart is one type of multivariate control
chart for monitoring the mean vector. A multivariate normal distribution is an important assumption
that is used to describe a behavior of a set of quality characteristics of interest. This research explores
the sensitivity of ARLs and SDRLs when the MVN assumption is incorrect. ARLs and SDRLs for
data from multivariate ¢, uniform, beta, and lognormal distributions are estimated and compared to
ARLs and SDRLs under the MVN assumption. The ratios of SDRL/ARL are also computed to
consider a relationship between ARL and SDRL.

Keywords: MCUSUM control chart, average run length, standard deviation of run length, multivariate
distributions.

1. Introduction

In statistical process control, a control chart is one of the graphical techniques used to monitor a
manufacturing process for detecting any change in a process that may affect a product’s quality. A
quality characteristic of a manufactured product that is measured on a numerical scale is called a
variable. There are many situations in which the simultaneous monitoring of two or more related
variables is necessary. Monitoring these variables independently can lead to inaccurate conclusions.
Process monitoring in which several related quality characteristics are of interest is known as
multivariate statistical process control. A useful tool of multivariate statistical process control is the
multivariate control chart. Various types of multivariate control charts have been widely applied,
including the multivariate Shewhart, multivariate exponentially weighted moving average
(MEWMA), and multivariate cumulative sum (MCUSUM) control charts. Generally the multivariate
Shewhart control chart uses information only from a current sample to calculate the test statistic and
it is insensitive to small and moderate shifts in a mean vector. In addition a practical problem with
multivariate Shewhart control charts is their lack of robustness. They are sensitive to multivariate
outliers. A multivariate outlier is an observation vector X that has alarge 7~ statistic. The MEWMA
control chart uses weighted averages of previously observed random vectors to monitor the mean
vector of the process. The MCUSUM control chart proposed by Crosier (1988) is derived by
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replacing the scalar quantities of a univariate CUSUM control chart by vectors and offers the
advantage of a CUSUM chart over a Shewhart chart such as an ability to design the control chart to
detect a specific shift in the mean vector. Therefore the MCUSUM control chart is an alternative
method which has been developed to overcome the disadvantages of multivariate Shewhart control
charts.

For most multivariate control charts, a multivariate normal distribution is an important
assumption that is used to describe the behavior of a quality characteristic of interest. In many real
situations, however, that assumption is not always met. The violations of the multivariate normality
assumption affect the performance of multivariate Shewhart and MEWMA control charts in different
ways (Nidsunkid et al. 2017). In this research, the performance of the MCUSUM control chart for
multivariate non-normal distributions is investigated for different shifts in the mean vector. The
average run length (ARL) and the standard deviation of run length (SDRL) of the MCUSUM are
estimated and reported to consider how robust or sensitive a MCUSUM control chart is to violations
of the multivariate normal assumption.

2. The Multivariate Cumulative Sum Control Charts

Woodall and Ncube (1985) studied the performance of a bivariate CUSUM procedure that
consists of two one-sided univariate CUSUM procedures. In this case they found that the bivariate
CUSUM procedure can detect small and moderate shifts in the means more quickly than the Shewhart
procedure. In addition they also compared a bivariate cumulative score procedure based on the
principle components to a Shewhart chart. For this case they concluded that the bivariate cumulative
score procedure with the principle components detects small shifts more quickly than the Shewhart
chart.

To study p response variables (p >2) consider the following multivariate assumptions. Let

X,,i=L2,..,bea px1 random vector that follows p -variate normal distribution with the px1 in-
control mean vector 4, and a px p covariance matrix 2. Let 4 be a px1 out-of-control mean

vector. For the following multivariate CUSUM procedures, an out-of-control signal occurs when the
CUSUM statistic exceed a (scalar) decision interval H. The choice of a value for A can be found
from simulations. Healy (1987) discussed the CUSUM procedures assuming the multivariate normal
distribution and proposed two cases; the CUSUM for detecting a shift in a mean vector and the
CUSUM for detecting a shift in a covariance matrix. The CUSUM at sample i for detecting a shift

in the mean vector g, towards g, can be written as
S, = max[(S,_, +a'(X, - 4,)—-0.5D),0], (1)

where a' = [(,u1 -2 } /D and D is the noncentrality parameter defined as

D=\ - ) S (i~ ) - @)

This CUSUM procedure signals when S, > H. Since S, for this multivariate CUSUM procedure

reduces to a univariate CUSUM procedure, Healy (1987) suggested that all of the available theory

for calculating ARL, A and S, for the univariatte CUSUM procedure can be used for this
multivariate CUSUM.

For detecting a shift in a covariance matrix 2. Healy (1987) proposed a CUSUM for detecting

a change from X, to C2, where C is a real constant. The CUSUM procedure statistic for sample

11s



142 Thailand Statistician, 2018; 16(2): 140-155

S, = max[ (S, +a'(X, - )T (X, - )~ K),0], 3)
where 4 is a mean vector, K = plog(C)[C/(C—l)]. This CUSUM procedure signals when

S, >H.

Crosier (1988) proposed two schemes for a multivariate CUSUM. The first is a CUSUM of T
(COT) statistics scheme which is based on the square root of the multivariate Shewhart statistic. The
COT scheme is given by

S, =max[(S_, +T,-k),0], (4)
where S, 20, k>0, and 7, = +[(Xl.—,u)'Z’I(XI.—/1)T/2. The COT scheme signals when

S, > H.

The second CUSUM scheme proposed by Crosier (1988) is derived by replacing the scalar
quantities of a univariate CUSUM scheme by vectors. Let

12
Ci = [(SH +Xi _ﬂ)l Z_l (Si—l +Xi _:u)} > (5)
and
s 0 if C,<k 6
(S X, —p)(1-k/C) i C > k] ©

where u is the in-control mean vector, Y. is the covariance matrix, S, =0, and reference value
k> 0. Crosier (1988) stated that the choice of k= D/2 where D is defined in (2), appears to
minimize the ARL at D for a given in-control ARL. The multivariate CUSUM is given by

12
v=[szs) ™)
The scheme signals when Y, > H. Moreover Crosier (1988) compared these two schemes of

multivariate CUSUM with the multivariate Shewhart chart and concluded that the CUSUM vector-
valued scheme has a better ARL performance than the COT scheme.

Pignatiello and Runger (1990) proposed two other multivariate CUSUM charts, CUSUM #1
(MC1) and CUSUM #2 (MC2). The MC1 chart can be defined for sample i as

MC1, = max [(C,.'Z’l C )l/z - kn,.,O], (8)

where C, = z (X, —#4,), the reference value k> 0, and », is the number of subgroup defined as

1
I=i—-n;+1

©)

i

n_,+1,MCl_ >0
n = .
1 , otherwise

The ARL performance of the MC1 chart depends only on the noncentrality parameter. The second
scheme, MC2 control chart, is defined as

MC2, = max| 0,(MC2,, +D} —k)], (10)
where MC2,=0, D} = (X, —4,)' X" (X, — i4,). The upper control limits for the MC1 and MC2

charts are investigated by simulation, and they also provide a discussion about choice of the reference
value £.
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Pignatiello and Runger (1990) used the Markov chain approach and Monte Carlo simulation to
compare the ARL performance of several schemes such as MC1, MC2, several multiple univariate
CUSUM charts as developed by Woodall and Ncube (1985), and a multivariate Shewhart chart for
monitoring a multivariate normal process. The ARL performance of these charts showed that MC1
is a good control chart for detecting a variety of shifts in the mean of a multivariate normal process.
For detecting large shifts in the process mean, a multivariate Shewhart control chart appears to be a
good procedure. Both MC1 and several multiple univariate CUSUM charts perform well compared
to the multivariate Shewhart chart for detecting a small shift in the mean.

Mahmoud and Maravelakis (2013) studied the effect of estimating the vector of means and the
covariance matrix on the ARL performance of the multivariate CUSUM chart proposed by Crosier
(1988) and the MC1 chart proposed by Pignatiello and Runger (1990). They found that when
parameters are unknown and replaced by parameter estimates, the MC1 chart has better in-control
and out-of-control ARL performance than the multivariate CUSUM chart, especially when the
number of Phase I samples m is small.

3. Multivariate Distributions
Suppose we have p random variables, given by X,,X,,... X o and write these random

variables in terms of random vector X = (X, X,,..., X, ). If X, Xy, X , are independent normal

random variables with mean g, and variance ¢ *, then the multivariate probability density function
of X is given by
1 ey (?n) e
f(x) = ————e W e R, (11)
Q)" |’
The vector x has an independent multivariate normal (MVN) distribution (Rencher 2002), and is
2

denoted X ~ N (u,0°1I).

In general, if X, are not independent, random vector x has a multivariate normal (MVN)
distribution with mean vector u = (4,4,,...,4,)" and pxp covariance matrix Y, and the
multivariate probability density function of X is given by
1 Ly e
f(x) = —— e’ u ”
)" [3]

The MVN distribution can be defined in various ways, one is with its stochastic representation
(Hofert 2013)

,xeR”, (12)

X =u+A4Z, (13)
where Z =(Z,,Z,,...,Z,) is a k-dimensional random vector with Z,, i€ {l,..,k}, being

independent standard normal random variables, 4 € R”*

is a (p,k)-matrix, and g € R” is the
mean vector. The covariance matrix of X is X, = A4'. We assume k= p, if X, is positive definite

(thus has full rank and is therefore invertible).
A random vector X issaid to followa p -variate ¢ distribution with degrees of freedom ,, mean

vector g, and correlation matrix R (and with . denoting the corresponding covariance matrix) if

its probability density function is given by



144 Thailand Statistician, 2018; 16(2): 140-155

f(x) = 2 (1+(x_”)’R_ (x_”)J " xeRe. (14)
1/2

F(V)(m/)”/z IR| v
2
The degrees of freedom v is referred to as the shape parameter (Kotz and Naradajah 2004), and we

can denote X ~¢,(u,2).

Hofert (2013) stated that the multivariate ¢+ (MVT) distribution with degrees of freedom v can
be defined by the stochastic representation

X = u+\JWAz, (15)
where W = v/ x2, and y is arandom variable following a chi-squared distribution with degrees of
freedom v > 0. W is independent of Z, and all other quantities are as in (13). By introducing the
additional random factor /i , the MVT distribution with v degrees of freedom is more flexible than
the MVN distribution (which can be recovered by taking the limit v — o) especially in the tails
which are heavier for #,(4,X) than for N, (u,%). If W and Z are independent and v>1, the mean

\%

vector of X is E(X)= u, and the covariance matrix of X is Cov(X) =

22.

The structure of dependence between two or more related variables can be defined in terms of
their joint distribution. One way to obtain a multivariate distribution is joining the univariate
distribution through copulation, which is one of the most useful tools when the marginal distributions
are known or given. The use of copula functions enables the representation of various types of
dependence between variables. Nelsen (2006) defined a copula function as a joint distribution
function

C(ul,uz,...,up) =PU,<u,,U,< uz,...,Up < up), (16)

where 0<u, <1 and U, for j=1,2,.., p are marginally uniformly distributed in the interval (0,1).
Sklar's Theorem shows how to obtain a joint distribution using marginal distribution functions F,

and the copula C.

Sklar’s Theorem Let H be a p-dimensional distribution function with marginal distribution

Junctions  F,F,,...F,. Then there exists a p-dimensional copula C such that for all

Vs Y25 y,) € [F0,0]7,

Hy,p,509,) = CLED), B(0,), -0 F, (1,)]- (17)
If F.F,,...F, are all continuous, then C is unique; otherwise C is uniquely determined on
Range £} xRange F, x...xRange F,, the cartesian product of the ranges of the marginal cdf’s.
Conversely, if C is a p-copula and F,,F,,...,F, are distribution functions, then the function H
defined by (17) is a p-dimensional distribution function with marginal distribution functions
F.E,...F,.

There are several families of copulas such as elliptical copulas (Gaussian and t copulas are known
as elliptical copulas) and Archimedean copulas (e.g., Clayton, Frank, and Gumbel copulas) (Trivedi
and Zimmer 2005). Sukparungsee et al. (2015) studied the performance of MCUSUM control chart
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when the observations are drawn from an exponential distribution by using Gaussian, Clayton and
Frank copulas. The level of dependence between random variables is measured by Kendall’s tau.
Their results implied that, for small and large dependencies, it is necessary to detect the observation
dependence to indicate the copula and use that detection to fit the observation on the MCUSUM
chart.

In this research, we use the Gaussian copula to construct the multivariate distributions. Let @,
is the joint cumulative distribution function of a multivariate normal distribution with mean vector
zero and covariance matrix equal to the correlation matrix R . Then C,, the Gaussian copula
corresponding to @, is given by

Crpuy,uy,su,) = @, (@' (u),d ' (u),...,d" (u,))s (18)
where @' is the inverse cumulative distribution function of a standard normal.

If U,,U,,...,U, are independent, C(u,,u,,...,u,) = u, xu, x---xu,. Therefore, for independent
case, we can construct many multivariate distributions, such as a multivariate lognormal (MVL), a
multivariate beta (MVB), and a multivariate uniform (MVU) distribution, by using a copula function
and their marginal univariate distributions. The details of these three univariate distributions are now
presented.

If Z=log(X) is normally distributed, the distribution of X is said to be lognormal (Johnson et
al. 1994). Thus, X is a positive random variable, and the probability density function of X is given
by

1 _(logx—p1)*

— ¢ 2 x>0
S(x) = xo~N2rx

0 , otherwise,

(19)

where —o0 < <o, and o > 0.
The standard beta distribution is a distribution defined on the interval [0,1]. The probability
density function of the standard beta with parameters a and b is given by
Mx‘"1 (1-x)"",0<x<1
f(x) =1T(@)l'(b) (20)
0 , otherwise,
where a >0, and b >0 (Johnson et al. 1995).
The continuous uniform distribution is a member of the family of symmetric probability
distributions, and is defined by the two parameters a and b, which are its minimum and maximum

values. The probability density function is given by

1
— ,a<x<b
J(x)=1b-a 1)
0 , otherwise.
The case where a =0 and b =1 is called the standard uniform distribution which is a special case of

standard beta distribution when the parameters ¢ and b are both equal to one (Johnson et al. 1995).
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4. Run Length Properties

For a control chart, the run length is a random variable and is defined to be the number of
subgroups, which must be collected (or equivalently, the number of charting statistics that must be
plotted) until the first signal is observed suggesting a change from the in-control process.

A control chart is useful in detecting if a process is or is not in a state of statistical control. In
practice, the performance of a control chart is considered in terms of certain measures associated with
its run length distribution, including the average run length (ARL) and standard deviation of the run
length (SDRL). The ARL and the SDRL are an average and the standard deviation of the number of
subgroups sampled (or number of charting statistics needed to be plotted) before an out-of-control
signal is detected, respectively.

The ARL and SDRL are widely used to show the performance of control charts. Somran et al.
(2015) presented ARL results for a negative CUSUM chart for a lower-sided case when the
observations are from exponential distribution. Mahmoud and Maravelakis (2013) used ARLs and
SDRLs to study the effect of estimating the vector of means and the variance-covariance matrix on
the performance of two of the MCUSUM chart proposed by Crosier (1988) and the MC1 chart
proposed by Pignatiello and Runger (1990)

5. Research Methodology and Simulation Study

For studying the performance of MCUSUM control chart when the multivariate normality
assumption is violated, we consider MCUSUM control charts is proposed by Crosier (1988) for
individual observations which monitor the mean vector of the process where 2, 3 and 5 quality
characteristics are controlled jointly in which mean vector and covariance matrix are known. The
reference values, £k = 0.5, 1.0, and 1.5 are specified and the values of decision interval (/) are
obtained by simulation which are shown in Table 1. Without loss of generality, the in—control mean
vectors are (5, 5), (5, 5) and (5, 5, 5, 5, 5), and the covariance are diag (5, 5), diag (5, 5, 5) and (5, 5,
5,5, 5) for 2, 3 and 5 variables, respectively. Thus, only uncorrelated random variables are consider
in this study. The ARLs and SDRLs were then estimated for various shifts in the noncentrality
parameter (5 ) =0.00, 0.45, 1.01, 1.58, 2.06 and 3.00 for 2 variables, 6 = 0.00, 0.45, 1.03, 1.52, 2.10
and 3.10 for 3 variables and & = 0.00, 0.45, 1.03, 1.55, 2.02 and 3.00 for 5 variables.

Table 1 The decision interval (/) for MCUSUM to achieve an in-control ARL of 200
k
05 1.0 15
2 variables 5.49 3.01 1.93
3 variables 6.88 3.77 242
5variables 9.38 520 3.36

The random vectors X considered in the simulation come from multivariate normal (MVN),
multivariate ¢ (MVT) with 3, 6, 12, 24, and 48 degrees of freedom, multivariate uniform (MVU),
multivariate beta (MVB) with shape parameter vector (4, 2), and multivariate lognormal (MVL)
distributions. Thus, the comparisons will include several symmetric (MVN, MVT, MVU)
distributions, a left-skewed distribution (MVB) and a right-skewed distribution (MVL) with the
MVN, MVL, MVU and MVB having the same in-control means and variances. Each simulation is
replicated 50,000 times to provide accurate results.
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6. Results

The estimated ARLs and SDRLs of the MCUSUM control charts for monitoring the mean vector
for each distribution and noncentrality parameters when k= 0.5, 1.0, and 1.5 are shown in Tables 2-
7. Note that & = 0.00 corresponds to the in-control ARLs for all 2, 3 and 5 process variables. For
MVN distributions, the in-control ARLs are approximately the same value, 200, and the out-of-
control ARLs vary inversely as a size of noncentrality parameter, because the out-of-control ARLs
depend on the noncentrality parameter.

From Tables 2-4, we can see that when & = 0.5 in 2, 3 and 5 variables, the in-control ARLs for
the MVU and MVB are greater than the in-control ARLs of MVN, while the out-of-control ARLs for
the MVU and MVB close to the out-of-control ARLs of MVN. For MVT, the in-control ARLSs are
shorter than the in-control ARLs of MVN, moreover, as the degrees of freedom increase, the
distribution approaches normality, and the in-control ARLs approach 200. However, the out-of-
control ARLs for MVT are greater than MVN out-of-control ARLs, and when the degrees of freedom
increase, the out-of-control ARLs for MVT approach MVN out-of-control ARLs. For MVL, the in-
control ARLSs are smaller than the in-control ARLs of MVN, while the out-of-control ARLs are close
to the out-of-control ARLs of MVN.

When k£ = 1.0, the in-control and the first out-of-control ARLs for the MVU and MVB are
greater than the in-control ARLs of MVN, and the other out-of-control ARLs are close to MVN out-
of-control ARLs. And for MVU, in some cases ARLS were very large, for instance, the estimated in-
control ARLs for MVU are 839.25 and 29,045.34. The in-control and the first out-of-control MVT
ARLs are smaller than MVN ARLs, while the other out-of-control ARLs are slightly greater than
MVN ARLs. For MVL, the in-control and the first out-of-control ARLs are smaller than the ARLs
of MVN, and the other out-of-control ARLSs are close to MVN ARLs.

When k£ = 1.5, the ARLs are similar to & = 1.0 for all multivariate distributions.
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Table 2 The ARLs of the MCUSUM control charts for monitoring the mean vector in 2 variables
)
0.00 0.45 1.01 158 2.06 3.00
MVN 200.11  35.60 975 541 399 2.69
MVT(3) 132.03 9048 26.70 11.85 7.93 485
MVT(6) 150.78 50.20 1337 7.01 503 3.30
MVT(12) 176.84 41.65 11.17 6.05 442 2095
0.5 MVT(24) 188.99 3852 1039 571 418 280
MVT(48) 195.35 3693 10.07 555 4.08 274
MVU 241.67  35.06 9.68 540 399 2.68
MVB 209.11 3534 9.60 538 397 2.66
MVL 142.70 3594 10.07 550 4.02 270
MVN 200.48 60.77 11.80 491 325 2.02
MVT(3) 61.88 58.65 4323 19.71 975 436
MVT(6) 79.59 5719 19.27 726 448 257
MVT(12) 119.02 6025 1448 579 372 224
1.0 MVT(24) 152.85 61.50 13.00 530 345 2.12
MVT(48) 17521 6144 1233 5.08 334 2.07
MVU 839.25 7146 1130 481 323 2.02
MVB 22590 8239 1129 478 320 2.01
MVL 6537 37.07 1234 515 334 204
MVN 199.84 92.07 19.14 6.08 340 1.81
MVT(@3) 4443 4322 3819 2928 18.81 5.88
MVT(6) 5499 48.08 2729 11.15 559 250
MVT(12) 86.00 63.17 2331 7.84 414 2.07
1.5 MVT(24) 12346 7574 21.16 6.82 3.73 1.92
MVT(48) 153.32  84.09 20.18 643 356 1.86
MVU 29045.34 353.82 1931 576 332 1.76
MVB 27892 26121 2184 591 328 1.75
MVL 4554 33.17 1631 647 3.63 1.86

k distributions

In addition to the ARL performance, we consider the SDRL for all scenarios. From Tables 5-7,
the SDRLs have the same behavior as the ARLs for both in-control and out-of-control processes.
That is, the ARLs and SDRLs are highly correlated. Although the ARL and SDRL values appear very
similar, their differences can be seen by examining the ratios of SDRL/ARL. These ratios are
summarized in Table 8. For 2 variables cases, the ratios of SDRL/ARL~1 for the noncentrality
parameter value is 0.00, the ratios decrease as the noncentrality parameter increases but the rate of
change decreases as & increases. The patterns of the ratios for 3 and 5 variables are very similar to
those in Table 8.
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Table 3 The ARLs of the MCUSUM control charts for monitoring the mean vector in 3 variables
1)
0.00 0.45 1.03 152 210 3.10
MVN 198.60 37.76 10.78 6.61 4.58 3.08
MVT(3) 13432 93.04 2740 1427 898 5.53
MVT(6) 153.75 52.03 1441 852 576 3.77
MVT(12) 17836  43.76 1225 7.37 507 3.37
0.5 MVT(24) 191.54 40.56 1143 698 481 3.21
MVT(48) 196.02 39.16 11.10 6.78 470 3.15
MVU 227.83  37.51 10.72 6.59 4.60 3.08
MVB 205.09 3747 10.64 6.57 456 3.08
MVL 151.89  38.21 11.04 6.71 4.64 3.09
MVN 198.87 61.52 11.70 5.73 357 224
MVT(@3) 5840 55.65 4044 21.78 9.94 4.65
MVT(6) 7743 56.02 18.34 838 4.81 2.8l
MVT(12) 117.00 60.85 14.16 6.73 4.03 2.46
1.0 MVT(24) 154.12 6227 1279 6.17 377 234
MVT(48) 17598 61.77 12,11 594 3.66 2.28
MVU 523.52  71.00 11.31 563 3.54 225
MVB 222.54 7475 1144 561 350 2.25
MVL 69.31 4022 1194 596 3.66 225
MVN 200.44 9255 1790 6.85 352 192
MVT(3) 37.84 3735 33.75 28.10 17.33 5.68
MVT(6) 4771 4235 2494 1195 552 2.60
MVT(12) 77.70  58.50 21.70 871 423 2.8
1.5 MVT(24) 11535  73.67 1953 7.63 382 2.04
MVT(48) 149.27 8235 1891 720 3.65 197
MVU  4819.11 260.10 1853 6.65 347 1.90
MVB 262.72 183.60 20.65 6.68 342 1.88
MVL 4272 32.62 1483 7.14 3.71 197

k distributions

7. Discussion

The results in this simulation study highlight the sensitivity (or lack of robustness) of ARLs and
SDRLs to violations of the multivariate normality assumptions.

If the violation of the MVN assumption occurs when sampling from a more heavy-tailed MVT
distributions then there is a significant reduction in the in-control ARLs (and in the first out-of-control
when k£ =1.0 and 1.5). Thus, the in-control ARL for the MVN case is an overestimate of the true
ARLs for the MVT distributions with the bias decreasing as the degrees of freedom increase.
However, ARLs for the MVN is an underestimate for all out-of-control cases for k£ =0.5, and for all
cases for k£ =1.0 and 1.5 when the noncentrality parameter is greater than 1.

If the violation of the MVN assumption occurs when data are sampled from the MVU and MVB
distributions, there are now a significant increase in the in—control ARLs. Thus, the ARLs for the
MVN are an underestimate of the ARLs for MVU and MVB when the noncentrality parameter is
0.00 but the ARLs for MVU and MVB are very close to MVN ARLs for the cases with the
noncentrality parameter is greater than 1. And because of the symmetry and finite support for the
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MVU distributions, if the noncentrality parameter was not sufficiently large, then the in—control
ARLs are very large, especially when £ =1.0 and 1.5.

Table 4 The ARLs of the MCUSUM control charts for monitoring the mean vector in 5 variables
1)
0.00 0.45 1.03 155 2.02 3.00
MVN 199.04 4141 13.09 8.08 6.02 4.03
MVT(3) 140.95 96.09 30.69 16.70 11.65 7.26
MVT(6) 158.07 5570 17.12 1025 7.52 493
MVT(12) 181.76  47.13 1471 9.00 6.65 4.4l
0.5 MVT(24) 191.77 44.10 1384 851 630 4.20
MVT(48) 195.63 4259 1342 827 6.16 4.12
MVU 215.50 4126 13.02 8.06 6.00 4.02
MVB 203.78 41.08 1298 8.04 599 4.02
MVL 167.41 41.73 1330 8.18 6.06 4.05
MVN 200.00 6227 12.68 643 447 281
MVT(3) 5841 5590 40.81 21.40 12.07 5091
MVT(6) 78.02 56.65 19.11 9.09 596 3.55
MVT(12) 12245 6149 1509 745 506 3.11
1.0 MVT(24) 15747 63.05 1372 695 473 294
MVT(48) 178.81 62.14 1320 6.66 4.60 2.88
MVU 35251 68.81 1251 641 445 280
MVB 21892  69.04 1252 639 443 278
MVL 84.01 4521 1294 6.64 456 285
MVN 199.92  90.61 1750 6.86 4.18 2.37
MVT(3) 34.16 33.46 30.89 2591 1827 6.75
MVT(6) 4342 3922 2338 11.17 631 3.15
MVT(12) 73.40 5547 2051 851 493 2.66
1.5 MVT(24) 113.30 7139 1899 7.58 453 250
MVT(48) 149.09 80.74 18.14 7.22 434 243
MVU 118151 17632 1778 6.78 4.14 238
MVB 242.63 13338 1856 6.75 4.10 235
MVL 4599 3481 1530 7.13 434 242

k distributions

If the violation of the MVN assumption occurs when data are sampled from skewed-right MVL
distributions, then once again there is a significant reduction in the in-control ARLs. Thus, the process
engineer may have a very biased overestimates of the in-control ARLs while the out-of-control ARLs
are very close to MVN ARLs.

Tables 2-7 each highlight the potential for extreme differences for the in-control ARLs and
SDRLs when MVN is assumed. Typically, the process engineer has a desired in-control ARL when
determining the upper control limit and an ARL for a desired shift to be detected quickly. Thus, is
can be very risky to use these upper control limits when samples are based in individual
measurements.
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Table 5 The SDRLs of the MCUSUM control charts for monitoring the mean vector in 2 variables
1)
0.00 0.45 1.01 158 2.06 3.00
MVN 192.00 28.41 471 191 120 0.67
MVT(3) 129.87 86.46 1884 573 3.12 145
MVT(6) 146.41  43.02 7.45 281 1.67 0.87
MVT(12) 172.83  34.03 575 225 139 0.5
0.5 MVT(24) 182.27  30.96 517 2.07 128 0.70
MVT(48) 190.65 2947 494 199 123 0.69
MVU 234.37  27.55 474 192 122 0.67
MVB 20296  27.52 463 187 1.17 0.67
MVL 139.48  29.81 501 202 123 0.67
MVN 199.30  58.09 892 266 141 0.68
MVT(3) 61.12 58.08 42.08 16.65 643 1091
MVT(6) 7926  56.09 16.51 455 224 093
MVT(12) 117.61 57.71 11.69 334 1.72 0.77
1.0 MVT(24) 15121 58.83 1016 295 155 0.72
MVT(48) 173.34 5842 950 278 147 0.70
MVU 836.36  67.53 843 259 140 0.71
MVB 224.16  78.17 824 246 133 0.68
MVL 64.58 3552 999 298 151 0.69
MVN 198.89 91.19 1738 453 2.03 0.80
MVT(3) 4390 4251 3735 2847 17.57 3.88
MVT(6) 5438 47.12 2635 9.64 397 1.21
MVT(12) 8530 6230 2197 623 268 0.96
1.5 MVT(24) 12229  74.17 1970 524 230 0.87
MVT(48) 151.14 82.80 1875 487 2.17 0.83
MVU 29159.95 352.07 1731 413 198 0.85
MVB 277.49 25817 19.64 410 185 0.79
MVL 4477 3261 1520 5.14 230 0.82

k distributions

Tables 2-7 also confirm what is expected as the noncentrality paremeter become larger. That is,
the ARLs converge to zero for all distributions as the magnitude in the shift vector increases.
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Table 6 The SDRLs of the MCUSUM control charts for monitoring the mean vector in 3 variables
1)
0.00 0.45 1.03 152 210 3.10
MVN 189.62  27.89 461 216 123 0.68
MVT(@3) 131.25 8698 17.82 6.57 3.19 1.50
MVT(6) 147.22  42.69 721 317 174 090
MVT(12) 170.76  33.97 563 257 142 0.76
0.5 MVT(24) 183.26  30.85 507 237 132 0.71
MVT(48) 186.87  29.50 485 228 128 0.69
MVU 217.12  27.63 463 217 123 0.69
MVB 196.78  27.28 447 211 1.19 0.66
MVL 145.80  29.87 500 229 130 0.70
MVN 195.89  57.56 811 287 139 0.65
MVT(@3) 57.76 5494 38.57 1832 6.02 1.84
MVT(6) 75.88  54.13 1498 503 2.16 0093
MVT(12) 11449 57.69 1048 3.65 1.67 0.76
1.0 MVT(24) 151.27 58.74 9.16 323 151 0.70
MVT(48) 172.58  57.85 844 3.05 145 0.67
MVU 525.14  65.80 7.64 283 139 0.65
MVB 218.69  69.71 7.53 270 129 0.60
MVL 68.20  38.15 888 321 151 0.69
MVN 199.47 90.67 1577 485 1.87 0.77
MVT(@3) 37.38 36.58 33.04 27.50 15.67 3.39
MVT(6) 47.11 41.72 23.62 10.15 3.58 1.14
MVT(12) 76.63 57.56 19.89 6.67 246 0.89
1.5 MVT(24) 113.79  72.05 17.58 5.61 2.13 0.82
MVT(48) 147.79 81.14 1692 520 2.00 0.79
MVU  4808.25 25729 16.01 459 184 0.79
MVB 260.67 18198 1780 446 1.70 0.74
MVL 42.09 31.81 1348 548 2.18 0.81

k distributions
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Table 7 The SDRLs of the MCUSUM control charts for monitoring the mean vector in 5 variables
1)
0.00 0.45 1.03 155 2.02 3.00
MVN 185.11 27.52 486 227 143 0.78
MVT(3) 13791 87.56 1795 6.84 3.89 1.84
MVT(6) 147.93  42.29 7.49 334 205 1.06
MVT(12) 168.88  33.18 587 269 1.68 0.88
0.5 MVT(24) 178.07  30.12 532 246 156 0.83
MVT(48) 181.69  28.76 505 236 149 0.80
MVU 200.50 27.22 483 227 142 0.78
MVB 188.95 2670 473 222 138 0.76
MVL 155.79  28.96 519 242 152 0.82
MVN 195.34  56.77 7.68 275 154 0.75
MVT(3) 57.64 54.67 38.12 1639 6.89 220
MVT(6) 7522 53.58 1425 479 246 1.07
MVT(12) 118.39  57.20 10.05 350 1.89 0.88
1.0 MVT(24) 152.95 57.53 870 312 1.69 0.81
MVT(48) 176.02  56.75 828 291 1.62 0.78
MVU 345.80 61.93 7.48 273 154 0.76
MVB 213.52  61.84 733 260 146 0.72
MVL 81.90 41.80 857 3.10 1.71 0.82
MVN 196.89 8746 1448 421 199 0.81
MVT(3) 3330 3278 2994 24.68 1629 3.85
MVT(6) 4232 3840 2148 8.60 3.80 1.26
MVT(12) 71.56 5393 18.00 580 259 0098
1.5 MVT(24) 111.60 69.16 16.07 489 226 0.88
MVT(48) 147.66  78.63 15.10 457 2.12 0.85
MVU 1175.74 171.71 1435 4.05 193 0.80
MVB 240.17 13024 1479 390 184 0.72
MVL 4485 33.66 1335 487 235 0091

k distributions
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Table 8 The ratios of SDRL/ARL of the MCUSUM control charts for monitoring the mean vector
in 2 variables

5
k- distributions 000 045 101 158 206 3.00
MVN 096 080 048 035 030 025

MVT(3) 098 096 071 048 039 030

MVT(6) 097 086 056 040 033 026

MVT(12) 098 08 051 037 031 025

0.5 MVT(24) 096 080 050 036 031 025
MVT(48) 098 080 049 036 030 025

MVU 097 079 049 036 031 025

MVB 097 078 048 035 029 025

MVL 098 083 050 037 031 025

MVN 099 096 076 054 043 034

MVT(3) 099 099 097 084 066 044

MVT(6) 100 098 086 063 050 036

MVT(12) 099 096 081 058 046 034

1.0 MVT(24) 099 096 078 056 045 034
MVT(48) 099 095 077 055 044 034

MVU 100 095 075 054 043 035

MVB 099 095 073 051 042 034

MVL 099 096 081 058 045 034

MVN 100 099 091 075 060 044

MVT(3) 099 098 098 097 093 0.66

MVT(6) 099 098 097 086 071 048

MVT(12) 099 099 094 079 065 046

15 MVT(24) 099 098 093 077 062 045
MVT(48) 099 098 093 076 061 045

MVU 100 1.00 090 0.72 060 048

MVB 099 099 090 069 056 045

MVL 098 098 093 079 063 044

8. Conclusions

The simulation results in this study are meant to provide a warning to process engineers who rely
on MCUSUM control charts to monitor a process having multiple responses and assume the MVN
assumption is reasonable. The type of skewness for a distribution, whether or not the distribution has
a finite interval for support for continuous responses, all affect the ARLs and SDRLs in different
ways when the MVN assumption has been violated.
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