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Abstract 

In this paper, we consider a new control procedure for monitoring mean shift using the 

conditional least squares estimator (CLSE)-based cumulative sum (CUSUM) test for the first-order 

seasonal integer-valued autoregressive (INAR(1)s) processes. Numerical experiments show that the 

proposed CLSE-CUSUM procedure outperforms conventional CUSUM charts for small to moderate 

up-shifts in mean of innovation processes, in terms of average run length (ARL), standard deviation 

(SD) and median. 

______________________________ 
Keywords: Average run length, INAR(1)s process, CLSE-based CUSUM test, CUSUM chart, small to 

moderate shift. 

1. Introduction 

There has been a growing interest in modeling autocorrelated count processes and studying their 

statistical properties. Models using a thinning operator have received much attention from 

researchers. Steutel and van Harn (1979) first designated the binomial thinning operator ‘  ’: for 

random variable X  and [0,1],   X  is defined as 
1

( ),
X

i

i

B 


  wherein ( )iB   are independent 

and identically distributed (i.i.d.) Bernoulli random variables with success probability 

( ( ) 1) ,iP B     independent of .X  Using this operator, Al-Osh and Alzaid (1987) proposed the 

first-order integer-valued autoregressive (INAR(1)) process: 1 ,t t tX X      ,tZ  where t  are 

i.i.d. non-negative random variables, independent of ,uX  with mean   and variance 2.   Since 

then, a number of articles have been published in the literature: see Weiß (2008) and Scotto et al. 

(2015) for a review. Bourguignon et al. (2016) recently consider the seasonal INAR(1) process with 

seasonal period sN  (INAR(1)s) as follows: 

, . t t s tX X t    Z     (1) 

Statistical properties, such as the existence of stationary solutions, explicit form of 

autocorrelation function and transition probabilities can be found in Bourguignon et al. (2016). 

Control chart is one of the most useful tools in statistical process control (SPC). Among control 

charts, the cumulative sum (CUSUM) control scheme, introduced by Page (1954), is well known as 



174                                                                   Thailand Statistician, 2018; 16(2): 174-190 

a standard tool for detecting small to moderate abnormal changes in the process of interest: see 

Montgomery (2012) for a general review. A conventional upper one-sided CUSUM control statistic 

for detecting a mean increase is expressed as: 

0 0 ,C c        (2) 

 1max 0, ,   ,t t tC X k C t   N     (3) 

where 0 ( 0)c   is called the ‘starting value’, usually set to be 0, ( )tk EX  is called the ‘reference 

value’, and ( 0)h   is the ‘control limit’. When tC h  occurs, the process of interest is regarded as 

‘out-of-control’. The reference value k  acts as a tuning parameter for the sensitive detection of a 

mean increase, preventing the statistic from drifting towards the control limit .h  Weiss and Testik 

(2009) study the upper one-sided CUSUM control charts for Poisson INAR(1) processes and Yontay 

et al. (2013) consider the two-sided CUSUM control chart by combining the one-sided CUSUM 

charts. The two-sided CUSUM control statistic is defined as: 

 

 

0 0

1

0 0

1

,

max 0, , ,

,

max 0, , ,

t t t

t t t

C c
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C c
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


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
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where 0c  and 0c  are starting values, k  and k   are reference values, and h , h  are control limits 

of upper and lower one-sided CUSUM charts, respectively. When tC h   or tC h   occurs, the 

process of interest is regarded as out-of-control. Conventionally, the performance evaluation of 

control charts is carried out based on the average run length (ARL), which is the average number of 

observations until the signal indicating an out-of-control state occurs. Two types of ARLs are 

considered: the 0ARL  (in-control ARL) is the average number of observations until a false alarm 

occurs when the process is in-control; the 1ARL  (out-of-control ARL) is the average number of 

observations until the control procedure triggers a correct signal, indicating an abnormal change from 

its start. 

In this study, we consider the CUSUM test based on conditional least squares estimator (CLSE) 

from INAR(1)s processes and apply it to monitoring the mean shift. Based on this, we construct a 

one-sided control chart and compare its performance with the CUSUM charts. As a relevant work, 

we refer to Huh et al. (2017) who use the conditional maximum likelihood (MLE) in integer-valued 

generalized autoregressive conditional heteroskedasticity (INGARCH) models. This paper is 

organized as follows. Section 2 presents the difference equations as to the moments of INAR(1)s 

processes. Moreover, the CLSE-CUSUM test statistic is introduced. Section 3 designs a new control 

statistic for monitoring mean shift based on the results in Section 2. Section 4 compares the proposed 

control procedure with the CUSUM chart based on numerical experiments using ARL, standard 

deviation (SD) and median. Section 5 illustrates a real data analysis demonstrating the superiority of 

our proposed procedure to the CUSUM chart. Sections 6 and 7 provide technical proofs and 

concluding remarks. 

 

2. Higher Moments and CLSE-based CUSUM Test 

In this section, we show the existence of a 4th moment and provide related difference equations 

for stationary INAR(1)s processes. These are important in the construction of the control statistic in 

Section 3. 
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Proposition 2.1 Suppose that [0,1)   and 4
tE   . Then, we have ,kEX C    1,2,3, 4,k   

for some 0,C   where X  is the unique stationary limit of tX  in distribution. 

 

Difference equations for moments are obtained by using the properties of Binomial thinning 

operator. 

 

Proposition 2.2 Let { }t tX Z  be a stationary INAR(1)s process with [0,1),   

, ,  1, 2,3, 4,k
k tE k       and 2 2
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Given observations 1 2, , ,s s nX X X      from the stationary INAR(1)s process with 

( 0),tE    2) 0( ( )tVar    and autocorrelation [0,1),   the CLSE, ˆ ˆ( , ),n n n     of 

parameter ( , )     can be obtained by minimizing the conditional sum of squares 

 2

1

( ) :
n

n t t s

t

S X X  



     over {0 1,  0},       that is, 
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where ˆn  is set to be 0  if its denominator is 0.  By checking the regularity conditions in Klimko and 

Nelson (1978), one can see that the CLSE ˆ
n  enjoys the property of consistency and asymptotic 

normality. 

Since Page (1955), the change point problem has been widely appreciated as an important issue 

in the time series analysis context, because ignorance of parameter changes leads to a false 

conclusion. The CUSUM test has been popular due to the ease at its usage among researchers: see 

Chen and Gupta (2011) for a general review and Lee et al. (2003) for time series models. In this 

study, we consider to utilize the CLSE-based CUSUM test in Lee and Na (2005) and Kang and Lee 

(2009) for detecting the change of  

We set up the null and alternative hypothesis as follows: 

0 0 0 0 1 1 0( , ) does not changes over , , vs.:  not  : s nH X X H H        
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Following the arguments in Lee and Na (2005) and Kang and Lee (2009), we can verify the 

following, the proof of which is omitted for brevity: 

 

Theorem 2.1  Under 0 ,H  as ,n ™  

 
2

2
0 1

sup ( ) ,
w

cls
n

u

T u

 

B™  

where 2 1 2( ) ( ( ), ( ))u B u B u  B   is a 2-dimensional Brownian bridge. 

 

Tables 1 and 2 show that the performance of the CLSE-CUSUM statistics with 0 0 ,       

0     at the nominal level of 0.05  when the innovations follow a Poisson distribution with 

mean  : the corresponding critical value is 2.408 (see Lee et al. 2003). Here, we use 1,000 

repetitions. When n  is small ( 250,500n  ), the sizes are somewhat over-estimated, which becomes 

more prominent when   is higher ( 0.75  ). However, as n  increases, the size approaches the 
predetermined level. Moreover, the power tends to increase gradually when   and n  increase. Note 

that when there is a shift in ,  the performance in the case of 0   is slightly better in terms of 

power than in the other case. It can be also seen that for shift in ,  the performance in the case of 

0   is much better than in the other case. Overall, the results confirm the validity of the CLSE-
CUSUM statistic. 
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Table 1 Empirical sizes and power of the CLSE-CUSUM statistic for INAR(1) process with shift in 

0 0       at the level of 0.05  

s  0  0  n  
  

-0.6 -0.45 -0.3 -0.15 0 0.15 0.3 0.45 0.6 

4 5 0.25 250 0.97 0.78 0.43 0.16 0.07 0.15 0.38 0.68 0.89 

   500 1.00 0.99 0.72 0.23 0.06 0.21 0.65 0.95 1.00 

   1000 1.00 1.00 0.97 0.41 0.05 0.38 0.93 1.00 1.00 

   1500 1.00 1.00 1.00 0.56 0.05 0.54 0.99 1.00 1.00 

   2000 1.00 1.00 1.00 0.71 0.05 0.68 1.00 1.00 1.00 

  0.5 250 0.96 0.77 0.44 0.18 0.10 0.17 0.36 0.59 0.83 

   500 1.00 0.96 0.66 0.23 0.09 0.21 0.57 0.88 0.99 

   1000 1.00 1.00 0.93 0.35 0.06 0.33 0.87 1.00 1.00 

   1500 1.00 1.00 0.99 0.50 0.05 0.47 0.97 1.00 1.00 

   2000 1.00 1.00 1.00 0.64 0.05 0.58 0.99 1.00 1.00 

  0.75 250 0.97 0.81 0.52 0.26 0.11 0.24 0.38 0.57 0.77 

   500 1.00 0.97 0.68 0.28 0.11 0.24 0.53 0.82 0.96 

   1000 1.00 1.00 0.92 0.38 0.10 0.32 0.80 0.98 1.00 

   1500 1.00 1.00 0.98 0.50 0.07 0.41 0.94 1.00 1.00 

   2000 1.00 1.00 1.00 0.60 0.05 0.51 0.98 1.00 1.00 

 

Table 2 Empirical sizes and power of the CLSE-CUSUM statistic for INAR(1) process with shift in 

0     at the level of 0.05  

s  0  0  n  
  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 

12 7 0.25 250 0.86 0.60 0.29 0.10 0.06 0.19 0.56 0.89 0.99 

   500 1.00 0.93 0.57 0.18 0.06 0.30 0.83 1.00 1.00 

   1000 1.00 1.00 0.93 0.34 0.05 0.51 0.99 1.00 1.00 

   1500 1.00 1.00 0.99 0.53 0.05 0.66 1.00 1.00 1.00 

   2000 1.00 1.00 1.00 0.68 0.05 0.81 1.00 1.00 1.00 

  0.5 250 0.86 0.64 0.35 0.13 0.07 0.25 0.69 0.97 1.00 

   500 1.00 0.95 0.64 0.19 0.07 0.39 0.94 1.00 1.00 

   1000 1.00 1.00 0.96 0.39 0.05 0.62 1.00 1.00 1.00 

   1500 1.00 1.00 1.00 0.59 0.05 0.80 1.00 1.00 1.00 

   2000 1.00 1.00 1.00 0.73 0.05 0.89 1.00 1.00 1.00 

  0.75 250 0.93 0.78 0.50 0.21 0.10 0.43 0.94 1.00 1.00 

   500 1.00 0.97 0.79 0.32 0.10 0.65 1.00 1.00 1.00 

   1000 1.00 1.00 0.99 0.57 0.08 0.90 1.00 1.00 1.00 

   1500 1.00 1.00 1.00 0.77 0.06 0.97 1.00 1.00 1.00 

   2000 1.00 1.00 1.00 0.91 0.05 1.00 1.00 1.00 1.00 
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3. Monitoring of Mean Shift based on CLSE-CUSUM Statistic 

In this section, we modify the CUSUM test in Theorem 2.1 that can detect a parameter shift more 

efficiently in stationary INAR(1)s processes. Given predetermined positive integer ( 1),l s   

playing a role such as the length of virtual in-control data, we put l s    and define 

   
2

1
1 , 1
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Initial sums such as 
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0
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t s

t

X




 

  are replaced with

,t t sEX X   ,tEX  ,tEX  and 2 ,tEX  respectively; W  and V  are calculated using the formula in 

Proposition 2.2, (6) and (7), or replaced by those in (8) and (9). The same convergence result as in 

Theorem 2.1 also holds for ( ),nC   regardless of .  

To compare the performance with the CUSUM chart, we use the Poisson INAR(1) process in (1) 

because it is the most widely used INAR(1) process in literatures. We evaluate the CUSUM statistic 

with the Poisson INAR(1) with mean 0.  In this case, the marginal mean is 0 0 0/ (1 )    , W  

and V  are obtained as:  

2
0 1,1 1,2 1,3 0 2,1 2,2 2,30 0 0

0 2,1 2,2 2,3 3,1 3,20

( ) ( )
, ,

( )1

W W W W W W
V W

W W W W W

   



      
            

where  
2 2

1,1 0 0 0 0 0 0(1 )( 2 ),W           2 3
1,2 0 0 0 0 0 0(1 2(1 ) 2(1 ) 2 ),W           

 
2 3

1,3 0 0 0(1 3 ),W       2 2
2,1 0 0 0 0 0 ,2W        

 
2 2

2,3 0 0 0(1 ),W       2 2
3,1 0 0 0 0 0 0 0 02 2 ,W            

 
2

3,2 0 0 0 0 0 0 0(1 ) 2 ( ).W          
 

Note that in the case of INAR(1) process with Poisson innovations, the elements of W  can be also 

obtained from Proposition 1 in Weiß (2012). Tables 3 and 4 show examples of ARL profiles, 

compared with the two-sided CUSUM chart (CUSUM ( , , , )k h k h     with 0 0 0c c   ) when the 

parameters are changed to / (1 ),     0 0      and 0 .     Here, we use 30,000  

repetitions. The tables show that the CLSE-CUSUM control procedure outperforms the two-sided 

CUSUM chart regardless of   when there is an up-shift in .  Overall, the ARL performance appears 

to be the best at 250   when there is an up-shift in .  However, the performance of the proposed 

procedure performs poorly when there is a down-shift in   or ,  which becomes clearer as   gets 

smaller. When there is an up-shift in ,  the performance of the two charts does not differ 

significantly expect 100.   For 100,   there are cases such that the out-of-control ARL is larger 

2
2,2 0 0 0 0(1 2 2 ),W      
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than the in-control ARL when there is a down-shift in   or ,  although this phenomenon is 

mitigated as   increases. Such a case often occurs when the difference between the in-control ARLs 

of the two one-sided charts is large, especially when the in-control ARL of the upper one-sided chart 

is smaller than the lower one-sided chart: see, for example, Yontay et al. (2013). We can easily guess 

that for the given control limit ,c  the out-of-control state signals including false alarms are mainly 

caused by the up-shifts of parameter. Hence, if one uses the one control limit for the two-sided 

monitoring, it may lead to a biased ARL performance. This problem could be avoided by using proper 

lower and upper one-sided control limits. 

Based on our findings mentioned above, we design the one-sided CLSE-CUSUM control 

procedure as follows: given observations 1 2, , ,s s nX X X      from the stationary INAR(1)s process 

with 0 [0,1),  0 0tEX    and 4 ,tEX    let ,
1

( , ) arg max ( ),p n k
k n

c n l 

 

  where , ( )n kl    are in (10) 

and ( , )

( , )
p

p

n

c n k

k c n

X X



   for 2.   Note that ( , )pc n  is an estimated location of change point 

when it exists. The upper one-sided CLSE-CUSUM control statistic is then: 

( , ) 0( ) ( ) ( ),  ,
p u

u
n u n u c nC C I X n    N                   (11) 

while the lower one-sided CLSE-CUSUM control statistic is: 

( , ) 0( ) ( ) ( ),  ,
p l

l
n l n l c nC C I X n    N  

where ( )nC   is the one in (10), ( )I   is an indicator function, 2u   and 2l   are predetermined 

positive integers. Given control limits 0uc   and 0,lc   we determine that the process is out-of-

control when ( )u
n u uC c   or ( )l

n l lC c   is signaled, that is, the signal of out-of-control state is 

triggered by a mean increase (the former case) or a mean decrease (the latter case). The fundamental 

difference between the proposed and conventional methods lies in that ours uses additional 

information in estimation when determining the status of the process of interest. 

 

Table 3 ARLs of the CLSE-CUSUM test statistic and conventional two-sided CUSUM chart for 

INAR(1) process with shift in 0 0      

0  0    c  
  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 

2.5 0.25 
 

CUSUM 

(3,19,2,15): 155.7 229.4 338.8 459.5 510.7 440.8 322.1 224.8 158.3 
  100 1.374 298.6 448.6 510.5 559.1 510.8 398.6 309.5 213.6 147.1 
  250 1.151 149.3 227.9 355.0 505.0 510.7 387.5 263.8 177.7 127.6 

  500 0.955 147.6 203.6 301.1 466.4 510.6 396.2 261.7 183.2 136.5 
  750 0.828 153.9 207.0 297.3 453.5 510.8 398.3 270.3 192.1 145.0 

2.5 0.5 
 

CUSUM 

(3,29,2,22): 144.4 210.8 307.8 429.2 492.4 438.6 325.3 231.5 165.0 
  100 1.38 390.4 509.8 573.4 530.2 492.1 403.0 305.1 217.6 159.5 
  250 1.14 166.9 254.0 381.4 486.8 493.4 385.7 266.1 184.6 134.1 

  500 0.942 158.5 221.9 324.2 452.1 492.6 388.8 268.0 189.6 144.6 
  750 0.809 162.2 222.1 313.5 436.4 492.9 386.1 273.4 197.1 153.5 

2.5 0.75 
 

CUSUM 
(4,22,2,40): 143.8 202.2 296.1 413.5 497.6 477.4 386.1 292.1 216.5 

  100 1.401 580.4 656.9 624.0 590.2 497.5 381.4 275.5 203.5 149.8 

  250 1.146 197.5 303.8 440.0 528.4 497.6 384.7 264.6 189.5 139.5 
  500 0.937 171.5 238.5 352.0 480.9 497.6 382.3 268.2 195.5 150.1 
  750 0.808 173.4 235.3 334.9 467.8 497.6 389.9 277.0 204.5 159.2 
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Table 4 ARLs of the CLSE-CUSUM test statistic and conventional two-sided CUSUM chart for 
INAR(1) process with shift in 0     

0  0    c  
  

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 

2.5 0.25 
 

CUSUM 
(3,19,2,15): 108.3 171.6 292.9 489.0 512.3 263.5 119.9 63.5 38.9 

  100 1.374 87.9 145.5 333.9 525.4 510.8 299.3 129.3 61.9 36.8 

  250 1.151 84.1 111.3 179.0 375.3 510.7 253.9 111.1 62.3 40.5 
  500 0.955 94.7 120.6 174.7 320.6 510.6 253.8 119.3 69.7 45.9 
  750 0.828 102.8 129.2 181.7 313.8 510.8 260.4 126.5 75.1 49.7 

2.5 0.5 
 

CUSUM 
(3,29,2,22): 78.7 117.2 200.2 386.2 491.9 230.0 94.9 48.9 30.0 

  100 1.38 90.1 138.4 280.5 519.3 492.1 269.4 110.0 50.6 27.8 

  250 1.14 84.8 109.9 167.6 355.1 493.4 222.5 93.4 50.0 30.0 
  500 0.942 95.2 119.4 167.6 304.5 492.6 224.2 99.9 55.3 33.4 
  750 0.809 102.6 127.2 174.1 297.2 492.9 229.7 105.7 58.8 35.5 

2.5 0.75 
 

CUSUM 
(4,22,2,40): 65.5 86.5 134.3 279.7 500.6 185.5 57.0 25.3 15.3 

  100 1.401 91.5 125.2 216.4 464.5 497.5 223.6 64.6 25.6 14.3 
  250 1.146 83.4 103.4 149.0 291.2 497.6 163.8 56.6 25.9 15.0 
  500 0.937 91.8 111.0 151.4 258.6 497.6 162.6 59.9 27.6 16.0 

  750 0.808 98.6 118.5 159.0 261.5 497.6 167.9 62.7 28.8 16.5 

 

 

 

Figure 1 ARLs of upper one-sided CLSE-CUSUM and conventional CUSUM chart 
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4. Performance Comparison 

We focus on the upper one-sided control chart for detecting a mean increase, since this case 

receives more attention in practice. To compare with the upper one-sided CUSUM chart (CUSUM

( , )k h  with 0 0c  ), we adopt the reference value and corresponding control limit in Weiss and Testik 

(2009). Let { }t tX   be a stationary INAR(1) process with 0 [0,1)   and Poisson innovations with 

mean 0.  In this case, the marginal mean is obtained as 0 0 0/ (1 ).     Numerical experiments 

show that the performance of our procedure and the CUSUM chart is not much affected by the values 

of   and   for fixed ,  so we only take account of the case that 0 0 0/ (1 ) 2.5      and 

0 {0.25,0.5,0.75}.   These values are assumed to change to / (1 )     with 0 0 .    

and 0 .     Figures 1 shows the performance, in terms of ARL, of the CUSUM chart and our 

procedure with several .  The specific values in the figures can be found in Tables 5 and 6. The 

ARLs, SDs and medians are obtained using 30,000  repetitions and the same random seed is used for 

fairness. 

It is clear that the upper one-sided CLSE-CUSUM procedure with 100   outperforms the 

CUSUM chart in term of ARL, when there are small to moderate shifts in .  For 0.5ARL,   the 

proposed procedure has a better ARL performance when there are small shifts (about 0.3  ) in .  

But for some moderate shifts ( 0.35,0.4  ) in ,  the CLSE-CUSUM chart with 0.5ARL   shows 

a slightly lower performance. This phenomenon is more apparent when ARL,1.5ARL.   

Moreover, for given ,  the ARL also decreases as the   decreases. The value of   does not have 

a significant impact on the ARL performance in monitoring up-shift in .  

When there is an up-shift in 0.25,   the CLSE-CUSUM procedure with 100   shows a 

better ARL performance. However, for other   and ,  the CLSE-CUSUM procedure shows a 

similar or slightly lower performance than the CUSUM chart, which becomes more significant as 
gets higher. This may be due to the poor performance of the CLSE when high autocorrelations exist. 

Tables 7-8 show the results comparing the performance in terms of SD. For given ,  the SD 

tends to decreases as the   increases. For 100  , the in-control SD and out-of-control SD 

performance appear to be worse than that of the CUSUM chart although the difference gets smaller 

as   increases. For 0.5ARL,   the in-control SD of the CLSE-CUSUM shows a worse 

performance. However, the out-of-control SD shows a better performance, except for 0.05,   when 

there is a shift in .  For ARL,1.5ARL,   the out-of-control SD in our procedure shows a better 

performance while the in-control SD looks reasonable for all the cases with a shift in .  For the shift 

in ,  a similar conclusion can be reached except for 0.75.   For 0.75,   even the out-of-control 

SD performance is no better than that of the CUSUM chart. 

Tables 9 and 10 show that when the median is used, a similar conclusion to the ARL case can be 

made. The median performance in our procedure tends to be smaller as the   decreases. 

From these findings, we conclude that our method can be comparable with the conventional 

CUSUM chart if one is interested in an effective detection of the small mean increase with maintained 

autocorrelation, which actually attracts more attention from the researchers: see, for instance, Yontay 

et al. (2013) and Kim and Lee (2017). In practice, the choice of   could be an important issue. An 

optimal   in term of ARL, SD and median might be obtained based on Monte Carlo simulations. 

However, this approach is not always feasible in practice. We recommend to choose 

0.5ARL,ARL  or the values between these two. Notice that if   is smaller than 0.5ARL,  the 
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performance is poor in terms of the in-control SD. On the other hand, if the   is much larger than 

ARL,  the overall performance would not be satisfactory in terms of ARL. The performance does not 

vary much according to the type of innovations, e.g. the Katz innovation (Kim and Lee, 2017) and 

other parameter settings. The result is not reported here for brevity. 

 

Table 5 ARLs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for 

INAR(1) process with shift in 0 0      

0  0    uc  
  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

2.5 0.25  CUSUM(3,16): 501.4 325.6 218.6 153.1 113.2 85.7 66.8 54.1 45.0 

  100 1.110 501.4 255.6 174.8 122.0 90.4 68.8 56.6 46.9 40.8 

  250 0.917 501.4 273.5 181.6 128.5 97.1 77.4 64.6 54.6 48.3 

  500 0.719 501.4 278.7 190.2 137.5 106.1 86.3 73.1 62.3 55.1 

  750 0.583 501.4 278.3 190.8 140.4 110.1 90.5 77.0 65.8 58.4 

2.5 0.5  CUSUM(3,25): 605.5  385.1  256.0  176.3  130.4  99.2  78.5  63.5  53.2  

  100 1.169 605.5  312.6  198.8  145.6  104.6  80.7  64.8  55.7  46.5  

  300 0.931 605.5  328.6  210.6  148.7  114.1  91.6  75.6  63.2  56.7  

  600 0.724 605.5  331.3  219.2  158.8  125.1  101.7  85.2  73.9  64.6  

  900 0.590 604.5  332.5  223.5  164.5  131.0  107.1  90.3  78.6  68.9  

2.5 0.75  CUSUM(3,39): 505.6 321.0 221.0 158.6 120.1 94.2 75.8 64.2 54.9 

  100 1.149 505.6 269.4 184.6 131.5 101.0 79.9 65.9 55.7 47.7 

  250 0.924 505.6 277.8 190.2 137.4 107.3 87.3 73.0 62.9 54.5 

  500 0.720 505.6 289.0 199.8 147.2 116.5 96.4 81.8 70.5 61.6 

  750 0.583 505.6 290.7 201.8 150.9 120.0 100.2 85.7 74.0 64.8 
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Table 6 ARLs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for 
INAR(1) process with shift in 0     

0  0    uc  
  

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 

2.5 0.25  CUSUM(3,16): 501.4 299.5 190.6 128.4 90.0 66.2 50.6 39.6 32.3 

  100 1.110 501.4 275.3 175.2 120.8 85.6 62.6 47.5 37.6 31.1 

  250 0.917 501.4 282.6 180.9 121.7 88.8 67.2 52.7 42.4 35.4 

  500 0.719 501.4 287.9 188.0 128.4 95.5 74.0 58.5 47.5 39.5 

  750 0.583 501.4 285.8 189.9 132.1 99.0 77.1 61.2 49.8 41.6 

2.5 0.5  CUSUM(3,25): 605.5 320.0 186.4 117.0 79.1 56.5 42.3 33.0 26.5 

  100 1.169 605.5 313.1 181.1 118.9 80.1 57.0 41.1 32.1 25.4 

  300 0.931 605.5 314.6 183.0 119.0 82.7 60.9 46.3 36.3 29.1 

  600 0.724 605.5 316.5 189.4 126.6 89.5 66.7 51.0 40.1 32.1 

  900 0.590 604.5 316.9 192.9 130.7 93.3 69.8 53.6 42.1 33.7 

2.5 0.75  CUSUM(3,39): 505.6 221.5 115.0 68.6 45.0 32.1 24.4 19.6 16.4 

  100 1.149 505.6 233.8 134.4 78.6 48.9 32.8 23.0 17.1 13.5 

  250 0.924 505.6 227.8 125.5 75.2 48.1 33.3 24.0 18.0 14.3 

  500 0.720 505.6 233.4 129.4 78.7 51.1 35.3 25.4 19.0 15.1 

  750 0.583 505.6 233.1 131.2 80.9 52.5 36.3 26.2 19.5 15.4 

 

Table 7 SDs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for 

INAR(1) process with shift in 0 0      

0  0    uc  
  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

2.5 0.25  CUSUM(3,16): 488.9 311.2 206.7 142.6 100.8 73.6 55.6 43.0 34.1 

  100 1.110 1508.2 443.2 262.1 160.5 99.6 63.1 46.7 35.7 28.6 

  250 0.917 981.8 328.9 182.5 111.2 71.9 51.3 40.0 31.9 26.5 

  500 0.719 617.3 252.8 154.6 95.5 64.9 48.8 38.5 31.8 26.7 

  750 0.583 560.4 228.4 138.3 88.7 62.1 47.6 38.2 31.6 27.0 

2.5 0.5  CUSUM(3,25): 595.0 364.8 238.7 159.4 112.0 82.0 61.8 47.6 37.9 

  100 1.169 1987.5 770.7 304.8 210.5 116.7 81.5 57.2 45.5 33.7 

  300 0.931 1036.3 414.5 207.3 124.5 83.6 60.8 47.0 37.8 32.4 

  600 0.724 770.9 306.6 167.1 107.9 76.5 57.6 45.3 38.2 32.0 

  900 0.590 691.2 277.3 156.2 102.3 74.1 56.6 45.3 38.1 31.6 

2.5 0.75  CUSUM(3,39): 482.5 302.0 198.2 136.8 98.1 74.0 56.9 45.5 37.1 

  100 1.149 1638.8 585.8 279.1 168.1 111.2 73.9 56.5 43.9 35.3 

  250 0.924 1240.1 323.9 187.9 117.8 85.8 60.9 47.9 39.6 33.2 

  500 0.720 602.0 264.8 162.0 106.0 77.9 58.0 47.4 40.2 34.1 

  750 0.583 565.4 242.3 150.2 100.3 74.2 57.6 47.5 40.5 34.8 
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Table 8 SDs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for 
INAR(1) process with shift in 0     

0  0    uc  
  

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 

2.5 0.25  CUSUM(3,16): 488.9 287.7 177.9 117.6 79.6 56.1 41.1 30.8 23.9 

  100 1.110 1508.2 580.9 277.6 166.0 102.3 59.6 41.7 30.3 23.9 

  250 0.917 981.8 348.5 181.6 104.9 70.2 47.4 36.4 27.6 23.0 

  500 0.719 617.3 267.1 149.9 92.4 64.3 46.0 35.5 28.2 23.3 

  750 0.583 560.4 239.0 138.6 88.1 62.8 45.2 35.4 28.3 23.7 

2.5 0.5  CUSUM(3,25): 595.0 302.9 169.6 101.7 64.4 43.4 30.6 22.2 16.7 

  100 1.169 1987.5 602.6 310.7 187.5 88.5 53.1 34.5 24.3 18.6 

  300 0.931 1036.3 374.3 173.9 97.1 60.9 41.4 30.4 23.1 18.3 

  600 0.724 770.9 294.0 146.7 88.5 58.1 40.9 31.0 23.8 19.1 

  900 0.590 691.2 263.5 137.6 85.0 57.3 41.1 31.4 24.3 19.5 

2.5 0.75  CUSUM(3,39): 482.5 200.7 96.1 51.8 30.3 19.0 12.5 8.6 6.2 

  100 1.149 1638.8 411.4 241.3 82.9 44.5 25.0 15.3 9.8 6.8 

  250 0.924 1240.1 254.3 115.9 58.4 34.1 22.0 14.7 9.7 6.9 

  500 0.720 602.0 206.8 99.6 55.0 33.9 22.2 15.1 9.9 7.0 

  750 0.583 565.4 189.6 95.1 54.2 33.9 22.4 15.2 10.1 7.1 

 

Table 9 Medians of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for 

INAR(1) process with shift in 0 0      

0  0    uc  
  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

2.5 0.25  CUSUM(3,16): 349 230 156 111 82 64 51 42 35 

  100 1.110 189 136 101 76 62 51 44 38 34 

  250 0.917 268 178 128 97 79 65 56 48 44 

  500 0.719 315 204 147 113 92 76 67 58 51 

  750 0.583 329 213 155 120 97 82 71 62 55 

2.5 0.5  CUSUM(3,25): 425 272 180 130 96 75 61 50 43 

  100 1.169 209 149 113 87 71 58 50 44 38 

  300 0.931 321 209 152 114 93 78 66 58 52 

  600 0.724 375 240 174 132 108 91 78 69 61 

  900 0.590 392 252 184 141 116 98 84 74 66 

2.5 0.75  CUSUM(3,39): 360 229 160 117 91 73 60 52 45 

  100 1.149 207 143 108 86 71 59 51 46 40 

  250 0.924 276 180 134 105 86 73 63 56 49 

  500 0.720 320 208 154 123 100 86 75 65 58 

  750 0.583 334 219 163 129 106 91 80 69 62 
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Table 10 Medians of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for 
INAR(1) process with shift in 0     

0  0    uc  
  

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 

2.5 0.25  CUSUM(3,16): 349 211 136 92 66 50 39 31 26 

  100 1.110 189 139 100 75 58 46 36 30 25 

  250 0.917 268 179 128 92 70 56 45 37 31 

  500 0.719 315 206 146 105 80 64 51 42 35 

  750 0.583 329 214 153 112 85 68 54 45 37 

2.5 0.5  CUSUM(3,25): 425 228 135 86 60 44 34 27 22 

  100 1.169 209 149 105 75 55 43 31 26 21 

  300 0.931 321 203 132 93 68 52 40 32 25 

  600 0.724 375 231 150 106 77 59 45 36 28 

  900 0.590 392 241 158 112 82 63 48 38 30 

2.5 0.75  CUSUM(3,39): 360 161 86 54 37 27 22 18 15 

  100 1.149 207 128 82 55 37 26 19 15 12 

  250 0.924 276 153 93 61 40 28 21 16 13 

  500 0.720 320 175 105 67 44 30 22 17 14 

  750 0.583 334 181 109 70 45 31 23 17 14 

 

 
Figure 2 The sample path of disorderly conduct data 

 
 

 
Figure 3 The ACF and PACF plot of disorderly conduct data (from 1990 to 1996) 
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Figure 4 The upper one-sided CLSE-CUSUM chart of disorderly conduct data 

 

5. A real data example 

In order to showcase an application of CLSE-CUSUM charts to monitoring INAR(1)s processes, 

we consider the monthly number of disorderly conduct reported in the 44th police car beat in 

Pittsburgh from 1990 to 2001 in Kim and Lee (2017). We use the data from 1990 to 1996 as an in-

control sample. The CLSE-CUSUM control chart is then applied to the data from 1997 to detect 

whether the mean increase occurs or not. The sample path plot is given in Figure 2, wherein the 

dashed line denotes December 1996, and the ACF and PACF plots are presented in Figure 3. For in-

control data, the sample mean, variance, and autocorrelation are given as 3.9643, 5.3602 and 0.2261, 

respectively. From the sample path plot, one cannot easily check whether the mean increases or not 

after the dashed line. 

Kim and Lee (2017) demonstrate that for the data from 1990 to 1996, the first order INAR(1) 

process with the Katz family innovation (INARKF(1)). Based on the results from Kim and Lee (2017) 

assuming that in-control data follows an INARKF(1) process with 1 2.2080,   2 0.2537   and 

0.2511.   Kim and Lee (2017) apply the upper one-sided CUSUM chart defined as in (2) and (3) 

with 4,k   34h   wherein the in-control ARL is computed as 205.4 and the out-of-control signal 

occurs in August 2000. We apply the proposed upper one-sided CLSE-CUSUM procedure in (11) to 

this data. Note that our procedure has the advantage of not requiring a specific distributional 

assumptions on the innovation process. 

To obtain the control limit that renders the in-control ARL near 205.4, we use 100   following 

the recommendation in Section 4 and replace V  and W  by their estimates from the in-control sample 

given as in (8) and (9). From numerical experiments with 30,000  repetitions, the control limit uc  is 

calculated as 2.035. The plot of CLSE-CUSUM statistic is presented in Figure 4, wherein the dashed 

line denotes 2. ,035uc   and the 1,tC  and 2,tC  stand for the CLSE-CUSUM statistics with 100   

of the disorderly conduct data from 1990 to 1996 and from 1997 to 2001, respectively. It can be 
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observed that the data obtained from 1990 to 1996 is in-control because the maximum value of the 

statistic 1,tC  is less than 2.035.  In the meantime, the plot of 2, ,tC  shows that the control statistic has 

an increasing trend and an out-of-control signal occurs at 19t   (July 1998). The estimated change 

point appears to be 8  (August 1997), indicating an earlier detection in comparison of the CUSUM 

chart. It can be also seen that the sample mean of the data from August 1997 to July 1998 appears to 

be 4.833, which is greater than that of the in-control data. 

 

6. Proof of Proposition 2.1 

Assume that 0 0.X   For ,tN  we can obtain the following by using the mathematical 

induction. Notice that 
1

0

,
t

ik
ts k

i

EX C 
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
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 
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Since [0,1),   we have / (1: max{ 1,2,3,4) }.:k k
ts kEX C C k    Proposition 1 from 

Bourguignon et al. (2016) indicates that tX  converges in distribution to a unique stationary marginal 

distribution .X  Thus, owing to the Portmanteau lemma (cf. Theorem 29.1 of Billingsley (1979)), we 

get lim ,k k
ts

t
EX EX C


  1,2,3, 4.k   

 

7. Concluding Remarks 

In this paper, we proposed a new control procedure based on the CLSE-CUSUM statistic. Our 

method outperforms the CUSUM chart when there are small to moderate mean increases of 

innovation processes in terms of ARL, and also, SD and median. Moreover, it merits to give 

additional information on the location of a shift and to set in-control ARLs at one's disposal. The 

proposed procedure can be applied to other distributions and probabilistic structures without serious 

difficulties. The task of statistical design in more complicated models such as INGARCH process 

based on various performance measures such as ARL, SD is left as our future project. 
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