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Abstract

In this paper, we consider a new control procedure for monitoring mean shift using the
conditional least squares estimator (CLSE)-based cumulative sum (CUSUM) test for the first-order
seasonal integer-valued autoregressive (INAR(1)s) processes. Numerical experiments show that the
proposed CLSE-CUSUM procedure outperforms conventional CUSUM charts for small to moderate
up-shifts in mean of innovation processes, in terms of average run length (ARL), standard deviation
(SD) and median.

Keywords: Average run length, INAR(1)s process, CLSE-based CUSUM test, CUSUM chart, small to
moderate shift.

1. Introduction

There has been a growing interest in modeling autocorrelated count processes and studying their
statistical properties. Models using a thinning operator have received much attention from
researchers. Steutel and van Harn (1979) first designated the binomial thinning operator ©°’: for

X

random variable X and « €[0,1], @°X is defined as ZB,- (a), wherein B;(a) are independent
i=1

and identically distributed (i.i.d.) Bernoulli random variables with success probability

P(B;(a) =1) = a, independent of X. Using this operator, Al-Osh and Alzaid (1987) proposed the

first-order integer-valued autoregressive (INAR(1)) process: X, =a°X,_; +¢,, t€Z, where ¢, are

i.i.d. non-negative random variables, independent of X,, with mean z and variance &’. Since

then, a number of articles have been published in the literature: see Weifl (2008) and Scotto et al.
(2015) for a review. Bourguignon et al. (2016) recently consider the seasonal INAR(1) process with
seasonal period s € N (INAR(1)s) as follows:
X, =a°X,  +e,tel (1)
Statistical properties, such as the existence of stationary solutions, explicit form of
autocorrelation function and transition probabilities can be found in Bourguignon et al. (2016).
Control chart is one of the most useful tools in statistical process control (SPC). Among control
charts, the cumulative sum (CUSUM) control scheme, introduced by Page (1954), is well known as
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a standard tool for detecting small to moderate abnormal changes in the process of interest: see
Montgomery (2012) for a general review. A conventional upper one-sided CUSUM control statistic
for detecting a mean increase is expressed as:

C,=c¢y» 2)

C[:max(O,X,—k+CH), teN, 3)
where ¢;(=0) is called the ‘starting value’, usually set to be 0, k(= EX,) is called the ‘reference
value’, and A(>0) is the ‘control limit’. When C, > & occurs, the process of interest is regarded as
‘out-of-control’. The reference value & acts as a tuning parameter for the sensitive detection of a
mean increase, preventing the statistic from drifting towards the control limit 4. Weiss and Testik
(2009) study the upper one-sided CUSUM control charts for Poisson INAR(1) processes and Yontay

et al. (2013) consider the two-sided CUSUM control chart by combining the one-sided CUSUM
charts. The two-sided CUSUM control statistic is defined as:

C, =¢,
C' =max(0,X, k" +C},), teN,
C, =¢,,

t

C; =max(0,k -X,+C_,), teN,
where ¢, and ¢, are starting values, k™ and k™ are reference values, and A", A~ are control limits

of upper and lower one-sided CUSUM charts, respectively. When C,; >h" or C; >k~ occurs, the

process of interest is regarded as out-of-control. Conventionally, the performance evaluation of
control charts is carried out based on the average run length (ARL), which is the average number of
observations until the signal indicating an out-of-control state occurs. Two types of ARLs are
considered: the ARL, (in-control ARL) is the average number of observations until a false alarm

occurs when the process is in-control; the ARL,; (out-of-control ARL) is the average number of

observations until the control procedure triggers a correct signal, indicating an abnormal change from
its start.

In this study, we consider the CUSUM test based on conditional least squares estimator (CLSE)
from INAR(1)s processes and apply it to monitoring the mean shift. Based on this, we construct a
one-sided control chart and compare its performance with the CUSUM charts. As a relevant work,
we refer to Huh et al. (2017) who use the conditional maximum likelihood (MLE) in integer-valued
generalized autoregressive conditional heteroskedasticity (INGARCH) models. This paper is
organized as follows. Section 2 presents the difference equations as to the moments of INAR(1)s
processes. Moreover, the CLSE-CUSUM test statistic is introduced. Section 3 designs a new control
statistic for monitoring mean shift based on the results in Section 2. Section 4 compares the proposed
control procedure with the CUSUM chart based on numerical experiments using ARL, standard
deviation (SD) and median. Section 5 illustrates a real data analysis demonstrating the superiority of
our proposed procedure to the CUSUM chart. Sections 6 and 7 provide technical proofs and
concluding remarks.

2. Higher Moments and CLSE-based CUSUM Test

In this section, we show the existence of a 4th moment and provide related difference equations
for stationary INAR(1)s processes. These are important in the construction of the control statistic in
Section 3.
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Proposition 2.1 Suppose that o €[0,1) and Ee;‘ <. Then, we have EX* < C <o, k=1,2,3,4,
Sfor some C >0, where X is the unique stationary limit of X, in distribution.

Difference equations for moments are obtained by using the properties of Binomial thinning
operator.

Proposition 2.2 Let {X,},., be a stationary INAR(I)s process with o <€[0,]),

He i = Eef <0, k=1,2,3,4, and o7 :,uf,z—,uf’l. Then, for u,v,w e N with u<v<w,

Y7,
(@u, , =EX :il.
’ I 1-a
Qp, +O—ez /152,1

b =EX?= + )
( )/ux,Z t 1_a2 (1_a)2

1
(Ot = EX = [362(-a+ u, s +a((1-@)(1-2) +3(1-@) ) +3p0 ) bty + b |-

1
@ g = EX =] (600 -a) v’ sy ) s

+ (a2 (1-a)(7-11a)+12a*(1-a)p,, + 60> 4, ) fhx s

+(@-a)1-6a+6a°) +4a(l-a)1-2a)u., +6a(l-a)u, , +4a, ) i,
+/uf,4]'

(s, ()= E(X, X,ys) = oty (u— 1)+(1 a)

(Nt Ou)i= E(X7 X, ) = g (0u=1)+ g1yt 5.
(@i, ()= E(X, X7, ) =auy (—Lu=D+(a(1-a)+2au,) m, (a=1)+ p 141,
(Wt () 1= E(X X X ) =ty (v =1)+ 1yt (1),
(i, (0,0,u):= E(X}X,,, ) = ey (0,0,u=1)+ g1yt 5.
(j)yx(s) 0,u,u) = E(X X2 ) azyx(s) Oyu—Lu=1)+ b 5 + 200, 1 + (1= a),ux(s) (0,u—1).
()t (Ouv) = E( X7 X, X, ) = oty (O, v =1+ gy (O,0),
+(a—a)+2ap. ) | v =1+ f oty (W).
(D, (0 0,u) = E(X X,im) & p (u=Lu=Lu=1)+3a(pu, +a(-a)u, @=lu=1)
(@ -3a+20%) +3u., ) i =1+ 5.
(m),ux(s) (u,u,v) = (X X2 X ) = oy (u,u,v-1)+ 7RV (u,u).
(m, v, i= (X, X, X2 ) = @2y (wv=1v=1)
+(a=a)+2au ) iy (v =10+ ot ().
(Ot (1,9, W) 1= E (X, X Xy Xy ) = 0ttty v, w=1)+ g gt ().
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Given observations X__ |,

X X, from the stationary INAR(1)s process with

—s+22 0 p
Ee = pu (>0), Var(e)= 062 (>0) and autocorrelation « €[0,1), the CLSE, én = (dn,;l:n), of

parameter 6 =(a,u,) can be obtained by minimizing the conditional sum of squares

n

(0= (X,—aX,, -u) over 0c{0<a<l, p >0}, thatis,

t=1
"Zn:XtXt—s_Zn:Xt—sZn:Xt
5 — t=1 t=1 t=1

ay ) “)

nith—s _(ixt—s )2
t=1 t=1
K, =%Li& —aZX] (5)
t=1 t=1

where @, is set to be 0 if its denominator is 0. By checking the regularity conditions in Klimko and

Nelson (1978), one can see that the CLSE én enjoys the property of consistency and asymptotic

normality.

Since Page (1955), the change point problem has been widely appreciated as an important issue
in the time series analysis context, because ignorance of parameter changes leads to a false
conclusion. The CUSUM test has been popular due to the ease at its usage among researchers: see
Chen and Gupta (2011) for a general review and Lee et al. (2003) for time series models. In this
study, we consider to utilize the CLSE-based CUSUM test in Lee and Na (2005) and Kang and Lee
(2009) for detecting the change of

We set up the null and alternative hypothesis as follows:

X, vs. H:not H,

H,:6, =(y, ) does not changes over X_,,,..

Put
2 2 2
W E(Xt—s (Xt — QA _:ufO) ) E(Xt—s(Xt _aOXt—s _:ufO) ) (6)
E(Xt—s (Xt _aOXt—s _/ufO)z) E(Xt _aOXt—s _/ufO)2
2
y_(EX? EX,) -
EX, 1
Define
I I k2 AT A A A A a
Tndé =max, <<, Tnc,//fr =max, <<, _(gk - en) an ! n (ek “Un )3

where v is a positive integer,
1 n . . 1 n . .
_ZXzz—x (Xz - aXt—s —H )2 _ZXz—x (Xl - aXt—x —H, )2
no noo (8)
1L R R 1L R R '
;Zths(Xt_aths_lue)z ;Z(Xt_aths_luf)z

t=1 t=1

W:

n



Hanwool Kim and Sangyeol Lee 177

I, 1Y
;;Xt—s ;;Xt—s

v, = o . ©9)
=X, 1
)

Following the arguments in Lee and Na (2005) and Kang and Lee (2009), we can verify the
following, the proof of which is omitted for brevity:

Theorem 2.1 Under H,, asn™ oo,

.lv w
"™ sup
0<u<l

. 2
B, (”)” 5

where B; (u)= (Blo (u), B; ()" is a 2-dimensional Brownian bridge.

Tables 1 and 2 show that the performance of the CLSE-CUSUM statistics with A = g, + 04/t

o =0a,+0J at the nominal level of 0.05 when the innovations follow a Poisson distribution with
mean A : the corresponding critical value is 2.408 (see Lee et al. 2003). Here, we use 1,000
repetitions. When 7 is small (n = 250,500 ), the sizes are somewhat over-estimated, which becomes
more prominent when « is higher (a =0.75). However, as n increases, the size approaches the
predetermined level. Moreover, the power tends to increase gradually when & and n increase. Note
that when there is a shift in A, the performance in the case of ¢ <0 is slightly better in terms of
power than in the other case. It can be also seen that for shift in «, the performance in the case of
0 >0 is much better than in the other case. Overall, the results confirm the validity of the CLSE-
CUSUM statistic.
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Table 1 Empirical sizes and power of the CLSE-CUSUM statistic for INAR(1) process with shift in
A=+, atthelevel of 0.05

o
-0.6  -0.45 -0.3  -0.15 0 0.15 0.3 0.45 0.6

4 5 0.25 250 0.97 0.78 0.43 0.16 0.07 0.15 0.38 0.68 0.89
500 1.00 0.99 0.72 0.23 0.06 0.21 0.65 0.95 1.00

1000 1.00 1.00 0.97 0.41 0.05 0.38 0.93 1.00 1.00

1500 1.00 1.00 1.00 0.56 0.05 0.54 0.99 1.00 1.00

2000 1.00 1.00 1.00 0.71 0.05 0.68 1.00 1.00 1.00

0.5 250 0.96 0.77 0.44 0.18 0.10 0.17 0.36 0.59 0.83
500 1.00 0.96 0.66 0.23 0.09 0.21 0.57 0.88 0.99

1000 1.00 1.00 0.93 0.35 0.06 0.33 0.87 1.00 1.00

1500 1.00 1.00 0.99 0.50 0.05 0.47 0.97 1.00 1.00

2000 1.00 1.00 1.00 0.64 0.05 0.58 0.99 1.00 1.00

0.75 250 0.97 0.81 0.52 0.26 0.11 0.24 0.38 0.57 0.77
500 1.00 0.97 0.68 0.28 0.11 0.24 0.53 0.82 0.96

1000 1.00 1.00 0.92 0.38 0.10 0.32 0.80 0.98 1.00

1500 1.00 1.00 0.98 0.50 0.07 0.41 0.94 1.00 1.00

2000 1.00 1.00 1.00 0.60 0.05 0.51 0.98 1.00 1.00

Table 2 Empirical sizes and power of the CLSE-CUSUM statistic for INAR(1) process with shift in
a=ay+0 atthe level of 0.05

o
-0.2  -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
12 7 0.25 250 0.86 0.60 0.29 0.10 0.06 0.19 0.56 0.89 0.99
500 1.00 0.93 0.57 0.18 0.06 0.30 0.83 1.00 1.00
1000 1.00 1.00 0.93 0.34 0.05 0.51 0.99 1.00 1.00
1500 1.00 1.00 0.99 0.53 0.05 0.66 1.00 1.00 1.00
2000 1.00 1.00 1.00 0.68 0.05 0.81 1.00 1.00 1.00
0.5 250 0.86 0.64 0.35 0.13 0.07 0.25 0.69 0.97 1.00
500 1.00 0.95 0.64 0.19 0.07 0.39 0.94 1.00 1.00
1000 1.00 1.00 0.96 0.39 0.05 0.62 1.00 1.00 1.00
1500 1.00 1.00 1.00 0.59 0.05 0.80 1.00 1.00 1.00
2000 1.00 1.00 1.00 0.73 0.05 0.89 1.00 1.00 1.00
0.75 250 0.93 0.78 0.50 0.21 0.10 0.43 0.94 1.00 1.00
500 1.00 0.97 0.79 0.32 0.10 0.65 1.00 1.00 1.00
1000 1.00 1.00 0.99 0.57 0.08 0.90 1.00 1.00 1.00
1500 1.00 1.00 1.00 0.77 0.06 0.97 1.00 1.00 1.00
2000 1.00 1.00 1.00 0.91 0.05 1.00 1.00 1.00 1.00
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3. Monitoring of Mean Shift based on CLSE-CUSUM Statistic
In this section, we modify the CUSUM test in Theorem 2.1 that can detect a parameter shift more
efficiently in stationary INAR(1)s processes. Given predetermined positive integer /> (s+1),

playing a role such as the length of virtual in-control data, we put v =/—s and define

' k+v)? (a0 AT B o
Cn (V) =maX<;<, ln,k (V) =maXc;<, u(gk - 9,,) Vw 1V(¢9k — 49n )’ (10)
+v

where ék :(d,;,;z:k) with

k k k

ey oxx., - x> X N 1 ) k
o = == k tziw/l = Hep = v+k) X —a z X5 |5
(V+k) z th—s _( z Xt—s)2 t==v+l t=—v+l
t=—v+l t=—v+1

0 0 0 0

Initial sums such as Z X, X, Z X, z X,, and Z X2, are replaced with
t=—v+1 t=—v+1 t=—v+l t=—v+1

VEX, X,

Proposition 2.2, (6) and (7), or replaced by those in (8) and (9). The same convergence result as in

_s» VEX,, VEX,, and VEX ,2, respectively; W and V' are calculated using the formula in
Theorem 2.1 also holds for C, (v), regardless of v.

To compare the performance with the CUSUM chart, we use the Poisson INAR(1) process in (1)
because it is the most widely used INAR(1) process in literatures. We evaluate the CUSUM statistic
with the Poisson INAR(1) with mean A,,. In this case, the marginal mean is 1, =4,/ (1-¢a,), W

and V are obtained as:

| Hot o w | #o Wy + W +W3) gy + o + W) 5)
Lo 1 MWy +Wo + W) 5) Wi+ Wi, ’

where
Wy = (4 ) (Ag + o =20 tig + 1), Wiy = aig (14 201+ Ag) g = 2(1= gt = 2.447),
Wis= _0‘5 (1434, _/”03)s Wy = j02 + Hy =240 1y + #ga Wyo = ay(1+ 24,14 —Zﬂg),
Was =—aq (It sy = p13) Way = A5 =204y + o + 20000 g + 445

Wy = O‘gﬂo (I+ o) = 20 o (e + 1p)-
Note that in the case of INAR(1) process with Poisson innovations, the elements of /' can be also
obtained from Proposition 1 in Weil3 (2012). Tables 3 and 4 show examples of ARL profiles,

compared with the two-sided CUSUM chart (CUSUM (k*, A" ,k~,h™) with ¢j =c; =0) when the

parameters are changed to u=4/(1-a), A=4, +5\/Z and « =, +06. Here, we use 30,000
repetitions. The tables show that the CLSE-CUSUM control procedure outperforms the two-sided
CUSUM chart regardless of v when there is an up-shiftin A. Overall, the ARL performance appears
to be the best at v =250 when there is an up-shift in 4. However, the performance of the proposed
procedure performs poorly when there is a down-shift in 4 or «, which becomes clearer as v gets
smaller. When there is an up-shift in «, the performance of the two charts does not differ

significantly expect v =100. For v =100, there are cases such that the out-of-control ARL is larger
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than the in-control ARL when there is a down-shift in 4 or «, although this phenomenon is
mitigated as v increases. Such a case often occurs when the difference between the in-control ARLs
of the two one-sided charts is large, especially when the in-control ARL of the upper one-sided chart
is smaller than the lower one-sided chart: see, for example, Yontay et al. (2013). We can easily guess
that for the given control limit ¢, the out-of-control state signals including false alarms are mainly
caused by the up-shifts of parameter. Hence, if one uses the one control limit for the two-sided
monitoring, it may lead to a biased ARL performance. This problem could be avoided by using proper
lower and upper one-sided control limits.

Based on our findings mentioned above, we design the one-sided CLSE-CUSUM control
procedure as follows: given observations X_..;,X_,,,,...,X, from the stationary INAR(1)s process

with &y €[0,1), EX, = 1y >0 and EX;' <o, let ¢, (v,n) = argmax/,

n
1<k<n

(), where [, () are in (10)

and )_(Cp(v’,,) = Zn: Xj for v>2. Note that c¢,(v,n) is an estimated location of change point
k=c,(v,n)
when it exists. The upper one-sided CLSE-CUSUM control statistic is then:
Cr(v,)=C v )I(X,, ) > Hp)s mEN, (11
while the lower one-sided CLSE-CUSUM control statistic is:
Cr(v))=C,(vV)I(X, () < Ho)s nEN,

p(V[,
where C, () is the one in (10), /(-) is an indicator function, v, 22 and v, > 2 are predetermined

positive integers. Given control limits ¢, >0 and ¢; >0, we determine that the process is out-of-

control when C*(v,)>¢, or C!(v,)>¢, is signaled, that is, the signal of out-of-control state is

triggered by a mean increase (the former case) or a mean decrease (the latter case). The fundamental
difference between the proposed and conventional methods lies in that ours uses additional
information in estimation when determining the status of the process of interest.

Table 3 ARLs of the CLSE-CUSUM test statistic and conventional two-sided CUSUM chart for
INAR(1) process with shift in 1= 2+ 5.2,

o
Hy G v ¢ -0.2  -0.15 -0.1 -0.05 0 005 0.1 015 0.2
25 025 CUSUM
(3,19,2,15): 1557 229.4 3388 459.5 5107 4408 322.1 2248 1583
100 1.374 298.6 448.6 5105 559.1 5108 398.6 309.5 213.6 147.1
250 1.151 1493 2279 3550 505.0 5107 3875 2638 177.7 1276
500 0.955 147.6 203.6 301.1 4664 5106 3962 261.7 1832 1365
750 0.828 1539 207.0 2973 4535 510.8 3983 2703 192.1 145.0
25 05 CUSUM
(3,29,2,22): 1444 2108 307.8 4292 4924 4386 3253 2315 165.0
100 138 3904 509.8 573.4 5302 492.1 403.0 305.1 217.6 159.5
250 1.14 1669 2540 3814 4868 4934 3857 266.1 1846 134.1
500 0.942 1585 221.9 3242 4521 4926 388.8 268.0 189.6 144.6
750 0.809 1622 222.1 313.5 4364 4929 386.1 2734 197.1 153.5
25 075 CUSUM
(4,22,2,40):  143.8 2022 296.1 4135 4976 4774 3861 2921 2165
100 1.401 5804 6569 624.0 5902 4975 381.4 2755 203.5 1498
250 1.146  197.5 303.8 440.0 5284 497.6 3847 2646 189.5 1395
500 0.937 171.5 2385 352.0 480.9 497.6 3823 2682 1955 150.1

750 0.808 1734 2353 3349 4678 497.6 3899 277.0 2045 159.2
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Table 4 ARLs of the CLSE-CUSUM test statistic and conventional two-sided CUSUM chart for
INAR(1) process with shiftin & =, +J

o
(04 1% C
Ho 0 02 -0.15  -0.1  -0.05 0 0.05 0.1 0.15 0.2
2.5 0.25 CUSUM
(3,19,2,15): 1083 171.6 2929 489.0 5123 2635 1199 635 38.9
100 1.374 87.9 1455 3339 5254 5108 2993 1293 619 36.8
250 1.151 84.1 111.3  179.0 3753 5107 2539 111.1 623 40.5
500 0.955 94,7 120.6 1747 320.6 5106 253.8 1193 69.7 459
750 0.828 102.8 1292 181.7 313.8 510.8 2604 1265 75.1 49.7
2.5 0.5 CUSUM
(3,29,2,22): 78.7 1172  200.2 3862 4919 230.0 949 489 30.0
100 1.38 90.1 1384 280.5 519.3 492.1 2694 110.0 50.6 27.8
250 1.14 84.8 109.9 167.6 355.1 4934 2225 934 50.0 30.0
500 0.942 952 1194 167.6 3045 4926 2242 999 553 33.4
750 0.809 102.6 1272 1741 2972 4929 229.7 1057 58.8 35.5
2.5 0.75 CUSUM
(4,22,2,40): 65.5 86.5 1343 279.7 500.6 185.5 57.0 253 15.3
100 1.401 91.5 1252 2164 4645 4975 2236 64.6 25.6 14.3
250 1.146 834 1034 149.0 2912 4976 163.8 56.6 259 15.0
500 0.937 91.8 111.0 1514 258.6 4976 162.6 599 276 16.0
750 0.808 98.6 118.5 159.0 2615 4976 1679 62.7 28.8 16.5
2 | — s |
o * CUSLIM{.18) | [ o CUSUM{3,18)
o CLSE-CUSUM(v=100) o GLEE-CUSUM{v=100)
o CLEE-CUSUM{v=250) 0 GLESE-CUSUMv=ZE]
= & CLSE-CUSUM{v=500) o & CLSE-CUSUM(v=500)
g 7 # CLSE-CLSUM{v=750)| g7 x GLSE-CUSUM{v=TED)
2 g 4
2 3 7
< <
o - =
T T T T T T T T T
0.0 0.1 0.2 03 0.4 0.00 005 0.10 0.15 020
3 8
15=2.5, =025, A=hg+BTg Ho=2.5, 0g=0.25, a=cz+d
g [« cusumazs; | e « GUSUM{325)
-] CLS%—CUSUM[F]MJI -] C'_SE—CUSUM(\:‘:OU‘
0 CLSE-CUSUM{v=300] & 0 CLEE-CUSLM{v=300)
§ | A& CLSE-CUSUM{v=800] 2 & CLEE-CUSUM{v=800)
% asz-cusun\a._»-:gooai x CLSE-CUSLIM{y=900)
= (=]
S §-
g g g g
R &
a - = -
T T T T T T T T T T
o0 01 0.2 03 0.4 0.00 0.05 010 015 0.20
& &

Figure 1 ARLs of upper one-sided CLSE-CUSUM and conventional CUSUM chart

Hp=2.5, 0g=0.5, h=hg+diig

np=2.5, op=0.5, u=cp+é
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4. Performance Comparison

We focus on the upper one-sided control chart for detecting a mean increase, since this case
receives more attention in practice. To compare with the upper one-sided CUSUM chart (CUSUM
(k,h) with ¢, =0), we adopt the reference value and corresponding control limit in Weiss and Testik

(2009). Let {X,},.; be a stationary INAR(1) process with «; €[0,1) and Poisson innovations with
mean 4. In this case, the marginal mean is obtained as x4, = 4, / (1-¢«,). Numerical experiments

show that the performance of our procedure and the CUSUM chart is not much affected by the values
of x4 and A for fixed a, so we only take account of the case that u, =4,/(1-¢;)=2.5 and

o, €{0.25,0.5,0.75}. These values are assumed to change to y=A4/(1-a) with 4= 4, +5\/Z.

and a =, +0J. Figures 1 shows the performance, in terms of ARL, of the CUSUM chart and our

procedure with several v. The specific values in the figures can be found in Tables 5 and 6. The
ARLSs, SDs and medians are obtained using 30,000 repetitions and the same random seed is used for
fairness.

It is clear that the upper one-sided CLSE-CUSUM procedure with v =100 outperforms the
CUSUM chart in term of ARL, when there are small to moderate shifts in A. For v = 0.5ARL, the
proposed procedure has a better ARL performance when there are small shifts (about 6 <0.3)in A.
But for some moderate shifts (6 =0.35,0.4) in A, the CLSE-CUSUM chart with v ~ 0.5ARL shows
a slightly lower performance. This phenomenon is more apparent when v = ARL,1.5ARL.
Moreover, for given &, the ARL also decreases as the v decreases. The value of & does not have
a significant impact on the ARL performance in monitoring up-shift in A.

When there is an up-shift in a =0.25, the CLSE-CUSUM procedure with v =100 shows a
better ARL performance. However, for other & and v, the CLSE-CUSUM procedure shows a
similar or slightly lower performance than the CUSUM chart, which becomes more significant as
gets higher. This may be due to the poor performance of the CLSE when high autocorrelations exist.

Tables 7-8 show the results comparing the performance in terms of SD. For given 9, the SD
tends to decreases as the V increases. For v =100, the in-control SD and out-of-control SD
performance appear to be worse than that of the CUSUM chart although the difference gets smaller
as O increases. For v ~0.5ARL, the in-control SD of the CLSE-CUSUM shows a worse
performance. However, the out-of-control SD shows a better performance, except for o = 0.05, when
there is a shift in A. For v = ARL,1.5ARL, the out-of-control SD in our procedure shows a better
performance while the in-control SD looks reasonable for all the cases with a shift in A. For the shift
in «, asimilar conclusion can be reached except for a = 0.75. For a = 0.75, even the out-of-control
SD performance is no better than that of the CUSUM chart.

Tables 9 and 10 show that when the median is used, a similar conclusion to the ARL case can be
made. The median performance in our procedure tends to be smaller as the v decreases.

From these findings, we conclude that our method can be comparable with the conventional
CUSUM chart if one is interested in an effective detection of the small mean increase with maintained
autocorrelation, which actually attracts more attention from the researchers: see, for instance, Yontay
et al. (2013) and Kim and Lee (2017). In practice, the choice of v could be an important issue. An
optimal v in term of ARL, SD and median might be obtained based on Monte Carlo simulations.
However, this approach is not always feasible in practice. We recommend to choose
v = 0.5ARL,ARL or the values between these two. Notice that if v is smaller than 0.5ARL, the
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performance is poor in terms of the in-control SD. On the other hand, if the v is much larger than
ARL, the overall performance would not be satisfactory in terms of ARL. The performance does not

vary much according to the type of innovations, e.g. the Katz innovation (Kim and Lee, 2017) and
other parameter settings. The result is not reported here for brevity.

Table 5 ARLs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for
INAR(1) process with shift in 1= 2o+ 5./,

o
Ho o &Y u 0 005 01 015 02 025 03 035 04
25 025 CUSUM(@3,16): 5014 3256 218.6 1531 1132 857 668 541 45.0
100 1110 5014 2556 1748 1220 904 688 566 469 408
250 0917 5014 2735 181.6 1285 97.1 774 646 546 483
500 0719 5014 2787 1902 1375 1061 863 73.1 623 55
750 0583 5014 2783 190.8 1404 1101  90.5 77.0 658 584
25 05 CUSUM@3,25): 6055 385.1 2560 1763 1304 992 785 635 532
100 1169 6055 312.6 1988 1456 1046 807 648 557 465
300 0931 6055 3286 2106 1487 1141 91.6 756 632 567
600 0.724 605.5 3313 2192 1588 1251 1017 852 739 64.6
900 0590 604.5 3325 2235 1645 131.0 107.1 903 78.6 68.9
25 075 CUSUM(3,39):  505.6 321.0 221.0 158.6 120.1 942 758 642 549
100 1149 505.6 2694 1846 1315 101.0 799 659 557 477
250 0924 5056 277.8 1902 1374 1073 873 730 629 545
500 0720 505.6 289.0 199.8 1472 1165 964 818 70.5 61.6

750 0.583 505.6 290.7 201.8 1509 120.0 1002 857 740 6438
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Table 6 ARLs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for
INAR(1) process with shiftin & =, +3J

)
oo &V u 0 0025 005 0075 01 0125 015 0.175 02
25 025 CUSUM@,16): 5014 299.5 190.6 1284 900 662 50.6  39.6 323
100 1110 5014 2753 1752 1208 856  62.6 475 376 3Ll
250 0917 5014 2826 1809 1217 888 672 527 424 354
500 0719 5014 2879 188.0 1284 955 740 585 475 39.5
750 0583 5014 2858 189.9 1321 990 771 612 498 416
25 0.5 CUSUM(3,25):  605.5  320.0 186.4 117.0  79.1 56.5 423 33.0 265
100 1169 6055 3131 1811 1189 80.1 570 4L1 321 254
300 0931 6055 3146 183.0 1190 827 609 463 363 29.1
600 0.724 6055 3165 1894 1266 895 667 510  40.1 321
900 0590 6045 3169 1929 1307 933  69.8 536 421 337
25 075 CUSUM(,39): 5056 221.5 1150  68.6 450 321 244 196 164
100 1.149 5056 2338 1344 786 489 328 230 171 135
250 0924 5056 2278 1255 752 481 333 240 180 143
500 0720 505.6 2334 1294 787 S1.1 353 254 190 15.
750 0583  505.6 2331 1312 809 525 363 262 195 154

Table 7 SDs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for
INAR(1) process with shift in 4= 2o+ 8./,

)
Hoo % Y u 0 005 01 015 02 025 03 035 04
25 025 CUSUM(@3,16): 4889 3112 2067 1426 1008 73.6 556 430 34.1
100 1110 15082 4432 262.1 160.5 99.6 63.1 467 357 286
250 0917 981.8 3289 1825 1112 719 513 400 319 265
500 0719  617.3 2528 1546 955 649 488 385 318 267
750 0583 5604 2284 1383 887 621 476 382 316 270
25 0.5 CUSUM(3,25): 595.0 364.8 2387 1594 1120 82.0 61.8 476 379
100 1169 19875 7707 3048 2105 1167 815 572 455 337
300 0931 10363 4145 2073 1245 836 608 470 378 324
600 0.724 7709 3066 167.1 1079 765 57.6 453 382 32,0
900 0590 6912 2773 1562 1023 741 566 453 38.1 316
25 075 CUSUM(3,39): 4825 3020 1982 1368 98.1 740 569 455 37.1
100 1.149 16388 5858 279.1 168.1 1112 739 565 439 353
250 0924 12401 3239 1879 1178 858 609 479 39.6 332
500 0720  602.0 2648 1620 1060 779 580 474 402 34

750 0.583 565.4 2423 150.2 100.3 742 576 475 405 348
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Table 8 SDs of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for
INAR(1) process with shiftin o =, +J

o
Hoo % Y u 0 0025 005 0075 01 0125 015 0175 02
25 025 CUSUM(@3,16): 4889 2877 1779 117.6 79.6 561 411 308 239
100 1110 15082 5809 277.6 1660 1023  59.6 417 303 239
250 0917  981.8 3485 181.6 1049 702 474 364 276 230
500 0719 6173 267.1 1499 924 643 460 355 282 233
750 0.583 5604 239.0 138.6 88.1 628 452 354 283 237
25 05 CUSUM(3.25): 5950 3029 169.6 1017 644 434 306 222 167
100 1169 19875 602.6 3107 187.5 885 53.1 345 243 186
300 0931 10363 3743 1739 971 609 414 304 231 183
600 0.724 7709 2940 1467 885 581 409 310 238  19.1
900 0590 6912 2635 137.6 850 573 411 314 243 195
25 075 CUSUM(339):  482.5 2007 961 518 303 190 125 86 62
100 1.149 16388 4114 2413 829 445 250 153 98 68
250 0924 1240.1 2543 1159 584 341 220 147 97 69
500 0720 602.0 2068 99.6 550 339 222 151 99 7.0
750 0.583 5654 189.6 951 542 339 224 152 100 7.1

Table 9 Medians of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for

INAR(1) process with shift in 4= 2o+ 8./,
)
Hoo % v u 0 005 01 015 02 025 03 035 04
2.5 025 CUSUM(@3,16): 349 230 156 111 8 64 51 42 35
100 1110 189 136 101 76 62 51 44 38 34
250 0917 268 178 128 97 79 65 56 48 44
500 0719 315 204 147 113 92 76 67 58 51
750 0583 329 213 155 120 97 & 71 62 55
25 05 CUSUM(3,.25): 425 272 180 130 96 75 61 50 43
100 1.169 209 149 113 87 71 58 50 44 38
300 0.931 321 209 152 114 93 78 66 58 52
600 0724 375 240 174 132 108 91 78 69 6l
900 0.590 392 252 184 141 116 98 84 74 66
2.5 075 CUSUM(@3,39): 360 229 160 117 91 73 60 52 45
100 1.149 207 143 108 8 71 59 51 46 40
250 0924 276 180 134 105 8 73 63 56 49
500 0.720 320 208 154 123 100 8 75 65 58
750 0.583 334 219 163 129 106 91 80 69 62
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Table 10 Medians of the upper one-sided CLSE-CUSUM chart and conventional CUSUM chart for
INAR(1) process with shiftin & =, +3J

o
a, 14 c
th % “ 0 0025 005 0075 0.1 0125 0.5 0175 02
25 025 CUSUM(@3,16): 349 211 136 92 66 50 39 31 26
100 1110 189 139 100 75 58 46 36 30 25
250 0917 268 179 128 92 70 56 45 37 31
500 0719 315 206 146 105 80 64 51 42 35
750 0583 329 214 153 112 85 68 54 45 37
25 05 CUSUM(3,25): 425 228 135 86 60 44 34 27 22
100 1.169 209 149 105 75 55 43 31 26 21
300 0931 321 203 132 93 68 52 40 32 25
600 0.724 375 231 150 106 77 59 45 36 28
900 0590 392 241 158 112 82 63 48 38 30
2.5 075 CUSUM(3,39): 360 161 8 54 37 27 22 18 15
100 1.149 207 128 & 55 37 26 19 15 12
250 0924 276 153 93 61 40 28 21 16 13
500 0720 320 175 105 67 44 30 22 17 14
750 0583 334 181 109 70 45 31 23 17 14
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Figure 2 The sample path of disorderly conduct data
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Figure 3 The ACF and PACF plot of disorderly conduct data (from 1990 to 1996)
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Figure 4 The upper one-sided CLSE-CUSUM chart of disorderly conduct data

5. A real data example

In order to showcase an application of CLSE-CUSUM charts to monitoring INAR(1)s processes,
we consider the monthly number of disorderly conduct reported in the 44th police car beat in
Pittsburgh from 1990 to 2001 in Kim and Lee (2017). We use the data from 1990 to 1996 as an in-
control sample. The CLSE-CUSUM control chart is then applied to the data from 1997 to detect
whether the mean increase occurs or not. The sample path plot is given in Figure 2, wherein the
dashed line denotes December 1996, and the ACF and PACEF plots are presented in Figure 3. For in-
control data, the sample mean, variance, and autocorrelation are given as 3.9643, 5.3602 and 0.2261,
respectively. From the sample path plot, one cannot easily check whether the mean increases or not
after the dashed line.

Kim and Lee (2017) demonstrate that for the data from 1990 to 1996, the first order INAR(1)
process with the Katz family innovation (INARKF(1)). Based on the results from Kim and Lee (2017)
assuming that in-control data follows an INARKF(1) process with 6, =2.2080, &, =0.2537 and
a =0.2511. Kim and Lee (2017) apply the upper one-sided CUSUM chart defined as in (2) and (3)
with k =4, h =34 wherein the in-control ARL is computed as 205.4 and the out-of-control signal
occurs in August 2000. We apply the proposed upper one-sided CLSE-CUSUM procedure in (11) to
this data. Note that our procedure has the advantage of not requiring a specific distributional
assumptions on the innovation process.

To obtain the control limit that renders the in-control ARL near 205.4, we use v =100 following
the recommendation in Section 4 and replace V' and W by their estimates from the in-control sample
given as in (8) and (9). From numerical experiments with 30,000 repetitions, the control limit ¢, is
calculated as 2.035. The plot of CLSE-CUSUM statistic is presented in Figure 4, wherein the dashed
line denotes ¢, =2.035, and the C;, and C,, stand for the CLSE-CUSUM statistics with v =100

of the disorderly conduct data from 1990 to 1996 and from 1997 to 2001, respectively. It can be
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observed that the data obtained from 1990 to 1996 is in-control because the maximum value of the
statistic C}, is less than 2.035. In the meantime, the plot of C,,, shows that the control statistic has

an increasing trend and an out-of-control signal occurs at =19 (July 1998). The estimated change
point appears to be 8 (August 1997), indicating an earlier detection in comparison of the CUSUM
chart. It can be also seen that the sample mean of the data from August 1997 to July 1998 appears to
be 4.833, which is greater than that of the in-control data.

6. Proof of Proposition 2.1
Assume that X, =0. For feN, we can obtain the following by using the mathematical
=1
induction. Notice that EX, < CkZa’k , where
i=0

Clzﬂe,la
2q,
sz[a+1—'u€’1]C1+,uﬁ2,
2 Cz 3”62
Cy=3a” (I-~a+u )—5+a|l-2a+3u +—=|C + 4,
l-a - ’

C
C,=a’ (6(1—a)+4/45,3)1 v’ (1—a)(T-1a) +12(1-a)p, 5 +6/¢6)2)1 S

2

+a(1—6a+a2+4(1—2a+%],u53+6,u62jq .
_a ’ ’ ’

Since a €[0,1), we have EXZ‘; < C:=max{C, /(l—ak) :k=1,2,3,4}. Proposition 1 from
Bourguignon et al. (2016) indicates that X, converges in distribution to a unique stationary marginal
distribution X'. Thus, owing to the Portmanteau lemma (cf. Theorem 29.1 of Billingsley (1979)), we
get EX* <limEXf <C, k=1,2,3,4.

[—0

7. Concluding Remarks

In this paper, we proposed a new control procedure based on the CLSE-CUSUM statistic. Our
method outperforms the CUSUM chart when there are small to moderate mean increases of
innovation processes in terms of ARL, and also, SD and median. Moreover, it merits to give
additional information on the location of a shift and to set in-control ARLs at one's disposal. The
proposed procedure can be applied to other distributions and probabilistic structures without serious
difficulties. The task of statistical design in more complicated models such as INGARCH process
based on various performance measures such as ARL, SD is left as our future project.

Acknowledgements

We thank the referee for his/her careful reading and valuable comments. This work is supported
by Basic Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT and future Planning (No. 2018R1A2A2A05019433).



Hanwool Kim and Sangyeol Lee 189

References

Al-Osh MA, Alzaid AA. First-order integer-valued autoregressive (INAR(1)) process. J Time Ser
Anal. 1987; 8(3): 261-275.

Billingsley P. Probability and measure. New York: John Wiley & Sons; 1979.

Bourguignon M, Vasconcellos KL, Reisen VA, Ispany MA. Poisson INAR(1) process with a seasonal
structure. J Stat Comput Simul. 2016; 86(2): 373-387.

Chen J, Gupta AK. Parametric statistical change point analysis: with applications to genetics,
medicine, and finance. New York: Springer Science & Business Media; 2011.

Huh J, Kim H, Lee S. Monitoring parameter shift with Poisson integer-valued GARCH models. J
Stat Comput Simul. 2017; 87(9): 1754-1766.

Kang J, Lee S. Parameter change test for random coefficient integer-valued autoregressive processes
with application to polio data analysis. J Time Ser Anal. 2009; 30(2): 239-258.

Kim H, Lee S. On first-order integer-valued autoregressive process with Katz family innovations. J
Stat Comput Simul. 2017; 87(3): 546-562.

Klimko LA, Nelson PI On conditional least squares estimation for stochastic processes. Ann Stat.
1978; 6(3): 629-642.

Lee S, Ha J, Na O, Na S. The CUSUM test for parameter change in time series models. Scand Stat.
2003; 30(4): 781-796.

Lee S, Na O. Test for parameter change in stochastic processes based on conditional least-squares
estimator. J Multivar Anal. 2005; 93(2): 375-393.

Montgomery DC. Statistical Quality Control: A Modern Introduction. 7th edition. New York: John
Wiley & Sons; 2012.

Page ES. Continuous inspection schemes. Biometrika. 1954; 41(1-2): 100-115.

Page ES. A test for a change in a parameter occurring at an unknown point. Biometrika. 1955; 42(3/4):
523-527.

Scotto MG, Weill CH, Gouveia S. Thinning-based models in the analysis of integer-valued time
series: a review. Stat Model. 2015; 15(6): 590-618.

Steutel FW, van Harn K. Discrete analogues of self-decomposability and stability. Ann Prob. 1979;
7(5): 893-899.

Weil CH. Thinning operations for modeling time series of counts-a survey. AStA Adv Stat Anal.
2008; 92(3): 319-341.

Weill CH. Process capability analysis for serially dependent processes of Poisson counts. J Stat
Comput Simul. 2012; 82(3): 383-404.

Weiss CH, Testik MC. CUSUM monitoring of first-order integer-valued autoregressive processes of
Poisson counts. J Qual Technol. 2009; 41(4): 389-400.

Yontay P, Weill CH, Testik MC. and Pelin Bayindir, Z. A two-sided cumulative sum chart for first-
order integer-valued autoregressive processes of Poisson counts. Qual Reliab Eng Int. 2013;
29(1): 33-42.



