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Abstract 

An appropriate control chart for practical observations should be designed from optimal 

parameters. In this research, the main objectives are to estimate the optimal smoothing parameter of 

the EWMA control chart and fractional differencing parameter to evaluate the Average Run Length 

(ARL) and compare among analytical EWMA ARL, numerical EWMA ARL, and analytical 

CUSUM ARL. Also, the analytical EWMA ARL is derived and numerical EWMA ARL is evaluated 

and illustrated. The time intervals in days between explosions in mines in Great Britain during 1875 

to 1951 are an example of practical observations of a long memory ARFIMA process with 

exponential white noise. The findings showed that the method for evaluating analytical EWMA ARL 

is an alternative for measurement of the efficiency of the EWMA control chart due to the good 

performance. 

______________________________ 
Keywords: ARFIMA process, average run length, EWMA and CUSUM control chart, integral equation. 

1. Introduction 

In statistical estimation and forecasting, observations that often occur in a natural process such 

as a stochastic process are interesting to study. The stochastic process relates to natural phenomena, 

which generates random attributes causing an ineffective and inconsistent statistical estimator or 

unbiased estimator. In particular, these attributes are formed in serially correlated observations, or 

auto-correlated observations that are commonly practical observations. In order to model the auto-

correlated attributes from collected observations, econometrics models, which are suitable for such 

the observations, such as Auto-Regressive (AR), Moving Average (MA), Auto-Regressive Integrated 

Moving Average (ARIMA), Auto-Regressive Fractionally Integrated Moving Average (ARFIMA), 

etc. have emerged as tools for decision making. Not only do serially correlated observations occur 

naturally, they are also important in fields such as finance, economics, production, etc. Statistical 

Process Control (SPC) as a quality control technique, especially the Exponential Weighted Moving 

Average (EWMA) control chart, is employed in decision making with respect to the behavior of auto-

correlated observations. 
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Therefore, several researchers have studied the construction of forecasting models for serially 

correlated observations. This research has implications for statistical quality control, or the EWMA 

control chart, with serially correlated observations. In finance and agricultural economics, a 

forecasting model that combines ARIMA and the Moving Average (MA), the Weighted Moving 

Average (WMA), and the EWMA model to estimate the daily closing stock price of the PALTEL 

Company in Palestine was provided by Samir and Issam (2013); meanwhile, the ARIMA models for 

forecasting selected 1950-2010 annual agricultural productivity was used by Padhan (2012). The 

selected ARIMA model in minimum of Akaike Information Criterion (AIC) and lowest Mean 

Absolute Percentage Error (MAPE) was proposed. The results showed that the ARIMA model for 

tea productivity provided the lowest MAPE; meanwhile, for cardamom it provided the lowest AIC. 

Also, forecasting models for natural rubber ribbed smoked sheets No.3 (RSS3) in the agricultural 

futures market of Thailand and the effect on the rubber futures price were presented by Suppanunta 

(2009). The best model was selected by the minimum of least mean squared error. 

The characteristic in the time series of practical observations often involves a long memory 

process (see Liubov and Wolfgang (2016)). The ARFIMA process presented by Granger and Joyeux 

(1980) and Hosking (1981) was an initial example of a long memory stationary process. This process 

plays an important role in prediction and estimation, especially in quality control. In construction of 

the ARFIMA model, the estimation of the fractional differencing parameter (d) is very important. 

The maximum likelihood estimator method (see Palma and Chan (1997)), parametric approaches (see 

Barbara P. Olbermann et al. (2006)), the GPH estimator method (see Geweke and Porter-Hudak 

(1983)), and spectral regression (see Barkoulas and Baum (1997)) were used to estimate d value. 

Additionally, there has been some research on the application of the ARFIMA model to practical 

observations. ARFIMA models in forecasting the Air Pollution Index (API) in Shah Alam, Selangor, 

Malaysia were used by Lim Ying Siew et al. (2008). Moreover, a comparison between ARFIMA and 

AR models for unemployment rates in Japan was undertaken by Kurita (2010). 

Similarly, the EWMA control chart has been applied to practical observations. The EWMA 

control chart for monitoring air quality of the Ambient Ozone Levels of urban and industrial areas in 

Muscat was applied by Muhammad Idrees Ahmad (2015). The observations for monitoring were 

weekly 8-hour maximum concentrations of Carbon Monoxide (CO) in both areas. The results showed 

that the observations followed the AR model and the air quality around both areas was at the 

international standard limit. The SPC based on the capacity index for fulfillment of the gap between 

ISO 1400 and Total Quality Environmental Management (TQEM) was used to measure and evaluate 

the environmental performance by Charles and Jeh-Nan (2002). The EWMA control chart, as one of 

the effective quality control tools for reducing the variability of production process, was applied to 

bottle manufacturing observations by Saravanan and Nagarajan (2013). The control chart for auto-

correlated observations, which was long-memory air quality data from Taiwan, was used Jeh-Nan 

Pan and Su-Tsu Chen (2008). The practical observations were modeled as the ARFIMA and ARIMA 

process. The comparison between both models showed that the ARFIMA model was more 

appropriate than the ARIMA model. A quality control method for analysis and evaluation of 

observations on dissolved heavy metals in water in Peninsular Malaysia was studied by Fawaz et al. 

(2016). Furthermore, the important point for the EWMA control chart is that the optimal smoothing 

parameter ( )  is considered and estimated. The optimal   value leads to an effective EWMA control 

chart, so some researchers have studied the optimal   value and effective control chart in several 

applications. Polunchenko et al. (2014) used the optimal   value and initial value for the EWMA 

control chart and compared the design with two optimal methods based on the following criteria: 

Pollak’s minimax and Shiryaev’s multi-cyclic setup. The results showed that the conventional 
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optimal  value of the EWMA control chart could be a competitive method. The optimal   value of 

the EWMA statistic and the width factor of the control limits was evaluated by Petar and Sanja (2011). 

Then, the optimal EWMA control chart was applied to monitor the rate of occurrences of intrusion 

events on computer network traffic. A comparison between the optimal EWMA control chart and the 

CUSUM control chart as measured by the performances of both control charts based on the standard 

deviation of the run length (SDRL) was proposed by Lee et al. (2013).  The results showed that the 

simulation observations were applied to the control chart. When out-of-control, the optimal EWMA 

control chart had a better performance than the optimal CUSUM control chart. However, when in-

control, the optimal CUSUM control chart performed better. Therefore, an optimal quality control 

method results in an efficient control chart. 

The efficiency of a control chart for sensitive detection of small changes or shifts is measured by 

Average Run Length (ARL) which is the expected value of the number of in-control observations 

before the control chart finds the signal out of control. There are two types of ARL: ARL0 for an in-

control state and ARL1 for an out-of control state. The EWMA control chart for detecting changes in 

the mean of a long memory process, which is assumed the ARFIMA (1, d, 1) model and extended 

also to the modified EWMA control chart, was employed by Liubov and Wolfgang (2016). The 

results make a measurement of the effectiveness as ARL. The ARL expression on the EWMA statistic 

for AR(1) observations with error following exponential white noise process was derived by 

Suriyakat et al. (2012). The computational method integral equation for ARL compared with the 

derived ARL was demonstrated. 

However, error or noise occurs during the working process, so the collected practical 

observations from the process kept the noise in the observations. When the model from such 

observations is constructed, the noise is an important factor. Commonly, noise follows normal white 

noise, but noise sometimes follows exponential white noise. Some researchers have studied 

exponential white noise, and proposed methods for testing white noise and exponential distribution 

as follows: first-order Autoregressive model white error following exponential white noise was tested 

by Hocine Fellag (2001). The size of the test is concentrated when the exponential white error occurs 

by varying the size of the test. The test is sensitive to the varied size of the test. Statistics for testing 

normal and exponential distributions estimated by Monte Carlo simulations of reliability data were 

presented by Duan and Chen (1983). Test statistics: Kolmogorov-Smirnov, Cramer-von Mises, and 

Anderson-Darling, for testing exponential data were presented by Diane et al. (2008). The parameter 

of exponential distribution was estimated by the maximum likelihood method. Furthermore, a simpler 

testing statistic for the white noise process was constructed by Lobato and Velasco (2004). Practical 

observations with white noise, which forms the ARMA process, was applied to the test for residual 

white noise. 

As mentioned in the above literature review, the estimation of d and   value are important in 

modelling. Therefore, in this research, the ARL with optimal d and   value with applications to 

practical observations following the long memory ARFIMA process is proposed. The rest of this 

paper is organized as follows. In the next section, the definition and fundamental knowledge about 

control charts and the ARFIMA process are given. The estimation in   value of the EWMA statistic, 

the d value of the ARFIMA model, and exponential white noise testing of the error are illustrated in 

Section 3. The application and comparison of the ARL are contained in Section 4. Section 5 is the 

conclusion and discussion of this research. 
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2. Fundamental Definitions and Preliminaries about Control Charts and the ARFIMA Long 

Memory Process 

In this section, some fundamental concepts and knowledge that are essential for dealing with 

control charts and parameter estimation are shown as follows: 

 

2.1. Mathematical definitions about white noise process, likelihood function, and EWMA and 

CUSUM control chart 

 
Definition 1 (White Noise Process) The process ; (0, ]tX t T  is called white noise if ( )tX    

and correlation function, ( ) ( )t tX X      where ( )  is Dirac delta function defined as 

; 0
( ) .

0; 0


 



 
 


 

That is to say, the white noise process is the process with a constant mean and variance of 
independent identically random variables. 
 
Definition 2 (Likelihood Function) Let independent identically random samples ; 1,2,3,...,ix i n  

from the probability density function (pdf), ( ).if x  Joint density function of ,ix

1 2( ) ( , ,..., ; )nL f x x x   which is called likelihood function. 

 

Definition 3 (EWMA Statistic) The EWMA statistic at time t  is defined as 

 1(1 ) ; 1,2,3,...,t t tZ Z X t n                   (1) 

where tZ  is an EWMA statistic starting at the process mean, 0Z   and tX  is generated from 

ARFIMA process. 

 

Definition 4 (EWMA Control Chart) The control limits of EWMA chart (see Areepong and 

Sukparungsee (2010)) with a smoothing parameter  , a width K  of the control limit, a process 

mean ,  a standard deviation process ,   and  process variance 2  consist of: 

Upper control limit:   21 (1 ) ,
(2 )

tUCL K


  


     
 

Center Line:           ,CL     

Lower control limit:   21 (1 ) .
(2 )

tLCL K


  


     
    

An optimal smoothing parameter is a smoothing parameter   with the minimum sum of squared 

error (SSE) between the EWMA statistic and observations. Furthermore, the smoothing parameter

  is sometimes called   value which desires to be optimal.  

 
Definition 5 (CUSUM Control Chart) The Cumulative Sum (CUSUM) control limits are recursively 
defined as 

1 0max( , 0), 1,2,... ,t t tC C X r t uC                                           (2) 

where tC  is the CUSUM statistic, r  is a positive constant reference value, u  is an initial value and 

tX  is generated from ARFIMA process. Additionally, the reference value ( r ) is the mean-shift 

detection constant which equals to the average between the acceptable quality level and unacceptable 
quality level for the CUSUM control chart.  
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Definition 6 (Absolute Percentage Relative Error) Absolute percentage relative error (APRE) of ARL 

is defined as 

 

  ( )
  100%

( )

L u L u
APRE

L u


   (3) 

where ( )L u  is analytical ARL and   L u  is numerical ARL. 

 

2.2. ARFIMA long memory process with exponential white noise 

In time series, the characteristic of some observations in practical applications obviously 

involves the long memory process with autocorrelation of square error such that, 2 1( ) dk ck   as 

, 0,k c    decays slowly to zero where 
1

0
2

d   (see Liubov and Wolfgang (2016)). This 

characteristic plays an important role in prediction and estimation, especially in quality control. 

The process ; 1,2,3,...,tX t n  with the process mean   of n  observations, and the initial value 

0 ,X   given the notation as ARFIMA(p, d, q) (see Liubov and Wolfgang (2016)) such that

1
0

2
d   called long-memory, or long-term dependence ARFIMA process with exponential white 

noise is defined as,  

 ( ) ( )d
t tB X B                     (4) 

where ~ exp( )t   is an exponential white noise or error with 0   which is called shift parameter 

in the quality control, or rate parameter of the exponential distribution in the general. i.e., 

1
( ) .f e








  

In Equation (4), B  is a backward shift operator such that k
t t kB     with thk  order,  

2
1 2( ) (1 ... ),p

pB B B B         2
1 2( ) (1 ... )q

qB B B B        , and 

2 3

0

1 1
(1 ) ( ) 1 (1 ) (1 )(2 d) ...

2! 3!
d d i

i

d
B B dB d d B d d B

i





 
             

 
  

where 
( 1)

; ( )
( 1) ( 1)

d d

i d i i

   
   

     
 is gamma function. 

 
3. Method for Estimation of Parameters in the EWMA Control Chart and Long Memory 

ARFIMA Process 

3.1. Estimation smoothing parameter and differencing parameter 

In this section, the estimation of important parameters,   and d, is proposed as follows: 

The method for estimation of   value in the EWMA statistic is the minimum sum of squared 

error (SSE) (see Petar and Sanja (2011)). Let tS  be smoothing value by virtue of the EWMA statistic 

as in Equation (1) with initial value 2 1.S x  Thus, 

1 1(1 ) ;t t tS x S      (0,1], 3.t    
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By the iterative approach for the sum of squared errors (SSE): 2
1 1

3

( )
n

t t
t

S x 


  as shown for the 

smoothing
 
scheme in Table 1, the desired SSE is a minimization of the SSE of the estimated   value 

of the EWMA statistic. 

 

Table 1 Exponential smoothing scheme by sum of squared error 

Observation ( tx )
 tS  

Error ( ( )t tS x )
 

Squared Error 

1x
 

- - - 

2x
 1x

 2E
 

2
2( )E  

3x  3S  3E  
2

3( )E  


 
      

nx  nS  nE  
2( )nE  

2
1 1

3

( )
n

t t
t

SSE S x 


   

  

The optimal d value and the other parameters of ARFIMA(p, d, q) model as in Equation (4) was 

identified and calculated by the method of Haslett and Raftery (1989) which is based on maximum 

likelihood estimation for the parameter of ARIMA model. The fracdiff package in R program is 

applied to calculate the optimal d value (see Chris and Washington (2003)). 

 

3.2. Rate parameter estimation and exponential white noise testing 

In this section, the maximum likelihood estimation method for the rate parameter is carried out 

and exponential white noise process testing are follows. 

Let ; 1,2,3,...,iX i n  be random variables with an identically independent distribution (i.i.d.) 

from the exponential distribution of probability density function (pdf)  
1

( ; ) ; 0.
i

x

X if x e x




   

The likelihood function for random samples ; 1,2,3,...,ix i n  from exponential function, 

1( ) .

n

i

i

x
nL e



  

 
  Thus, the maximum likelihood estimator of the exponential random variables is 

ˆ .x   

The exponential white noise process is the process that follows exponential distribution and 

white noise process. 

In this research, the white noise process is tested by the concept of the Lobato-Velasco white 

noise test (see Lobato and Velasco (2004)). The null hypothesis is that the observations are white 

noise. The testing method based on a two-tail test against the normal distribution with mean 0 and 

variance 4 is computed with the Cramer von Mises (CVM) test statistic. The normwhn.test package 

including whitenoise.test() function in R program is applied to test the white noise process (see Peter 

Wickham (2012)). 

The statistic for testing the hypothesis is D  (see Diane et al. (2008)). The maximum value of 

absolute deviation ( D ) between the cumulative distribution ( ( ))nF x  of n observations normalized 

to uniform(0,1) and the theoretical cumulative distribution ˆ( ( ))F x  is tested. i.e., 
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ˆsup{| ( ) ( ) |}.n n
x

D F x F x   

The stats package in R program including ks.test () function was applied to calculate the statistic for 

testing the distribution of the observations (see R Core Team (2016)). 

 
4. Application 

This section focuses on the application in practical observations. The practical observations were 

obtained from a published research paper entitled “The time intervals between industrial accidents” 

(see Maguire et al. (1952)). The data are the time intervals in days between explosions in mines in 

Great Britain, in which more than 10 men were killed. The time period was from 6 December 1875 

to 29 May 1951. Moreover, the process mean was 129 days per explosion and 339 days per explosion 

when the process mean changed. The ARFIMA (p, d, q) model and parameter estimation based on 

the practical observations fitted from the process and application to evaluate the ARL are given as 

follows. 

 

4.1. The results of parameters estimation and ARFIMA modelling of a practical investigation 

The parameters d and   value are estimated for practical observations. The results and the 

interpretation of the model and testing are as follows. 

Table 2 shows the parameters estimation for construction of the ARFIMA(p, d, q) model. The 

optimal d value estimated by the method of Haslett and Raftery (1989) is 0.1118246, which indicates 

that the time intervals in days between explosions in mines have a long memory time series property. 

The estimation of the coefficients of the ARFIMA(p, d, q) model are as follows: 

1 20.8383, 0.2517,      1 20.1748, 0.7089    . Thus, ARFIMA(p, d, q) model about the 

zero process mean for this practical observations as, 

ARFIMA(2, 0.1118246, 2) = 5 40.007867022529994364 0.03870093378102443t tx x     

                          3 2 1 2
ˆ0.10103172301452609 0.10829750840258 0.7264754 0.7089t t t tx x x         

                          1
ˆ ˆ0.1748 .t t    

 

Table 2 ARFIMA(p, d, q) model for the time intervals in days between explosions in mines in 

Great Britain during 1875 to 1951 

Fractional differencing parameter = 0.1118246 

Coefficients: 
ar1 ar2 ma1 ma2 

-0.8383   -0.2517   0.1748   -0.7089 

s.e.    0.1619    0.1074    0.1340    0.1299 
2  estimated as 91518:  log likelihood= -769.42 

AIC=1548.84   AICc=1549.43   BIC=1562.26 

 

Table 3 shows the results of testing the exponential white noise of the error between actual 

observations and the ARFIMA(2, 0.1118246, 2) model along with the rate parameter estimation 

based on the maximum likelihood estimation for exponential distribution. The hypotheses for the test 

consist of two parts as follows: 

1) Testing based on the Kolmogorov-Smirnov test of error for exponential distribution, 
                  Null hypothesis: The errors follow an exponential distribution.  
      versus  Alternative hypothesis: The errors do not follow an exponential distribution.  

                  p-value = 0.3734   0.05, this leads to accepting the null hypothesis.  
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2) Testing based on the concept of the Lobato-Velasco method of error for a white noise process, 
                 Null hypothesis: The errors follow the white noise process.   
     versus  Alternative hypothesis: The errors do not follow the white noise process.  

                 p-value = 0.5792938   0.05, this leads to accepting the null hypothesis.  
Therefore, both hypothesis testing shows that the errors follow exponential white noise with the rate 

parameter, 0.004051299. 

 

Table 3 Testing of error for exponential white noise 

Testing for exponential distribution of error:  alternative hypothesis: two-sided 

One-sample Kolmogorov-Smirnov test data:  error 

                   D = 0.089649 p-value = 0.3734 

Testing based on Lobato-Velasco method for white noise of error:  p- value = 0.5792938 

Rate parameter for exponential distribution of error : 0.004051299 

 

Next, the method for the minimum of the sum of squared error for optimal   value is 

demonstrated as follows: 

 

 
 

Figure 1 Optimal   value of EWMA statistic 

 

For the EWMA control chart based on practical observations, Figure 1 shows the optimal value 

at 0.11 and returns the minimum of SSE at 10519360.07. 

 

4.2. ARL based on optimal parameters in a practical investigation 

In this research, only the upper side of the EWMA control chart is considered, i.e. the central 

line is 0 and the UCL is 0.b   

The ARL consisting of analytical EWMA ARL notated by ( )EL u  and numerical EWMA ARL 

notated by ( )EL u  for the EWMA control chart of practical observations can be derived by the 

concept of Champ and Rigdon (1991) as follows: 

With initial 0Z u  of the EWMA statistic around the zero process mean, the EWMA ARL denoted 

by ( )L u  can be derived from a linear Fredholm integral equation of the second kind (see Kharab and 

Guenther (2012)) as 
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  

(1 )

(1 )

( ) 1 ( (1 ) ) ,

t

t

b X u

t

X u

L u L w u X f w dw

 



 



  

  

  

                  (5) 

where tX  is long memory ARFIMA(p, d, q) process. 

The analytical ARL of EWMA control chart for ARFIMA process can be carried out as follows. 

In the case of practical observations of the time intervals in days between explosions in mines in 

Great Britain, the ARFIMA(p, d, q) process is ARFIMA(2, 0.1118246, 2). Namely, 

tX   5 4 30.007867022529994364 0.03870093378102443 0.10103172301452609t t tx x x     

                2 1 2 1
ˆ ˆ ˆ0.10829750840258 0.7264754 0.7089 0.1748 .t t t t tx x            

Thus, analytical EWMA ARL can be carried out as, 

5

0

4 3

2 1 2 1

1 (1 )
( ) 1 ( ) [ {0.007867022529994364

0.03870093378102443 0.10103172301452609

ˆ ˆ ˆ0.10829750840258 0.7264754 0.7089 0.1748 }]

b

E E t

t t

t t t t t

y u
L u L y f x

x x

x x dy



 

  



 

   

 
  

 

    



 

Let 

5 4

3 2 1

2 1

(1 ) 1
[0.007867022529994364 0.03870093378102443

( ) exp 0.10103172301452609 0.10829750840258 0.7264754

ˆ ˆ ˆ0.7089 0.1748 ]

t t

t t t

t t t

u
x x

s u x x x



 

  

 

  

 

 
  

  
    

 
   

  

 

and 
0

 ( )exp( ) ,
b

E

y
w L y dy


   so 

( )
( )  1

s u
L u wE


  , 

5

4 3

2 1 2

1

[1 exp( )]

1 1
1 [1 exp( )exp( [0.007867022529994364

0.03870093378102443 0.10103172301452609

ˆ0.10829750840258 0.7264754 0.7089

ˆ ˆ0.1748 ])

t

t t

t t t

t t

b

w
b

x

x x

x x




  



 



 

  



 


 

   
 
   
   
 
   

. 

Let 
(1 )

( ) {1 exp( )}exp[ ]
b u

Nom


 
 


    and 

5

4

3

2

1 2

1

0.007867022529994364

0.03870093378102443

0.101031723014526091
( ) (1 exp[ ]) exp[ ]

0.10829750840258

ˆ0.7264754 0.7089

ˆ ˆ0.1748

t

t

t

t

t t

t t

x

x

xb
Denom

x

x

 
 



 









 



 
 
 

  
      

 
  
 
   

. 

Therefore, 

 
( )

( ) 1
( )

E

Nom
L u

Denom




                 (6) 
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In Equation (6), the shift parameter is determined to 0   in case the observations are in an 

in-control state and determined as 1 0= (1 )      in case the observations are in an out-of-control 

state with shift size (  ). 

In order to compare the results of the EWMA ARL to CUSUM ARL, the analytical ARL of 

CUSUM control chart denoted by ( )CL u  with the first time outside the upper control limit ( h ) or 

stopping time (  inf 0; ,b tt C h u h     ) can defined as ) )( (u bCL u     (see Mititelu et 

al. (2010)), 

 

1 1 1
( ) ( )

0

1
( ) 1 ( ) 1 (0) , [0, ].

t t
hu r X y r u X

C C CL u e L y e dy e L u r  



      
     

  
             (7) 

Numerical ARL based on by the Composite Midpoint Rule (see e.g. Matheus and Dmitry (2008)) 

for Equation (5) with each m  nodes weighted by 
b

w
m

j   and the interval [0, ]b  is divided into a 

partition 1 20 .... ,ma a a b      can be carried out as, 

      
1

(1 )1
1 .

m
j

E j E j t
j

a u
L u w L a f X



 

  
   

 
              (8) 

Obviously, Equation (8) is attained by solving the system of linear eqations, which is the method 

for solving a Fredholm integral Equation (5) of the second kind.
 

The comparison of the efficiency of the EWMA and CUSUM control chart is measured by ARL, 

which compares the differences between the analytical and numerical ARL by APRE as follows: 

Table 4 represents the numerical values of the analytical and numerical ARL starting at ARL0 = 

370 with 1,000m   nodes and 1u   of practical observations, which follow the long memory 

ARFIMA(2, 0.1118246, 2) process and the APRE of the difference between the analytical and 

numerical EWMA ARL. Also, the numerical values of analytical CUSUM ARL for comparison with 

analytical and numerical EWMA ARL are shown in the last column. 

From Table 4, when the shift size increases, there is a decrease in all analytical and numerical 

ARL. The numerical EWMA ARL is close to the analytical EWMA ARL in all different shift size 

levels. The APRE decreases in the same direction as the analytical and numerical EWMA ARL. 

Regarding the comparison between the analytical EWMA ARL and analytical CUSUM ARL, the 

results showed that the numerical values of EWMA ARL are less than the numerical values of 

CUSUM ARL at the same level of shift. That is to say, the EWMA control chart can detect a shift in 

the process mean faster than the CUSUM control chart. Turning to CPU time representing the 

numerical values in parentheses, the CPU time of EWMA numerical ARL increases when its ARL 

decreases; meanwhile, the CPU time of all analytical ARLs is steady between 0.014 to 0.015 minutes. 

On the whole, this results showed that the analytical method for EWMA ARL can detect a shift of 

the process mean better than the analytical method for the CUSUM control chart in the case of a long 

memory ARFIMA(2, 0.1118246, 2) process in a practical observation. Therefore, the analytical 

EWMA ARL is an alternative to measure the efficiency of the EWMA control chart because it is 

easier to calculate than the numerical method, which takes a lot of time. 
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Table 4 Comparison of the numerical values among the EWMA ARL with 0.00488646b   and 

analytical CUSUM ARL with 3, 4.24r h   on ARFIMA (2, 0.1118246, 2) process 

Shift size  

(  ) with 

0 1   

EWMA Analytical 

ARL ( )EL u  

EWMA Numerical 

ARL
 
 ( )EL u  

APRE (%) 

of EWMA 

CUSUM  

Analytical ARL 

( )CL u  

0.00 369.99997774471956 

(0.014) 

369.9999777143371 

(43.493) 

8.211E-09 370.091 

(0.015) 

0.01 334.7798452043425 

(0.015) 

334.7798451774018 

(87.141) 

8.047E-09 345.497 

(0.015) 

0.03 275.6496446712831 

(0.014) 

275.64964464996905 

(173.831) 

8.171E+01 302.324 

(0.015) 

0.05 228.61973992205526 

(0.014) 

228.61973990505882 

(217.683) 

7.435E-09 265.915 

(0.015) 

0.10 147.48176267465314 

(0.015) 

147.48176266468786 

(261.878) 

6.757E-09 197.011 

(0.015) 

0.30 35.79639538632715 

(0.014) 

35.79639538463283 

(304.731) 

4.733E-09 75.533 

(0.015) 

0.40 20.640872122458013 

(0.015) 

20.640872121633492 

(347.756) 

3.995E-09 52.236 

(0.015) 

0.50 12.913962671660649 

(0.014) 

12.913962671225006 

(390.984) 

3.373E-09 38.156 

(0.015) 

5. Conclusion and Discussion 

In this research, a method for estimating the optimal   value of the EWMA control chart and d 

value for the long memory AFRIMA (p, d, q) process with applications to practical observations was 

proposed. Also, the long memory ARFIMA process with exponential white noise was estimated and 

tested by the maximum likelihood estimation method and the Lobato-Velasco white noise test. It was 

found that the optimal long memory AFRIMA (2, 0.1118246, 2) process was a suitable process for 

practical observations of time intervals in days between explosions in mines in Great Britain during 

1875 to 1951. The main aim of this research is to apply the long memory ARFIMA process in a 

practical observation to measure the ARL for identifying the efficiency of a control chart in real 

situation quality control. The ARLs, analytical EWMA ARL, numerical EWMA ARL, and analytical 

CUSUM ARL as the shift sizes vary in different levels are shown and compared among all ARLs 

based on APRE. The results showed that the analytical method is the most effective method for 

comparing the numerical method in case of evaluating EWMA ARL. Furthermore, the analytical 

EWMA ARL was compared with the analytical CUSUM ARL. The results showed that the EWMA 

control chart is an effective control chart for comparing with the CUSUM chart based on analytical 

ARL criteria because the numerical values of the analytical EWMA ARL are less than the analytical 

CUSUM ARL. The results will help quality controllers chose appropriate control charts for practical 

observations. Also, choosing appropriate control charts will lessen computational and task time as 

well as result in more precise computation. 
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