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Abstract 

We consider the problem of deriving confidence interval for the Overlapping Coefficient 

(OVL) between one way random model with balanced and unbalanced data. The confidence 

intervals are derived using the concept of a Generalized Pivotal Quantity (GPQ). The accuracy of 

the proposed solutions are assessed using estimated coverage probabilities, and are also compared 

with other approximate solutions. The numerical results show that the GPQ method performs well 

in the estimation of OVL of two normal distributions under one way random model set-up. The 

results are illustrated with simulated examples. 

______________________________ 
Keywords: Overlapping coefficient, generalized pivotal quantity, one way random model, coverage 

probability. 

 
1.  Introduction 

A similarity measure explains the amount of overlap between two statistical populations. 

Similarity measure has a variety of applications in different fields. Overlapping Coefficient (OVL) 

is a measure of similarity between two probability distributions. It is the common area under two 

probability density functions. The value of OVL lies in between 0 and 1. If the two distributions 

are identical OVL becomes 1 and 0 if the two distributions are entirely different. 

Models with random effects have a wide variety of applications. For example, Kromhout et 

al. (1993) considered the one-way random model to study the within and between worker 

component of occupational exposure to chemical agents. Bhaumik and Kulkarni (1996) gave an 

exact method of constructing tolerance interval for the one-way ANOVA with random effects. 

The relevance of one-way random model for analyzing occupational exposure data was pointed 

out in Lyles et al. (1997). 

The concept of generalized pivotal quantity for the construction of confidence interval was 

used by many authors. Krishnamoorthy and Mathew (2002) used generalized confidence interval 

for assessing occupational exposure via the one-way random effects model with balanced data. 

Krishnamoorthy and Mathew (2003) constructed generalized confidence interval and p-values for 
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the means of lognormal distributions. Roy and Mathew (2005) constructed generalized confidence 

limits for the reliability function of two parameter exponential distribution. Krishnamoorthy and 

Mathew (2004) constructed one sided tolerance limits in balanced and unbalanced one way 

random models based on generalized confidence intervals. This paper introduces the construction 

of confidence intervals using generalized pivotal quantities of the parameters involved in the 

random effects models.  

 

2.  One Way Random Model with Balanced Data 

Let ijX  and ijY  be two independent observations following the one-way random models 

given by 

 1 1 1;   =1,2, , ,  1, 2, ,ij i ijX i k j n         (1) 

 2 2 2;   =1,2, , ,  1, 2, , ,ij i ijY i k j n         (2) 

where 1  and 2  are fixed unknown parameters, ,i ,i ij  and ije  are independent random 

variables such that 
2 2(0, ),    (0, ),i ijN N       

2 2(0, ),    (0, ).i ij eN e N     

Therefore, 2 2
1( , )ijX N      and 2 2

2( , ).ij eY N     

Here we consider Matusita’s measure of OVL of two normal distributions (see Minami and 

Shimizu 1999) with means 1  and 2  and variances 2
1  and 2

2
 given by 
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In our application dealing with one-way random model, the two normal populations are 
2 2

1( , )N      and 2 2
2( , ).eN     In (3), now replace 2

1 and 2
2 with 2 2

    and 

2 2 .e   Our problem is the derivation of a confidence interval for .  

 

2.1.  Generalized confidence interval 

In order to derive a confidence interval for ρ, we shall use the generalized confidence interval 

idea due to Weerahandi (1993, 1994, 2004). For this, it is necessary to exhibit a generalized 

pivotal quantity (GPQ) for .  By definition, a GPQ is a function of underlying basic random 

variables, and the corresponding observed values, along with the parameters. A GPQ is required 

to satisfy two conditions: (i) given the observed data, the distribution of the GPQ is free of any 

unknown parameters, and (ii) if the random variables in the definition of the GPQ are replaced by 

the corresponding observed values, the GPQ simplifies to a quantity that is free of the nuisance 

parameters. In order to exhibit a GPQ for ,  let us define, 
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and ..,X  ,SS  ,SS  ..,Y  SS  and eSS  are independently distributed with 
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Let ..,x  ..,y  ,ss  ,ss ,ss  and ess  be the observed values of ..,X ..,Y ,SS ,SS ,SS  and 
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It can be verified that the distributions of the quantities in (4) to (9) are free of unknown 

parameters and their observed values are the respective parameters. On substituting (4) to (9) in 

(3) we get T  as the generalized pivotal quantity for .  The  
th

2 and  
th

1 2  percentiles 

of T  give a 100(1 )%  generalized confidence interval for .  

 
2.2.  Simulation study 

A simulation study was conducted to assess the performance of generalized confidence 

interval of .  A comparison is done with bootstrap percentile method. Tables 1-3 give coverage 

probabilities of the confidence intervals for the following parameter values 
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(i) 2 2 2 2
1 23, 4, 2, 1, 1, 2e               give the value of  =0.1298, 

(ii) 2 2 2 2
1 21, 5, 1, 2, 1, 2e              give the value of  =0.4985, 

(iii) 2 2 2 2
1 22, 0, 3, 2, 2, 1e              give the value of  =0.8684. 

Tables 1-3 give the estimated coverage probabilities for several treatment-replication 

combinations in the balanced case, and for the three parameter combinations (i), (ii) and (iii) given 

above. In the table titles, these three cases are identified using the corresponding value of .  A 

nominal 95% confidence level is assumed throughout. All coverage probabilities are estimated 

using 5,000 simulated samples. In addition, each generalized confidence interval was calculated 

using 5,000 generated values of the GPQ, and the percentile bootstrap was implemented using 

5,000 parametric bootstrap samples. The tables give the coverage probabilities (labelled 

“Central”) and also the values of the right and left tails. From the numerical results, it should be 

very clear that the GPQ methodology is very satisfactory, and is to be preferred over the percentile 

bootstrap method. 

 

      Table 1 Estimated coverage probabilities when  = 0.1298 

1 2( , )k k  1 2( , )n n  

GPQ Method Bootstrap Perc. Method 

Coverage Probabilities Coverage Probabilities 

Central Left Right Central Left Right 

(15,15) (5, 5) 0.9641 0.0257 0.0102 0.9364 0.0581 0.0055 

 (10, 10) 0.9626 0.0210 0.0102 0.9685 0.0150 0.0165 

 (50,50) 0.9419 0.0046 0.0535 0.9198 0.0051 0.0751 

 (100,100) 0.9555 0.0198 0.0247 0.9199 0.0075 0.0726 

 (100,200)  0.9640 0.0189 0.0171 0.9099 0.0102 0.0799 

 (200,200) 0.9625 0.0201 0.0174 0.9189 0.0064 0.0747 

 (20,20) 0.9621 0.0210 0.0169 0.9588 0.0145 0.0267 

 (50,50) 0.9586 0.0215 0.0199 0.9575 0.0105 0.0320 

(20,20) (100,100) 0.9543 0.0243 0.0212 0.9432 0.0101 0.0457 

 (100,200) 0.9514 0.0213 0.0223 0.9446 0.0112 0.0442 

 (200,200) 0.9568 0.0211 0.0221 0.9492 0.0098 0.0410 

 (15,8) 0.9554 0.0205 0.0241 0.9138 0.0714 0.0148 

 (10,20) 0.9552 0.0198 0.0250 0.9270 0.0654 0.0076 

(50,50) (25,15) 0.9560 0.0205 0.0230 0.9561 0.0413 0.0026 

 (100,100) 0.9520 0.0245 0.0235 0.9534 0.0318 0.0148 

 (100,200) 0.9554 0.0213 0.0233 0.9762 0.0402 0.0126 

 (200,200) 0.9570 0.0214 0.0216 0.9494 0.0171 0.0235 

 

3.  Unbalanced Data 

Now consider the one-way random model with unbalanced data, given by 

1 1 1; 1,2, , ;  1, 2, , ,ij i ij iX i k j n         

2 2 2; 1, 2, , ;  1, 2, , .ij i ij iY e i k j n        

Let us define 
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Table 2 Estimated coverage probabilities when  = 0.4985 

1 2( , )k k  1 2( , )n n  

GPQ Method Bootstrap Perc. Method 

Coverage Probabilities Coverage Probabilities 

Central Left Right Central Left Right 

(15,15) (5, 5) 0.9602 0.0188 0.0210 0.9471 0.0079 0.0450 

 (10, 10) 0.9572 0.0204 0.0224 0.9284 0.0101 0.0615 

 (50,50) 0.9591 0.0192 0.0217 0.9198 0.0051 0.0751 

 (100,100) 0.9555 0.0225 0.0220 0.9199 0.0075 0.0726 

 (100,200) 0.9580 0.0209 0.0211 0.9099 0.0102 0.0799 

 (200,200) 0.9551 0.0217 0.0232 0.9189 0.0064 0.0747 

 (20,20) 0.9552 0.0210 0.0238 0.9226 0.0055 0.0719 

(20,20) (50,50) 0.9525 0.0265 0.0210 0.9198 0.0060 0.0742 

 (100,100) 0.9575 0.0178 0.0247 0.9277 0.0094 0.0629 

 (100,200) 0.9562 0.0182 0.0256 0.8994 0.0121 0.0885 

 (200,200) 0.9625 0.0185 0.0190 0.9264 0.0064 0.0672 

 (15,8) 0.9554 0.0194 0.0252 0.9655 0.0040 0.0305 

 (10,20) 0.9531 0.0249 0.0220 0.9265 0.0086 0.0649 

(50,50) (25,15) 0.9468 0.0292 0.0240 0.9311 0.0102 0.0587 

 (100,100) 0.9505 0.0231 0.0264 0.9334 0.0074 0.0592 

 (200,200) 0.9543 0.0257 0.0200 0.9213 0.0076 0.0711 

 (100,200) 0.9508 0.0226 0.0266 0.9330 0.0069 0.0601 

 

Table 3 Estimated coverage probabilities when  = 0.8684 

1 2( , )k k  1 2( , )n n  

GPQ Method Bootstrap Perc. Method 

Coverage Probabilities Coverage Probabilities 

Central Left Right Central Left Right 

(15,15) (5, 5) 0.9415 0.0045 0.0540 0.9396 0.0404 0.0700 

 (10, 10) 0.9451 0.0043 0.0506 0.9391 0.0291 0.0318 

 (50,50) 0.9419 0.0046 0.0535 0.9421 0.0158 0.0421 

 (100,100) 0.9499 0.0051 0.0450 0.9372 0.0136 0.0492 

 (200,200) 0.9520 0.0038 0.0442 0.9210 0.0174 0.0616 

 (100,200) 0.9516 0.0035 0.0449 0.9422 0.0155 0.0432 

 (20,20) 0.9418 0.0054 0.0528 0.9125 0.0262 0.0613 

(20,20) (50,50) 0.9426 0.0045 0.0529 0.9002 0.0172 0.0826 

 (100,100) 0.9475 0.0034 0.0491 0.9461 0.0141 0.0398 

 (200,200) 0.9430 0.0065 0.0505 0.9385 0.0261 0.0354 

 (100,200) 0.9481 0.0042 0.0477 0.9492 0.0196 0.0312 

 (10,20) 0.9245 0.0070 0.0685 0.9710 0.0211 0.0079 

 (25,15) 0.9246 0.0078 0.0676 0.9069 0.0705 0.0226 

(50,50) (15,8) 0.9246 0.0071 0.0683 0.9711 0.0152 0.0137 

 (100,100) 0.9296 0.0071 0.0633 0.9486 0.0185 0.0329 

 (200,200) 0.9322 0.0064 0.0614 0.9209 0.0314 0.0477 

 (100,200) 0.9380 0.0063 0.0587 0.9491 0.0198 0.0311 
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3.1.  Generalized confidence intervals 

Using lower case letters to denote the observed values of the corresponding random variables, 

the GPQs of the respective parameters are given by 
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 On substituting the GPQs of the parameters given in (10) to (15) in (3) we get the GPQ of 

the OVL .  

 

3.2.  Simulation study 

Simulation studies are conducted for three different values of   for k = 12 and three different 

choices of n using 5,0005,000 simulations as in the balanced case. Tables 4-6 give the estimated 

coverage probabilities for several replication combinations. The combination of following 

replication sizes are used for the simulation. 

(1) 1n  = (3, 15, 30, 14, 2, 3, 13, 22, 8, 6, 9, 11),  

(2) 2n = (3, 4, 3, 4, 2, 3, 3, 2, 2, 2, 2, 2), 

(3) 3n = (13, 40, 7, 14, 22, 30, 3, 2, 12, 2, 21, 4).  

We notice once again that the GPQ approach provides satisfactory coverage in all cases, and 

is to be preferred over the percentile bootstrap method. 

 

Table 4 Estimated coverage probabilities when  = 0.1298 

1 2( , )k k  1 2( , )n n  

GPQ Method Bootstrap Perc. Method 

Coverage Probabilities Coverage Probabilities 

Central    Left Right Central    Left        Right 

  1 1,n n  0.9404   0.0101   0.0495 0.9854  0.0128 0.0018 

(12,12)  2 2,n n  0.9508   0.0044   0.0448 0.9298  0.0670 0.0032 

  3 3,n n  0.9498   0.0029   0.0473 0.9838  0.0143 0.0019 

 

Table 5 Estimated coverage probabilities when  = 0.4985 

1 2( , )k k  1 2( , )n n  

GPQ Method Bootstrap Perc. Method 

Coverage Probabilities Coverage Probabilities 

Central    Left Right Central    Left        Right 

  1 1,n n  0.9522   0.0024  0.0434 0.9442  0.0214 0.0344 

(12,12)  2 2,n n  0.9548   0.0032  0.0420 0.9452  0.0478 0.0070 

  3 3,n n  0.9560   0.0021  0.0419 0.9692   0.0264 0.0044 
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Table 6 Estimated coverage probabilities when  = 0.8684 

1 2( , )k k  1 2( , )n n  

GPQ Method Bootstrap Perc. Method 

Coverage Probabilities Coverage Probabilities 

Central    Left Right Central    Left        Right 

  1 1,n n  0.9582  0.0012 0.0406 0.8892  0.0024 0.1084 

(12,12)  2 2,n n  0.9606  0.0011 0.0383 0.9240  0.0054 0.0706 

  3 3,n n  0.9560  0.0015 0.0335 0.9050  0.0008 0.0942 

 

4.  Examples 

We shall now illustrate our methodology by applying it to some simulated data sets; balanced 

and unbalanced. 

 

4.1.  Balanced case 

We shall illustrate our methodology in the case of balanced data using two simulated data 

sets. In the first set, 15 treatments are considered and each treatment is repeated 10 times. That is, 

1 2 15,k k   1 2 10.n n   The simulated data give the following observed values: ..x = 1.0674, 

..y = 4.4929, ss = 150.4879, ss  = 267.221, ss  = 134.8539 and ess  = 277.6038. The estimated 

value of   is 0.5844. The 95% generalized confidence interval is (0.4712, 0.7678) and the 

bootstrap confidence interval is (0.4249, 0.7656).  

In the second dataset 50 treatments from the first population and 30 from the second 

population are considered. Each of the 50 treatments are repeated 5 times and 30 treatments are 

repeated 3 times. The simulated data gave the following observed values: ..x  = 1.9517, ..y .= 

0.1325, ss  = 267.777,  ss   = 104.4906, ss  = 133.1577 and  ess = 31.858. The estimated value 

of   is 0.7464. The 95% confidence interval based on GPQ method is (0.6472, 0.8809) and that 

based on bootstrap method is (0.6581, 0.9080).  We note the GPQ based confidence interval is 

similar to, or shorter than the corresponding percentile bootstrap confidence interval. 

 

4.2. Unbalanced case 

In the first example of an unbalanced dataset, 12 treatments are considered from both the 

populations. The replications of each treatment are given as n= (3, 4, 3, 4, 2, 3, 3, 2, 2, 2, 2, 2). 

The simulated data gave the following observed values: x = 1.0722, y  = 5.3776, 
x

ss = 7.1086, 

y
ss = 32.3491, ss = 0.7592, ess = 2.5051. The estimated value of   is 0.2484. The 95% 

generalized confidence interval is (0.1058, 0.5514) and bootstrap confidence interval is (0.2850, 

0.6909). 

In the second datasets, 10 treatments are considered and the replications are n  = (15, 14, 30, 

3, 13, 22, 9, 8, 6, 11) and the observed values are x = 2.4580, y = 4.3890, 
x

ss = 15.9006, 
y

ss = 

49.9430, ss = 2.2068 and ess = 0.8482. Here the estimate of OVL is 0.8157. The 95% confidence 

interval based on GPQ is (0.6173, 0.9670) and bootstrap confidence interval is (0.6908, 0.9602). 

Once again, the examples have brought out the differences between the two approaches for 

computing confidence intervals. 
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5.  Conclusions 

The GPQ approach has found numerous applications in the literature for several interval 

estimation problems. Furthermore, numerical results have demonstrated the accuracy of the 

resulting solutions. This article addresses yet another application: the interval estimation of the 

overlap coefficient under one way random models with balanced or unbalanced data. We have 

derived the GPQ based confidence interval, and have assessed its performance using estimated 

coverage probabilities. The only other approach that naturally comes to mind is the bootstrap, 

implemented parametrically. Our numerical results show that the GPQ based solution is to be 

preferred over the bootstrap solution. 
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