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Abstract

We consider the problem of deriving confidence interval for the Overlapping Coefficient
(OVL) between one way random model with balanced and unbalanced data. The confidence
intervals are derived using the concept of a Generalized Pivotal Quantity (GPQ). The accuracy of
the proposed solutions are assessed using estimated coverage probabilities, and are also compared
with other approximate solutions. The numerical results show that the GPQ method performs well
in the estimation of OVL of two normal distributions under one way random model set-up. The
results are illustrated with simulated examples.

Keywords: Overlapping coefficient, generalized pivotal quantity, one way random model, coverage
probability.

1. Introduction

A similarity measure explains the amount of overlap between two statistical populations.
Similarity measure has a variety of applications in different fields. Overlapping Coefficient (OVL)
is a measure of similarity between two probability distributions. It is the common area under two
probability density functions. The value of OVL lies in between 0 and 1. If the two distributions
are identical OVL becomes 1 and 0 if the two distributions are entirely different.

Models with random effects have a wide variety of applications. For example, Kromhout et
al. (1993) considered the one-way random model to study the within and between worker
component of occupational exposure to chemical agents. Bhaumik and Kulkarni (1996) gave an
exact method of constructing tolerance interval for the one-way ANOV A with random effects.
The relevance of one-way random model for analyzing occupational exposure data was pointed
out in Lyles et al. (1997).

The concept of generalized pivotal quantity for the construction of confidence interval was
used by many authors. Krishnamoorthy and Mathew (2002) used generalized confidence interval
for assessing occupational exposure via the one-way random effects model with balanced data.
Krishnamoorthy and Mathew (2003) constructed generalized confidence interval and p-values for
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the means of lognormal distributions. Roy and Mathew (2005) constructed generalized confidence
limits for the reliability function of two parameter exponential distribution. Krishnamoorthy and
Mathew (2004) constructed one sided tolerance limits in balanced and unbalanced one way
random models based on generalized confidence intervals. This paper introduces the construction
of confidence intervals using generalized pivotal quantities of the parameters involved in the
random effects models.

2. One Way Random Model with Balanced Data
Let X, and Y, be two independent observations following the one-way random models

given by
Xl.j:yl+ai+gﬁ; i=1,2,...k,j=12,...,n (1)
Y= +B +e; i=1.2,..0k), j=12,...,n,, (2)
where 4 and u, are fixed unknown parameters, ¢, S, ¢, and e, are independent random

variables such that
a; ~N(0’O-§)7 gij ~N(0,0’j),
B~ N(O,G/zf), e, ~ N(0,07).
Therefore, X, ~ N(y,0, +0;) and Y, ~ N(u,,0, +07).
Here we consider Matusita’s measure of OVL of two normal distributions (see Minami and
Shimizu 1999) with means g and x, and variances o; and o, given by

20,0, ex { l (44 _/uz)2 }

p= €)

(O-l2 + 022) 4 (O-l2 + 622)
In our application dealing with one-way random model, the two normal populations are

N(u,0,+0?) and N(u,,05+0’). In (3), now replace o] and o, with o, +o, and

o, +0. Our problem is the derivation of a confidence interval for p.

2.1. Generalized confidence interval

In order to derive a confidence interval for p, we shall use the generalized confidence interval
idea due to Weerahandi (1993, 1994, 2004). For this, it is necessary to exhibit a generalized
pivotal quantity (GPQ) for p. By definition, a GPQ is a function of underlying basic random

variables, and the corresponding observed values, along with the parameters. A GPQ is required
to satisfy two conditions: (i) given the observed data, the distribution of the GPQ is free of any
unknown parameters, and (ii) if the random variables in the definition of the GPQ are replaced by
the corresponding observed values, the GPQ simplifies to a quantity that is free of the nuisance
parameters. In order to exhibit a GPQ for p, let us define,
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SS, = ZLZL (Xij_)?i-)z’

Then
— Gz
Xi. ~ N[ﬂl,O'j( +_€]’
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and X.., SS,, SS,, Y., SS, and SS, arc independently distributed with

Z, =\kn, M ~N(O,D),

2 2
no, +o;

SS

Z, =\k;n, M ~ N(0,1),

2 2
MO, +0,

SS
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It can be verified that the distributions of the quantities in (4) to (9) are free of unknown
parameters and their observed values are the respective parameters. On substituting (4) to (9) in

(3) we get T as the generalized pivotal quantity for p. The (/2 "and (1-a/2)" percentiles
get 1, g p q y for p p

of 7, givea 100(1-a)% generalized confidence interval for p.

2.2. Simulation study
A simulation study was conducted to assess the performance of generalized confidence
interval of p. A comparison is done with bootstrap percentile method. Tables 1-3 give coverage

probabilities of the confidence intervals for the following parameter values
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() w4 =-3, 4, =40, =20,=10, =10, =2 give the value of p =0.1298,
(i) w4 =1u, =50, =10,=2,0,=1,0. =2 give the value of p =0.4985,

(i) g4, =2,4, = 0,0, =3,0, =2,0, =2,0. =1 give the value of p =0.8684.

Tables 1-3 give the estimated coverage probabilities for several treatment-replication
combinations in the balanced case, and for the three parameter combinations (i), (ii) and (iii) given
above. In the table titles, these three cases are identified using the corresponding value of p. A

nominal 95% confidence level is assumed throughout. All coverage probabilities are estimated
using 5,000 simulated samples. In addition, each generalized confidence interval was calculated
using 5,000 generated values of the GPQ, and the percentile bootstrap was implemented using
5,000 parametric bootstrap samples. The tables give the coverage probabilities (labelled
“Central”) and also the values of the right and left tails. From the numerical results, it should be
very clear that the GPQ methodology is very satisfactory, and is to be preferred over the percentile
bootstrap method.

Table 1 Estimated coverage probabilities when p = 0.1298

GPQ Method Bootstrap Perc. Method

(k. k) (n,,n,) Coverage Probabilities Coverage Probabilities
Central Left  Right Central Left  Right
(15,15) (5,5) 0.9641 0.0257 0.0102 0.9364 0.0581 0.0055

(10, 10) 0.9626 0.0210 0.0102 0.9685 0.0150 0.0165

(50,50) 0.9419 0.0046 0.0535 0.9198 0.0051 0.0751

(100,100) 0.9555 0.0198 0.0247 0.9199 0.0075 0.0726

(100,200) 0.9640 0.0189 0.0171 0.9099 0.0102 0.0799

(200,200) 0.9625 0.0201 0.0174 0.9189 0.0064 0.0747

(20,20) 0.9621 0.0210 0.0169 0.9588 0.0145 0.0267

(50,50) 0.9586 0.0215 0.0199 0.9575 0.0105 0.0320

(20,20)  (100,100) 0.9543 0.0243 0.0212 0.9432 0.0101 0.0457
(100,200) 0.9514 0.0213 0.0223 0.9446 0.0112 0.0442

(200,200) 0.9568 0.0211 0.0221 0.9492 0.0098 0.0410

(15,8) 0.9554 0.0205 0.0241 0.9138 0.0714 0.0148

(10,20) 0.9552 0.0198 0.0250 0.9270 0.0654 0.0076

(50,50) (25,15) 0.9560 0.0205 0.0230 0.9561 0.0413 0.0026
(100,100) 0.9520 0.0245 0.0235 0.9534 0.0318 0.0148

(100,200) 0.9554 0.0213 0.0233 0.9762 0.0402 0.0126

(200,200) 0.9570 0.0214 0.0216 0.9494 0.0171 0.0235

3. Unbalanced Data
Now consider the one-way random model with unbalanced data, given by
X,-,- =p+a,+ei=12,..k;j=1L2,...,n;,,

ij?

Yo=um+B +e;i=12,...k; j=12,...,n,,.

i

Let us define
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Table 2 Estimated coverage probabilities when p = 0.4985

GPQ Method Bootstrap Perc. Method

(k. ky) (m,n,)  Coverage Probabilities Coverage Probabilities
Central  Left Right Central Left Right
(15,15) (5,5) 0.9602 0.0188 0.0210 0.9471 0.0079 0.0450

(10,10) 0.9572 0.0204 0.0224 0.9284 0.0101 0.0615
(50,50) 0.9591 0.0192 0.0217 0.9198 0.0051 0.0751
(100,100) 0.9555 0.0225 0.0220 0.9199 0.0075 0.0726
(100,200) 0.9580 0.0209 0.0211 0.9099 0.0102 0.0799
(200,200) 09551 0.0217 0.0232 0.9189 0.0064 0.0747
(20,20) 0.9552 0.0210 0.0238 0.9226 0.0055 0.0719

(20,20) (50,50) 0.9525 0.0265 0.0210 0.9198 0.0060 0.0742
(100,100) 0.9575 0.0178 0.0247 0.9277 0.0094 0.0629
(100,200) 0.9562 0.0182 0.0256 0.8994 0.0121 0.0885
(200,200) 0.9625 0.0185 0.0190 0.9264 0.0064 0.0672

(15,8) 09554 0.0194 0.0252 0.9655 0.0040 0.0305
(10,20)  0.9531 0.0249 0.0220 0.9265 0.0086 0.0649

(50,50) (25,15) 0.9468 0.0292 0.0240 0.9311 0.0102 0.0587
(100,100)  0.9505 0.0231 0.0264 0.9334 0.0074 0.0592
(200,200) 0.9543 0.0257 0.0200 0.9213 0.0076 0.0711
(100,200) 0.9508 0.0226 0.0266 0.9330 0.0069 0.0601

Table 3 Estimated coverage probabilities when p = 0.8684

GPQ Method Bootstrap Perc. Method

(ky,ky) (ny,n,) Coverage Probabilities Coverage Probabilities
Central Left  Right Central Left  Right
(15,15) (5,5) 0.9415 0.0045 0.0540 0.9396 0.0404 0.0700

(10, 10) 0.9451 0.0043 0.0506 0.9391 0.0291 0.0318
(50,50) 0.9419 0.0046 0.0535 0.9421 0.0158 0.0421
(100,100)  0.9499 0.0051 0.0450 0.9372 0.0136 0.0492
(200,200)  0.9520 0.0038 0.0442 0.9210 0.0174 0.0616
(100,200) 0.9516 0.0035 0.0449 0.9422 0.0155 0.0432
(20,20) 0.9418 0.0054 0.0528 09125 0.0262 0.0613

(20,20) (50,50) 0.9426 0.0045 0.0529 0.9002 0.0172 0.0826
(100,100) 0.9475 0.0034 0.0491 0.9461 0.0141 0.0398
(200,200)  0.9430 0.0065 0.0505 0.9385 0.0261 0.0354
(100,200) 0.9481 0.0042 0.0477 0.9492 0.0196 0.0312

(10,20)  0.9245 0.0070 0.0685 0.9710 0.0211 0.0079
(25,15) 0.9246 0.0078 0.0676 0.9069 0.0705 0.0226

(50,50) (15,8) 09246 0.0071 0.0683 0.9711 0.0152 0.0137
(100,100) 0.9296 0.0071 0.0633 0.9486 0.0185 0.0329
(200,200)  0.9322 0.0064 0.0614 0.9209 0.0314 0.0477
(100,200) 0.9380 0.0063 0.0587 0.9491 0.0198 0.0311
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The sampling distributions of the above quantities are given by; see Krishnamoorthy and Mathew

(2004),
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3.1. Generalized confidence intervals

Using lower case letters to denote the observed values of the corresponding random variables,

the GPQs of the respective parameters are given by

T, = SS, ’
o; Ug
T SS, ’
o, U

(10)

(11)

(12)

(13)
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r -5z TE,; +}7l1ng (14)
=X — —"
H 1 kl
_ TG% +nT,
T, =y—2Z,,|—. (15)
2 k2

On substituting the GPQs of the parameters given in (10) to (15) in (3) we get the GPQ of
the OVL p.

3.2. Simulation study
Simulation studies are conducted for three different values of p for k=12 and three different

choices of n using 5,000x5,000 simulations as in the balanced case. Tables 4-6 give the estimated
coverage probabilities for several replication combinations. The combination of following
replication sizes are used for the simulation.

(1) n, =(3,15,30,14,2,3,13,22,8,6,9, 11),

(2) nz = (33 4’ 3’ 4$ 2’ 3’ 3$ 2’ 2’ 2’ 2’ 2)’

(3) n,=(13,40,7, 14, 22, 30, 3, 2, 12, 2, 21, 4).

We notice once again that the GPQ approach provides satisfactory coverage in all cases, and
is to be preferred over the percentile bootstrap method.

Table 4 Estimated coverage probabilities when p =0.1298
GPQ Method Bootstrap Perc. Method
(k. k,) — (n,n,) Coverage Probabilities Coverage Probabilities
Central Left Right Central Left Right
(n,n;) 0.9404 0.0101 0.0495 0.9854 0.0128 0.0018
(12,12) (nz,nz) 0.9508 0.0044 0.0448 0.9298 0.0670 0.0032

(ny,ny) 09498 0.0029 0.0473 0.9838 0.0143 0.0019

Table 5 Estimated coverage probabilities when p = 0.4985
GPQ Method Bootstrap Perc. Method

(ki ky)  (ny,my) Coverage Probabilities Coverage Probabilities
Central Left Right Central Left Right

(n;,n)) 0.9522 0.0024 0.0434  0.9442 0.0214 0.0344
(12,12) (m,.m,) 0.9548 0.0032 0.0420  0.9452 0.0478 0.0070
(n,,n;) 0.9560 0.0021 0.0419  0.9692 0.0264 0.0044
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Table 6 Estimated coverage probabilities when p = 0.8684

GPQ Method Bootstrap Perc. Method
(k. ky)  (n,n,) Coverage Probabilities Coverage Probabilities
Central Left Right Central Left Right

(n,,n,) 0.9582 0.0012 0.0406  0.8892 0.0024 0.1084
(12,12) (m,.m,) 0.9606 0.0011 0.0383  0.9240 0.0054 0.0706
(ny,n;) 0.9560 0.0015 0.0335  0.9050 0.0008 0.0942

4. Examples
We shall now illustrate our methodology by applying it to some simulated data sets; balanced
and unbalanced.

4.1. Balanced case

We shall illustrate our methodology in the case of balanced data using two simulated data
sets. In the first set, 15 treatments are considered and each treatment is repeated 10 times. That is,
k, =k, =15, n =n, =10. The simulated data give the following observed values: X = 1.0674,

y.=4.4929, ss,=150.4879, ss, =267.221, 55, =134.8539 and s5, =277.6038. The estimated
value of p is 0.5844. The 95% generalized confidence interval is (0.4712, 0.7678) and the

bootstrap confidence interval is (0.4249, 0.7656).

In the second dataset 50 treatments from the first population and 30 from the second
population are considered. Each of the 50 treatments are repeated 5 times and 30 treatments are
repeated 3 times. The simulated data gave the following observed values: X = 1.9517, y =

0.1325, ss, =267.777, ss, =104.4906, ss, =133.1577 and ss,=31.858. The estimated value
of p is 0.7464. The 95% confidence interval based on GPQ method is (0.6472, 0.8809) and that

based on bootstrap method is (0.6581, 0.9080). We note the GPQ based confidence interval is
similar to, or shorter than the corresponding percentile bootstrap confidence interval.

4.2. Unbalanced case

In the first example of an unbalanced dataset, 12 treatments are considered from both the
populations. The replications of each treatment are given as n= (3,4, 3,4, 2,3,3,2,2,2,2,2).
The simulated data gave the following observed values: X = 1.0722, 3 = 5.3776, ss. = 7.1086,

ss-= 32.3491, ss_= 0.7592, ss, = 2.5051. The estimated value of p is 0.2484. The 95%

5
generalized confidence interval is (0.1058, 0.5514) and bootstrap confidence interval is (0.2850,
0.6909).

In the second datasets, 10 treatments are considered and the replications are n = (15, 14, 30,

3,13,22,9, 8, 6, 11) and the observed values are x = 2.4580, 3 = 4.3890, ss-=15.9006, ss-=

49.9430, ss,=2.2068 and ss, = 0.8482. Here the estimate of OVL is 0.8157. The 95% confidence

interval based on GPQ is (0.6173, 0.9670) and bootstrap confidence interval is (0.6908, 0.9602).
Once again, the examples have brought out the differences between the two approaches for
computing confidence intervals.
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5. Conclusions

The GPQ approach has found numerous applications in the literature for several interval
estimation problems. Furthermore, numerical results have demonstrated the accuracy of the
resulting solutions. This article addresses yet another application: the interval estimation of the
overlap coefficient under one way random models with balanced or unbalanced data. We have
derived the GPQ based confidence interval, and have assessed its performance using estimated
coverage probabilities. The only other approach that naturally comes to mind is the bootstrap,
implemented parametrically. Our numerical results show that the GPQ based solution is to be
preferred over the bootstrap solution.
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