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Abstract

In this paper, explicit expression for single moments and some recurrence relations satisfied by
single and product moments of generalized upper record statistics or & -th upper record values from
the Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution are derived. These relations can
be used to obtain the higher order moments from those of the lower order. The results obtained are
deduced for moments of upper record statistics. Further, conditional expectation, recurrence relations
for the single as well as product moments and truncated moment are used to characterize this
distribution.
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1. Introduction
A random variable X is said to have Kumaraswamy-Fisk or Kumaraswamy-log-logistic
distribution (Huang and Oluyede 2014), if its probability density function (pdf) is of the form
f@=afi x "1+ x)[1-1+4 x")'1, x>0, >0, >0 and 1 >0 @)

with corresponding distribution function (df)

F(x)=1-[1-(1+4 x7?)']*, x>0, >0, >0 and 1>0. 2)
In view of (1) and (2), it is easy to see that
afF(x) = (x+Ax"") f (%), 3)

where F(x)=1-F(x).

It is observed in Huang and Oluyede (2014) that this distribution has desirable features of
exhibiting a non-monotone failure rate, thereby accommodating different shapes for the hazard rate
function and should be an attractive choice for survival and reliability data analysis.

The statistical study of record values in a sequence of independent and identically distributed
(iid) continuous random variables was first carried out by Chandler (1952). For a survey on important
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results in this area one may refer to Ahsanullah (1995), Arnold et al. (1998) and Ahsanullah and
Navzorov (2015). Dziubdziela and Kopocinski (1976) have generalized the concept of record values
of Chandler (1952) by random variables of a more generalized nature and called them the & -th record
values. Later, Minimol and Thomas (2013) called the record values defined by Dziubdziela and
Kopocinski (1976) also as the generalized record values, since the r -th member of the sequence of
the ordinary record values is also known as the 7 -th record value. Setting & =1, we obtain ordinary
record statistics.

Several applications of & -th record values can be found in the literature, for instance, see the
examples cited in Kamps (1995) or Danielak and Ragab (2004) in reliability theory. Suppose that a
technical system or piece of equipment is subject to shocks, e.g. peaks of voltages. If the shocks are
viewed as realizations of an iid sequence, then the model of ordinary records is adequate. If it is not
the records themselves, but second or third values are of special interest, then the model of & -th
record values is adequate. When record values themselves are viewed as outliers, then the second or
third largest values are of special interest. Record statistics are applied in estimating strength of
materials, predicting natural disasters, sport achievements, etc. For statistical inference based on
ordinary records, serious difficulties arise if expected values of inter arrival time of records is infinite
and occurrences of records are very rare in practice. This problem is avoided once we consider the
model of £ -th record statistics.

For some recent developments on generalized upper record values or k -th upper record values
with special reference to those arising from exponential, Gumble, Pareto, generalized Pareto, Burr,
Weibull, Gompertz, Makeham, modified Weibull, exponential-Weibull and additive Weibull
distributions, see Grudzien and Szynal (1983, 1997), Pawlas and Szynal (1998, 1999, 2000), Minimol
and Thomas (2013, 2014), Khan and Khan (2016) and Khan, et al. (2015, 2017), respectively. In this
paper we mainly focus on the study of generalized upper record values arising from the
Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution and discussed exact explicit
expressions as well as several recurrence relations satisfied by single and product moments. In
addition, conditional expectation and recurrence relations for single moments of k -th upper record
values and truncated moment are used to characterize this distribution.

Let {X, ,n>1} be a sequence of iid random variables with df F'(x) and pdf f(x). The j -th

order statistic of a sample X, X,,..., X, is denoted by X, . For a fixed positive integer k, we

define the sequence {U"

n

n=1} of k -th upper record times of {X,,n>1} as follows:
Ut =1,
UM =min{j >U" : X

n+l Jij+k-1

>X

U,‘,“:U,‘,‘>+k-1}'

The sequence {¥,”,n>1}, where ¥\*' =X , is called the sequence of generalized upper

record values or k -th upper record values of {X,,n>1}. Note that for k =1, we have ¥," = X, ,
n =1, which are the record values of {X ,n>1} as defined in Ahsanullah (1995).

The pdfof Y* and the joint pdf of ¥'* and Y'* are given by (see Dziubdziela and Kopocifski
1976, Grudzien 1982)

n

Srw (X)) = k—[—ln FI'F@I f(x), n>1, “4)
¢ (n—1)!
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_ k" it Fpey L)
hooo 3 = oo S P 28
X[InF(x)-In FO)" ™" [FO) f(»), x<y, 1<m<n, n>2, (5)
and the conditional pdf of ¥* given Y*' = x, is
_ " _ n—m-1 F(y) f(y)
S o 019 == I ()= In F) ( o )] oy T (©6)

2. Relations for Single Moments
We shall first establish the exact expression for single moments of & -th upper record statistics
in the following theorem.

Theorem 1 For the Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution given by (2), for

any fixed positive integer k (1< k <n), and j=0,1,2,...

(ka)' (-2)"" && G P),a,(n=Dl(ka)l(n+q - p)
- == p! Tn+ka+q-p)

ET,"Y = (N

Proof: From (4) and (2), we have

EP) = % [[0-0-F@ ) P Fer F@) T f@de ®)
On using Maclaurin series expansion
L _w @,z
(1-2) :;T, )

where
t(t+l) (t+p-1, p=12,.
0, =
L p=0,
and simplifying the resulting expression , we get
. ne_aViIB ® (j © _ _ = _
B0y K CAE S Uy (= pgiiay (o Fop! FI fds- (10)
(n—1)! 20 p! 0
Setting z =[F(x)]" in (10), we obtain
K'a(-2)"" i U’h,
(n-D! =% p!
ke A U ﬁ) [
(n-D! 4z 0
In view of Balakrishnan and Cohen (199 1), note that

J
. D P 0 .
e :(ZtJ = Sa, (i

p=1P p=0

E(Yn(k))_f — '[01 (I—Z)_p[—ln Zn( ]n—lzlm(—ldz

) [=In{l—(1-2)} ] 2 . (11)

t|<1, (12)

j
. © P

where a,(j) is the coefficient of t’*? in the expansion of [Zt—j .
p=1 p

On substituting (12) in (11), we have
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(ka)' (-2)"
(n-1 *

and hence the result given in (7).

( _ Z)n+q—]1—] Zka—]dZ

0

M

E(Yn(k))j — Zw:(]/ﬂ)paq(n l)'[

Il
=}

q=0

Corollary 1 The explicit expressions for the single moments of upper record values from the
Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution has the form

a'(=A)"” i i (J/P),a,(n-DI'(e)'(n+q—p)
(n=D! 5 5 p'T(n+a+q—-p)
Now, we obtain the recurrence relations for single moments of the & -th upper record values from the

E(Y"Y =E(X})=

Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution in the following theorem.

Theorem 2 For the Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution given by (2), for
any fixed positive integer k (1<k <n), and j=0,1,2,...

i _
1— E(Y®™Y = E(Y®Y) + E(Y® J—ﬁ. 13
(1 ey = moy « 2 b 13
Proof: In view of Khan et al. (2017), note that
~ n-1
EY —EXY) =—( b [/ 5 =0 FOor IR0 d. (14)

Using (3) in (14), we have

E(r") - E(Y"”)f=ﬁ[ [ %= Fop ' [F o) 'f(x)dx]

k

(n=1)170
jA k" s - O
+%(<n-n!f *[=In FoI™[F ()] f(x)dxj

and hence we obtained the result given in (13).

Corollary 2 The recurrence relation for single moments of upper record values from the
Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution has the form

- exs —px) + & pxie, (15)
aﬂ n n-1 aﬂ n

3. Relations for Product Moments
This section gives the recurrence relations for product moments of the & -th upper record values
from Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution.

Theorem 3 For the distribution given in (2) and m>1, m>k, i,j=0,1,2,...
LBy () 1= B Y 1+ =L By (1 (16)
apk apk
and for 1<m<n-2, i,j=0,1,2,...
1-—L B[y (r Y 1= E[®Y (7)Y 1+ E[(Y,2) (x,) "], (17)
apk ﬁ

Proof: From (5) and (3), we have
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j K ot S (x)
aff(m—-)l(n—m—-1)!7° F(x)
X[=In F(y)+In(F(x)]" " [F()]"" f(»)dydx

JjA k" -0
+aﬂ(m—1)!(n—m—l)"[ Ay Ee)
[~In F(y) +In(F )" ™" [F()]™ f (v)dydx.
(17) can be proved in view of Khan et al. (2017), by noting that

B (1) ] = o Loy e E )

m]f(x)
F(x)

CNRION, RGN, JE" P iyi-l
B0 1= B0 5 1= 1)'”

- m-1 J (X - I n—m—1p -
A F E I FO)+ nFo)) ™ (FOI f v,
Now putting 7 =m+1 in (17) and noting that E[(Y")' (¥} = E[(Y\")"/, the recurrence relation

given in (16) can be easily established. One can also note that Theorem 2 can be deduced from
Theorem 3 by putting i = 0.

Corollary 3 The recurrence relation for product moments of upper record values from the
Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution has the form

[1—L]E(X; X0y =ECX, X))+ L2 B xi,
ap) g

4. Characterizations
Theorem 4 Let X be a non-negative random variable having an absolutely continuous df F(x) with

F0)=0and 0<F(x)<1 forall x>0, thenfor 1<l<s<n,

ELE®) | (1) = x] = £(x) [k 1]_, P (18)

if and only if
F(x)=1-[1-1+2 x”)'1*, x>0, >0, >0 and 1>0,

where &(y)=[1 —(1+ Ay "'

Proof: From (6), we have

. o kn—m
E[E) | (1) = x] = ﬁj [1-(+ Ay 7))
[~ In F(y)+In F(x)]"™"" 1[?%) ?8 (19)
: _Fy) -0+ :
By setting u = F(x) = =t A7) from (2) in (19), we get
EEQ) () = 1] =— 1= 2x ) ) [ I (20)
(n—-m-1)! 0

We have Gradshteyn and Ryzhik (2007, p.551)
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J-;(—lnx)”’lx“’ldxzr_f: u>0, v>0. 21
v

On using (21) in (20), we have the result given in (18). To prove sufficient part, we have
k"*ﬂl
(n—-m-1)!

where

f [1-(+ 2y ) PN F(x) = FO)I ™" [FD)IT f()dy = [F(0)]* g,.,, (%), (22)

gnm(x)=[1_(1+,1x-ﬁ)_1]a(£j .

Differentiating (22) both sides with respect to x, we get

KT f()
F(x)(n—m—2)!

=g, L OFOI ~kg, |, OIFI f(x)

[ =0+ 2y 1[I F ) ~In FO)I'™" < [FGI £ ()

or

—kg, | wa OF I f(0) =g, |, OF@I —kg, |, (F)] f(x).
Therefore,

S & im(X)

F(x) Mg, | pa(®) =g, ()]

_apa 1+ fzx:ﬂ )? 3
[1-1+Ax")"]

where

&1 () = =@ (L Ax )= (L A )T (ﬁj ,

1 k n—m
x)— x)=—[1-(1+Ax") "] | — .
gn\m+1( ) gn\m( ) k[ ( ) ] (k+l]
Now integrating both the sides of (23) with respect to x between (0, y), the sufficiency part is

proved.

Remark 1 If £ =1, in (18), we obtain the following characterization of the Kumaraswamy-Fisk or
Kumaraswamy-log-logistic distribution based on upper record values
E[E(X,) (X)) =x]=&(x) (1D, I=m, m+],
where
() =[1-1+4 x")']"

Following theorems deal with the characterization of the Kumaraswamy-Fisk or Kumaraswamy-log-
logistic distribution by a recurrence relations for the single and product moments of & -th upper
record statistics.

Theorem 5 Fix a positive integer k >1 and let j be a non-negative integer. A necessary and

sufficient condition for a random variable X to be distributed with pdf given by (1) is that
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J (k) N/ (k) \j JjA (k)\j-B
I-—— |E(Y, =E + E(Y s 24
( ﬂ j ( ) ( ,,,1) aﬂk ( n ) ( )
for n=1,2,...n—k.

Proof: The necessary part follows from (13). On the other hand if the recurrence relation in (24) is
satisfied, then on using (4), we have

(,,knl).f ¥ [=In FOI P F@)I /() {—lnﬁ(x)—”T_l} dx
a,ék{(nknl)uj ¥ [=In FeI [F () f(x)dx
+ (ﬁ ;)! [" =i FOo [Fo1! f(x)dx}. 25)
Let
h(x) =—%[—ln FI'FT- 6

Differentiating both the sides of (26), we get
' (x) = [=In F()]"*[F(0)]"" f(x) {—111 F(x) —nT_l}

Thus,
i k"71 * j il n-1p k-1
(n—1)!." ' (x) x_aﬂ{( 1)'.[ [FIn F()]" [F(0)] f(x)dx
Ak pe i
+ (n . 1)!I0 X’ ﬂ[_ In F(X)] [F(x)] f(x)dx} (27)
Integrating left hand side in (27) by parts and using the value of i(x) from (26), we find that
(jk _1).! *[=In FT [Feop {F — ’;(;) - i;g;,)}dx ~0. 28)

Now applying the generalization of the Miintz-Szasz Theorem (see for example Hwang and Lin 1984)
to (28), we get
afF(x) = (x+Ax"") f (%),
which proves that
F(x)=1-[1-A+Ax")"']", x>0, a>0, >0 and 1> 0.

Remark 2 For k =1 in (24), we obtain the following characterizing result based on upper record
values for Kumaraswamy-Fisk or Kumaraswamy-log-logistic distribution as

[1—LJEX§ _Ex) 424
n n-1 aﬂ

EX)”.
aof "

Theorem 6 For a positive integer k, i and j be a non-negative integer, a necessary and sufficient

condition for a random variable X to be distributed with pdf given by (1) is that
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L Wy (Y ®y 1= OV 7OV 14+ L2 Ry (poyis
(1 aﬁkj HOY O 1= B0 0 oy oy e

Proof: The necessary part follows from (17). On the other hand if the relation in (29) is satisfied,
then on using (5), we have

kn - j —
(m_l)!(n—m—l)[-[o .[ X'y [=InF(x)]

m—lM 5 T oN—m=2[ Ty k-1
F(x)[ InF(y)+In F)]"™" " [F(y)]

JonE — _(n—m—l) _ Jk"! I N
{ In F(y)+In F(x) p }f(y)dydx (m—l)!(n—m—l)!aﬂ’[o Jxy

JAK™!
(m-D!(n-m-D'aff

x[—lnf(x)]’"‘l%{—mﬁm+lnﬂx)]"""‘l[ﬁ(y)]"‘lf(y)dydx+
X

ANE x"y”’[—lnF(x)]m1%{—1nﬁ(y)+1n[ﬁ<y)]""”[F<y)]“f(y)dydx. (30)
Let
g0) === F)+ I F@P ™ (FOT 31)
Differentiating both the sides of (31), we get
g'(x)=[—lnF(y)+1nF(x>]”""‘2[F(y)]"“f(y){—lnF(y)+1nF(x>—(’"k’”‘l)}- (32)
Thus,

= yqm-1 S (X) _ k!
(m— 1)'(n m— 1)'Ij ) oy & = = m—T)ap

<[y i F oy %";[— InF() + InF@I " [FO) £ dydx

jﬂk’H yi= B m-1 J (x)
+(m—1)!(n—m_1)!aﬂj .[ [-InF(x)] 7o)

X[~In F(y)+In F)I" ' [F()]* f(y)dydx . (33)
Now consider

10)=]"y'g'(x)dy. (34)
Integrating (34) by parts and using the value of g(y) from (31), we have
10 =2 [y = FQ)+In FOoT ™ FO)T dy. (35)

On using (35) in (33), we find that

jk"*l jl mlf(x) n—m-1
T [ I Fr L P I FOorE ()

knl
(m Di(n—-m-!af

ey enFor £

)[ In F(y)+InF(x)]"™"

FOl JAK - o L)
LEON Oy oo e, [ %y 1=n Fx) o
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[~ F(y)+In FO)"" ' [F(0)I" f(v)dydx.

_ jkn_] i 0 B m—lM T =\ qn-m-1
SR — jo j X'y [-In F(x)] F(x)[ InF(y)+In F(x)]
FWD]{aBF(y)—(y+ Ay f(y)}ydydx = 0. (36)

Applying the extension of Miintz-Szasz Theorem, (see for example Hwang and Lin 1984) to (36), we
get

afF(y)=(y+29"")f (),
which proves that f(y) has the form as in (3).

Following theorem deals with the characterization of the Kumaraswamy-Fisk or Kumaraswamy-
log-logistic distribution through truncated moment.

Theorem 7 Suppose an absolutely continuous (with respect to Lebesque measure) random variable
X has thedf F(x) and pdf f(x) for 0<x <o, suchthat f'(x) and E(X|X < x) exist for all x,

0< x<oo, then

EX [ X <x)=g(x)n(x), (37)
where
AC))
n(x)= For) and
o (P2 -1+ AxP )—1] N X J.(: [1-a+ /”LLfﬁy1 1“du
80 = ) B (s ) T
if and only if

F)=afAx " A+ Ax Y2 1=+ Ax?) ', x>0, >0, >0 and 4> 0.

Proof: From (1), we have

E(X|X<x)= %x) Cudapu (1 du ) = (1 A ) (38)

Integrating by parts, taking "afAu """ (1+ Au")?[1-(1+Au”)"]*"'" as the part to be integrated
and rest of the integrand for differentiation, we get

E(X|X<x)= ﬁ[—x[l—(lmﬂ )T+ [ =+ Ay T, (39)

multiplying and dividing by #(x) in (39), we have result given in (37).

To prove sufficient part, we have from (37)

L @@
i o @an =0T or (4 ) du= g0 00 (40)

Differentiating (40) on both sides with respect to x, we find that
xf(x) = g'(x) f(x) + g (x) /().

Therefore,
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SO _x28'0)  ppsanullah et al. 2016)

S(x) g(x)
__(B+D) 248 &7 ABU-a)x " (14 Ax )" (1)
B x (1+Ax77) -1+ Ax ") )

where

A PN B2
gr(x):x_g(x){(ﬂ+1)+uﬂx LB (=) ax ) }

(1+x") (1-1+Ax7")"
Integrating both the sides (41) with respect to x

f)=cxP 1+ A7) 1=+ AxP)y e
It is known that

j: F(x)dx=1.
Thus,

1 © -l —BN\-2 —B\-11a-1 1
—= 1+ 4 I-(1+ Ax dx =——
~= [ A= )] i
which proves that

F()=afAx " 1+ Ax Y2 1=+ Ax?) ', x20, #>0 and 4> 0.
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