
Thailand Statistician 

January 2019; 17(1): 104-117 

http://statassoc.or.th 

Contributed paper 

 

Construction of Second Order Slope Rotatable Designs under  

Tri-Diagonal Correlated Structure of Errors Using Balanced 

Incomplete Block Designs 
Kottapalli Rajyalakshmi [a]*and Bejjam R. Victorbabu [b] 
[a] Department of Mathematics, Koneru Lakshmaiah Education Foundation,Vaddeswaram, Guntur-

522502, India. 

[b] Department of Statistics, Acharya Nagarjuna University, Guntur-522510, India. 

* Corresponding author e-mail: rajyalakshmi_kottapalli@yahoo.com 

 

Received: 20 February 2018 
Revised: 23 June 2018 

Accepted: 1 September 2018 
 

 

Abstract 

In this paper, second order slope rotatable design (SOSRD) under tri-diagonal correlated 

structure of errors using balanced incomplete block designs (BIBD) is suggested by following the 

works of Das (2003a, 2003b). Further, the variance of the estimated slopes for different values of the 

tri-diagonal correlated coefficient  ( 0.9  to 0.9) for “ v  factors 3 to 8” using BIBD is studied and 

observed that for some factors SOSRD under correlated structure of errors using BIBD has less 

number of design points than the corresponding SOSRD under tri-diagonal correlated structure of 

errors using central composite designs (CCD).  

______________________________ 
Keywords: Second order slope rotatable designs (SOSRD), tri-diagonal correlated errors. 

 
1. Introduction 

Box and Hunter (1957) introduced rotatable designs for the exploration of response surface 

designs. Das and Narasimham (1962) constructed second order rotatable designs (SORD) through 

balanced incomplete block designs (BIBD). Panda and Das (1994) introduced first order rotatable 

designs with correlated errors. Das (1997) introduced robust second order rotatable designs 

(RSORD). Das (1999, 2003a) studied RSORD.  

In response surface methodology, good estimation of the derivatives of the response function 

may be as important or perhaps more important than estimation of mean response. Estimation of 

differences in responses at two different points in the factor space will often be of great importance. 

If difference in responses at two points close together is of interest then estimation of local slope (rate 

of change) of the response is required. Estimation of slopes occurs frequently in practical situations. 

For instance, there are cases in which we want to estimate rate of reaction in chemical experiment, 

rate of change in the yield of a crop to various fertilizer doses, rate of disintegration of radioactive 

material in animal etc., (Park 1987).  
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Hader and Park (1978) introduced slope rotatable central composite designs (SRCCD). Park 

(1987) studied a class of multifactor designs for estimating the slope of response surfaces. Victorbabu 

and Narasimham (1991) constructed second order slope rotatable design (SOSRD) using BIBD. Das 

(2003b) introduced slope rotatability with correlated errors. Das and Park (2009) studied measure of 

robust slope rotatability for second order response surface experimental designs. Das et al. (2010) 

suggested on D-optimal robust second order slope rotatable designs (RSOSRD). Rajyalakshmi and 

Victorbabu (2014) studied SOSRD under tri-diagonal correlated structure of errors using central 

composite designs (CCD). Rajyalakshmi and Victorbabu (2015) studied SOSRD under tri-diagonal 

correlated structure of errors using pairwise balanced designs. Rajyalakshmi and Victorbabu (2016) 

studied SORD under tri-diagonal correlated structure of errors using incomplete block designs. 

Rajyalakshmi and Victorbabu (2018) studied SOSRD under tri-diagonal correlated structure of errors 

using symmetrical unequal block arrangements with two unequal block sizes. In this paper following 

the works of Das (2003a, 2003b), SOSRD under tri-diagonal correlated structure of errors using 

BIBD is suggested. Further, the variance of the estimated slopes for different values of the tri-

diagonal correlated coefficient   ( 0.9  to 0.9) for “ v  factors 3 to 8” using BIBD is studied. 

Tri-diagonal correlation structure: It is a covariance structure of errors which is a relaxation of 

intra-class structure or log model covariance structure of errors and is given by  
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2. Conditions for SORD under Tri-Diagonal Correlated Structure of Errors (Das 2003a, 

2003b and Das et al. 2010) 

A second order response surface design (( ))iuD x  for fitting 
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where iux  denotes the level of the thi factor ( 1, 2, ..., )i v  in the thu  run ( 1,2,..., 2 )u n  of the 

experiment, ue ’s are correlated random errors, is said to be a SORD under tri-diagonal correlated 

structure of errors, if the variance of the estimated response of ˆ
uY  from the fitted surface is only a 

function of the distance,  2 2
iud x  of the point 1 2, ,...,u u vux x x  from the origin (centre) of the 

design, i.e. 2[ ] ( ).uV Y g d


 Such a spherical variance function 2( )g d  for estimation of responses in 

the second order response surface is achieved if the design points satisfy the following conditions. 

Here 0, , ,i ii ijb b b b  are the parameters of the model and uY  is the response observed at thu design 

point. The parameters in the response relation are estimated using the least squares technique. Further 

we impose the simple symmetry conditions on the design points to simplify the solutions of the 

normal equations.  
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where 2 4,   are constants. The summation is over the design points, and the correlated coefficient 

( 0.9,0.9).    If the non-singularity condition (7) exists then only the design exists. 

Using the above solutions, the variances and covariances of the estimated parameters are, 
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where 2
4 2[ ( 2) (1 )]V V        and other covariances are zero. 

 

3. Conditions for SOSRD under Tri-Diagonal Correlated Structure of Errors  

A second order response surface design (( ))iuD x  for fitting 
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where iux  denotes the level of the thi  factor ( 1, 2,..., )i v  in the thu  run ( 1, 2,..., 2 )u n of the 

experiment, ue ’s are correlated random errors, is said to be a SOSRD under tri-diagonal correlated 

structure of errors, if the variance of the estimate of first order partial derivative of 1 2( , ,..., )u vY x x x  

with respect to each of independent variable ( )ix  is only a function of the distance 2 2
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the point 1 2( , ,..., )vx x x   from the origin (centre of the design), i.e. 2( ).u

i

Y
V h d

x
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 Such a spherical 

variance function 2( )h d  for estimation of slopes in the second order response surface is achieved if 

the design points satisfy the following conditions. 

Following Box and Hunter (1957), Hader and Park (1978) and Victorbabu and Narasimham 

(1991) the general conditions for second order slope rotatability can be obtained as follows. To 

simplify the fit of the second order polynomial from design points D  through the method of least 

squares, we impose the simple symmetry conditions on D  to facilitate easy solutions of the normal 

equations:  
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where 2 4, andc    are constants and the summation is over the design points. 

The variances and covariances of the estimated parameters are, 
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where 2
4 2[ ( 1) (1 )]c v v         and other covariances are zero. 

An inspection of the variance of 0b̂  shows that a necessary condition for the existence of a non- 

singular second order slope rotatable design under tri-diagonal structure is 
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If the non-singularity condition (16) exists then only the design exists. 
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The condition for right hand side of Equation (19) to be a function of  2 2
iud x   alone (for slope 

rotatability) is clearly, 
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Equations (10) to (15) and (20) lead to condition, 
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where 2 .N n  

For 0,   Equation (21) reduces to 

 2 2
4 2[ (5 ) ( 3) ] [ ( 5) 4] 0.v c c v c         (22) 

This is similar to the SOSRD condition of Victorbabu and Narasimham (1991). 

Therefore, Equations (10) to (15), (17) and (21) give a set of conditions for SOSRD under tri-

diagonal correlated structure of errors for any general second order response surface design. 

Further, 
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4. Construction of SOSRD under Tri-Diagonal Correlated Structure of Errors Using BIBD 

Following Hader and Park (1978), Victorbabu and Narasimham (1991), Das (1997, 2003b), Das 

et al. (2010) methods of constructions, here a study on SOSRD under tri-diagonal correlated structure 

of errors using BIBD is studied.  

Let ( , , , , )v b r k   denote a BIBD, where v  is the number of factors, b  is the number of blocks, 

r  is the number of times replicated each treatment, k  is the block size,   is the pairwise replication 

of each treatment and ( )2t k  denote a fractional replicate of 2k  in +1 and 1  levels, in which no 

interaction with less than five factors is confounded.  1 ( , , , , )v b r k   denote the design points 

generated from the transpose of incidence matrix of BIBD.   ( )1 ( , , , , ) 2t kv b r k   are the ( )2t kb  design 

points generated from the BIBD by “multiplication” (Raghavarao 1971), 1( ,0,0,...,0)2a  denote the 

design points generated from ( ,0,0,...,0)a  point set, and   denotes combination of the design points 
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generated from different sets of points. 0n  denote the number of central points (Victorbabu and 

Narasimham 1991). 

Consider SOSRD using BIBD (Victorbabu and Narasimham 1991) having ‘ n ’ ( )( 2 2 )t kn b v    

non-central design points. The set of ‘ n ’-non central design points are extended to 2n  design points 

by adding ‘ n ’ 0( )n n  central points just below or above the ‘ n ’ non-central design points. Hence 

2n  be the total number of design points of the SOSRD under tri-diagonal correlated structure of 

errors using BIBD.  

The method of construction of SOSRD under tri-diagonal correlated structure of errors using 

BIBD is given in Theorem 1. 

 

Theorem 1 The design points,   ( ) 1
01 ( , , , , ) 2 ( ,0,0,..., 0)2t kv b r k a n    will give a v -dimensional 

SOSRD under tri-diagonal correlated structure of errors using BIBD in 2N n  design points, where 
2a  is positive real root of the fourth degree polynomial equation, 
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2 2 ( ) 2[4 (16 20 ) ]2 (1 )]t kvr v r a      

 2 2 2 ( ) 2 3 ( )[((5 9) (6 ) )2 ( 4 5 ) 2 (1 )] 0.t k t kv v r r N vr v r              (24) 

If at least one positive real root for 2a exists in Equation (24) then the design exists. 

 

Proof:  For the design points generated from the BIBD, simple symmetry conditions are true. Further 

we have 
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Substituting 2 4,   and c  in Equation (21) and on simplification, we get Equation (24). The 

design exists only if at least one positive real root exits for Equation (24). Solving Equation (24) we 

get the SOSRD under tri-diagonal correlated structure of errors using BIBD. 

 

Example 1  

We illustrate the above method with construction of SOSRD under tri-diagonal correlated 

structure of errors for 3-factors with the help of a BIBD with parameters 

( 3, 3, 2, 2, 1).v b r k        

The design points   3 1
01 (3,3,2, 2,1) 2 ( ,0,0,..., 0)2 ( 18)a n    will give a SOSRD under tri-

diagonal correlated structure of errors using BIBD in 2 36N n   design points for three factors. 



110 Thailand Statistician, 2019; 17(1): 104-117 

 
2

2 2
2

1

8 2 constant 2 ,
n

iu
u

x a n


     (28) 

 
2

4 4
4

1

8 2 constant 2 ,
n

iu
u

x a c n


     (29) 

 
2

2 2
4

1

4 constant 2 .
n

iu ju
u

x x n


    (30) 

From Equations (29) and (30), we get 
48 2

.
8

a
c


  Substituting for 2 4,   and c  in Equation 

(24) and on simplification, we get the following different biquadratic equations for each value of   

in 2a (viz.) 
8 6 4 4[24(1 ) 144] [192(1 )] [384(1 ) { 72 20(1 )} ]a a X a              

 4 2[48 88]2 (1 )] [4608 1280(1 )] 0a        (31) 

Equation (31) has at least one positive real root for each value of ,  2 2.4687a   (by taking 

0.1  ). It can be verified that Equation (17) is also satisfied. This can be alternatively written 

directly from Equation (24). Solving Equation (24), we get 1.5712a   (by taking 0.1  ) 

Substituting ‘ a ’ value in Equations (28), (29) and (30) we obtain 2 40.3594, 0.1111    and 

5.0472.c   From Equation (15), we can obtain the variances and covariances. Further from Equation 

(23), we have, 2 2(0.0765 0.2475 )u

i

y
v d

x

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Example 2  

We illustrate the above method with construction of SOSRD under tri-diagonal correlated 

structure of errors for 7-factors with the help of a BIBD with parameters 

( 7, 7, 3, 3, 1).v b r k        

The design points,   3 1
01 (7,7,3,3,1) 2 ( ,0,0,...,0)2 ( 70)a n     will give a SOSRD under tri-

diagonal correlated structure of errors using BIBD in 2 141N n   design points for seven factors. 
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From Equations (33) and (34), we get 
424 2

.
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
 Substituting for 2 4,   and c  in Equation 

(24) and on simplification, we get the following different biquadratic equations for each value of   

in 2a  (viz.) 
8 6 8 4[56(1 ) 560] [1344(1 )] [8064(1 ) { 1960 20(1 )} ]a a X a              

 6 2[252 372]2 (1 )] [125440 46080(1 )] 0a          (35) 
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Equation (35) has at least one positive real root for each value of ,  2 2.6781.a   (by taking 

0.1  ). It can be verified that Equation (17) is also satisfied. This can be alternatively written 

directly from equation (24). Solving Equation (24), we get 1.6365a   (by taking 0.1).    

Substituting ‘ a ’ value in Equations (32), (33) and (34) we obtain 2 40.2097, 0.0571    and 

4.7931.c   From Equation (15), we can obtain the variances and covariances. Further from Equation 

(23), we have, 2 2(0.0337 0.1238 )u

i

y
v d

x


 
   



 (at 0.1  ).  

The variances of estimated slopes of these SOSRD under tri-diagonal correlated structure of 

errors using BIBD for 0.9 0.9    and for “ v  factors 3 to 8”are given in Appendix. 

We may point out here that this SOSRD under tri-diagonal correlated structure of errors using 

BIBD with parameters ( 7, 7, 3, 3, 1)v b r k       has only 140 design points for 7 factors, 

whereas the corresponding SOSRD under tri-diagonal correlated structure of errors using CCD needs 

156 design points. Thus the method leads to a 7-factor SOSRD under tri-diagonal correlated structure 

of errors using BIBD in less number of design points than the corresponding SOSRD under tri-

diagonal correlated structure of errors using CCD. 

 

5. Conclusions 

From Appendix Table 1 we observed that, 

1. When the values of ‘  ’ increases slope rotatability value of “ a ” is decreases for all the 

factors 3 to 8. 

2. We observed that the slope rotatability value of “ a ” at 1    which is equal to the SOSRD 

with errors are uncorrelated and homoscedastic estimated value at “0” central points.   

3. At 0   estimated value and slope rotatability derivative of SOSRD under tri-diagonal 

correlated structure is equal to the SOSRD uncorrelated errors case. 

4. We may point out here that this SOSRD under tri-diagonal correlated structure of errors 

using BIBD in some cases leads to designs with less number of design points compared to 

designs constructed with the help of CCD. 

5. We may also pointed out that for some factors up to some values of ‘  ’ only there exists at 

least one positive real root for other factors it does not. So, we are providing the estimated 

responses for the existed   only. For other factors we put a symbol ‘dash’. 
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APPENDIX 

Table 1 

Table 1.1 The variance of estimated derivatives (slopes) for the factor 3 8v   factors using 

BIBD 

  

Balanced incomplete block designs 

3, 3, 2, 2, 1v b r k       

18, 2 36n N n    

4, 6, 3, 2, 1v b r k       

32, 2 64n N n    

4, 4, 3, 3, 1v b r k       

40, 2 80n N n    

â  
u
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y
v

x

 
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 â  
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 
  


 â  

u

i

y
v

x

 
  


 

-0.9 2.0038 0.0119σ2+0.0475σ2d2 1.8992 0.0099σ2+0.0475σ2d2 2.6120 0.0050σ2+0.0119σ2d2 

-0.8 1.9330 0.0233σ2+0.0900σ2d2 1.8101 0.0194σ2+0.0900σ2d2 2.5492 0.0097σ2+0.0225σ2d2 

-0.7 1.8674 0.0341σ2+0.1275σ2d2 1.7262 0.0284σ2+0.1275σ2d2 2.4943 0.0140σ2+0.0319σ2d2 

-0.6 1.8083 0.0440σ2+0.1600σ2d2 1.6516 0.0367σ2+0.1600σ2d2 2.4474 0.0178σ2+0.0400σ2d2 

-0.5 1.7563 0.0529σ2+0.1875σ2d2 1.5886 0.0440σ2+0.1875σ2d2 2.4079 0.0211σ2+0.0469σ2d2 

-0.4 1.7115 0.0606σ2+0.2100σ2d2 1.5374 0.0502σ2+0.2100σ2d2 2.3750 0.0238σ2+0.0525σ2d2 

-0.3 1.6734 0.0669σ2+0.2275σ2d2 1.4963 0.0552σ2+0.2275σ2d2 2.3476 0.0260σ2+0.0569σ2d2 

-0.2 1.6411 0.0717σ2+0.2400σ2d2 1.4633 0.0590σ2+0.2400σ2d2 2.3247 0.0276σ2+0.0600σ2d2 

-0.1 1.6139 0.0749σ2+0.2475σ2d2 1.4364 0.0614σ2+0.2475σ2d2 2.3055 0.0286σ2+0.0619σ2d2 

0 1.5909 0.0766σ2+0.2500σ2d2 1.4142 0.0625σ2+0.2500σ2d2 2.2892 0.0290σ2+0.0625σ2d2 

0.1 1.5712 0.0765σ2+0.2475σ2d2 1.3957 0.0623σ2+0.2475σ2d2 2.2752 0.0288σ2+0.0619σ2d2 

0.2 1.5543 0.0748σ2+0.2400σ2d2 1.3800 0.0607σ2+0.2400σ2d2 2.2632 0.0280σ2+0.0600σ2d2 

0.3 1.5397 0.0714σ2+0.2275σ2d2 1.3665 0.0578σ2+0.2275σ2d2 2.2528 0.0266σ2+0.0569σ2d2 

0.4 1.5270 0.0663σ2+0.2100σ2d2 1.3548 0.0536σ2+0.2100σ2d2 2.2437 0.0247σ2+0.0525σ2d2 

0.5 1.5158 0.0595σ2+0.1875σ2d2 1.3446 0.0480σ2+0.1875σ2d2 2.2357 0.0221σ2+0.0469σ2d2 

0.6 1.5060 0.0511σ2+0.1600σ2d2 1.3356 0.0411σ2+0.1600σ2d2 2.2286 0.0189σ2+0.0400σ2d2 

0.7 1.4972 0.0409σ2+0.1275σ2d2 1.3276 0.0329σ2+0.1275σ2d2 2.2222 0.0151σ2+0.0319σ2d2 

0.8 1.4893 0.0289σ2+0.0900σ2d2 1.3204 0.0232σ2+0.0900σ2d2 2.2165 0.0106σ2+0.0225σ2d2 

0.9 1.4823 0.0153σ2+0.0475σ2d2 1.3140 0.0123σ2+0.0475σ2d2 2.2114 0.0056σ2+0.0119σ2d2 
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Table 1.2 The variance of estimated derivatives (slopes) for the factor 3 8v   factors using 

BIBD 

  

Balanced incomplete block designs 

5, 10, 4, 2, 1v b r k       

50, 2 100n N n    

5, 5, 4, 4, 3v b r k       

90, 2 180n N n    

5, 10, 6, 3, 3v b r k       

40, 2 80n N n    
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 
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-0.9 1.8116 0.0084σ2+0.0475σ2d2 3.2792 0.0022σ2+0.0040σ2d2 2.7192 0.0030σ2+0.0079σ2d2 

-0.8 1.6875 0.0166σ2+0.0900σ2d2 3.2263 0.0042σ2+0.0075σ2d2 2.6566 0.0058σ2+0.0150σ2d2 

-0.7 1.5641 0.0244σ2+0.1275σ2d2 3.1820 0.0061σ2+0.0106σ2d2 2.6034 0.0083σ2+0.0213σ2d2 

-0.6 1.4553 0.0316σ2+0.1600σ2d2 3.1455 0.0076σ2+0.0133σ2d2 2.5593 0.0105σ2+0.0267σ2d2 

-0.5 1.3692 0.0380σ2+0.1875σ2d2 3.1154 0.0090σ2+0.0156σ2d2 2.5232 0.0123σ2+0.0313σ2d2 

-0.4 1.3035 0.0433σ2+0.2100σ2d2 3.0905 0.0101σ2+0.0175σ2d2 2.4937 0.0139σ2+0.0350σ2d2 

-0.3 1.2530 0.0475σ2+0.2275σ2d2 3.0699 0.0110σ2+0.0190σ2d2 2.4695 0.0151σ2+0.0379σ2d2 

-0.2 1.2131 0.0507σ2+0.2400σ2d2 3.0525 0.0116σ2+0.0200σ2d2 2.4495 0.0160σ2+0.0400σ2d2 

-0.1 1.1807 0.0527σ2+0.2475σ2d2 3.0379 0.0120σ2+0.0206σ2d2 2.4328 0.0165σ2+0.0413σ2d2 

0 1.1537 0.05360σ2+0.2500σ2d2 3.0253 0.0121σ2+0.0208σ2d2 2.4187 0.0168σ2+0.0417σ2d2 

0.1 1.1309 0.0533σ2+0.2475σ2d2 3.0146 0.0120σ2+0.0206σ2d2 2.4067 0.0166σ2+0.0413σ2d2 

0.2 1.1113 0.0520σ2+0.2400σ2d2 3.0052 0.0117σ2+0.0200σ2d2 2.3963 0.0161σ2+0.0400σ2d2 

0.3 1.0941 0.0495σ2+0.2275σ2d2 2.9970 0.0111σ2+0.0190σ2d2 2.3874 0.0153σ2+0.0379σ2d2 

0.4 1.0790 0.0458σ2+0.2100σ2d2 2.9898 0.0103σ2+0.0175σ2d2 2.3795 0.0142σ2+0.0350σ2d2 

0.5 1.0656 0.0410σ2+0.1875σ2d2 2.9834 0.0092σ2+0.0156σ2d2 2.3726 0.0127σ2+0.0313σ2d2 

0.6 1.0535 0.0351σ2+0.1600σ2d2 2.9776 0.0078σ2+0.0133σ2d2 2.3665 0.0108σ2+0.0267σ2d2 

0.7 1.0426 0.0281σ2+0.1275σ2d2 2.9725 0.0062σ2+0.0106σ2d2 2.3610 0.0086σ2+0.0213σ2d2 

0.8 1.0326 0.0199σ2+0.0900σ2d2 2.9679 0.0044σ2+0.0075σ2d2 2.3561 0.0061σ2+0.0150σ2d2 

0.9 1.0236 0.0105σ2+0.0475σ2d2 2.9636 0.0023σ2+0.0040σ2d2 2.3516 0.0032σ2+0.0079σ2d2 
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Table 1.3 The variance of estimated derivatives (slopes) for the factor 3 8v   factors using 

BIBD 

  

Balanced incomplete block designs 

6, 15, 5, 2, 1v b r k       

72, 2 144n N n    

6, 10, 5, 3, 2v b r k       

92, 2 184n N n    

6, 6, 5, 5, 4v b r k       

108, 2 216n N n    
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-0.9 1.7262 0.0073σ2+0.0475σ2d2 2.4443 0.0037σ2+0.0119σ2d2 3.5157 0.0018σ2+0.0030σ2d2 

-0.8 1.5305 0.0146σ2+0.0900σ2d2 2.3554 0.0070σ2+0.0225σ2d2 3.4568 0.0035σ2+0.0056σ2d2 

-0.7 1.2910 0.0219σ2+0.1275σ2d2 2.2833 0.0101σ2+0.0319σ2d2 3.4103 0.0049σ2+0.0080σ2d2 

-0.6 1.0586 0.0288σ2+0.1600σ2d2 2.2278 0.0128σ2+0.0400σ2d2 3.374 0.0062σ2+0.0100σ2d2 

-0.5 0.8438 0.0350σ2+0.1875σ2d2 2.1858 0.0151σ2+0.0469σ2d2 3.3455 0.0073σ2+0.0117σ2d2 

-0.4 - - 2.1538 0.0170σ2+0.0525σ2d2 3.3228 0.0082σ2+0.0131σ2d2 

-0.3 - - 2.1291 0.0185σ2+0.0569σ2d2 3.3045 0.0089σ2+0.0142σ2d2 

-0.2 - - 2.1095 0.0196σ2+0.0600σ2d2 3.2894 0.0094σ2+0.0150σ2d2 

-0.1 - - 2.0938 0.0203σ2+0.0619σ2d2 3.2770 0.0098σ2+0.0155σ2d2 

0 - - 2.0810 0.0206σ2+0.0625σ2d2 3.2665 0.0099σ2+0.0156σ2d2 

0.1 - - 2.0702 0.0204σ2+0.0619σ2d2 3.2576 0.0098σ2+0.0155σ2d2 

0.2 - - 2.0612 0.0198σ2+0.0600σ2d2 3.2499 0.0095σ2+0.0150σ2d2 

0.3 - - 2.0535 0.0188σ2+0.0569σ2d2 3.2432 0.0090σ2+0.0142σ2d2 

0.4 - - 2.0468 0.0174σ2+0.0525σ2d2 3.2374 0.0083σ2+0.0131σ2d2 

0.5 - - 2.0410 0.0155σ2+0.0469σ2d2 3.2322 0.0074σ2+0.0117σ2d2 

0.6 - - 2.0358 0.0133σ2+0.0400σ2d2 3.2277 0.0063σ2+0.0100σ2d2 

0.7 - - 2.0313 0.0106σ2+0.0319σ2d2 3.2236 0.0051σ2+0.0080σ2d2 

0.8 - - 2.0272 0.0075σ2+0.0225σ2d2 3.2199 0.0036σ2+0.0056σ2d2 

0.9 - - 2.0236 0.0039σ2+0.0119σ2d2 3.2166 0.0019σ2+0.0030σ2d2 
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Table 1.4 The variance of estimated derivatives (slopes) for the factor 3 8v   factors using 

BIBD 

  

Balanced incomplete block designs 

6, 15, 10, 4, 6v b r k       

252, 2 504n N n    

7, 7, 3, 3, 1v b r k       

70, 2 140n N n    

7, 7, 4, 4, 2v b r k       

126, 2 252n N n    
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-0.9 3.7187 0.0010σ2+0.0020σ2d2 2.1167 0.0058σ2+0.0238σ2d2 2.8848 0.0024σ2+0.0059σ2d2 

-0.8 3.6718 0.0019σ2+0.0038σ2d2 1.9687 0.0113σ2+0.0450σ2d2 2.8046 0.0045σ2+0.0113σ2d2 

-0.7 3.6333 0.0027σ2+0.0053σ2d2 1.8585 0.0165σ2+0.0638σ2d2 2.7448 0.0065σ2+0.0159σ2d2 

-0.6 3.6019 0.0034σ2+0.0067σ2d2 1.7873 0.0211σ2+0.0800σ2d2 2.7014 0.0081σ2+0.0200σ2d2 

-0.5 3.5761 0.0040σ2+0.0078σ2d2 1.7412 0.0249σ2+0.0938σ2d2 2.6695 0.0096σ2+0.0234σ2d2 

-0.4 3.5548 0.0045σ2+0.0088σ2d2 1.7096 0.0281σ2+0.1050σ2d2 2.6455 0.0108σ2+0.0263σ2d2 

-0.3 3.5370 0.0049σ2+0.0095σ2d2 1.6868 0.0306σ2+0.1138σ2d2 2.6270 0.0117σ2+0.0284σ2d2 

-0.2 3.5220 0.0052σ2+0.0100σ2d2 1.6696 0.0325σ2+0.1200σ2d2 2.6125 0.0124σ2+0.0300σ2d2 

-0.1 3.5092 0.0054σ2+0.0103σ2d2 1.6562 0.0336σ2+0.1238σ2d2 2.6007 0.0128σ2+0.0309σ2d2 

0 3.4983 0.0054σ2+0.0104σ2d2 1.6454 0.0340σ2+0.1250σ2d2 2.5911 0.0129σ2+0.0313σ2d2 

0.1 3.4888 0.0054σ2+0.0103σ2d2 1.6365 0.0337σ2+0.1238σ2d2 2.5831 0.0128σ2+0.0309σ2d2 

0.2 3.4805 0.0052σ2+0.0100σ2d2 1.6291 0.0328σ2+0.1200σ2d2 2.5763 0.0124σ2+0.0300σ2d2 

0.3 3.4732 0.0049σ2+0.0095σ2d2 1.6228 0.0311σ2+0.1138σ2d2 2.5704 0.0118σ2+0.0284σ2d2 

0.4 3.4667 0.0046σ2+0.0088σ2d2 1.6175 0.0287σ2+0.1050σ2d2 2.5654 0.0109σ2+0.0263σ2d2 

0.5 3.4610 0.0041σ2+0.0078σ2d2 1.6128 0.0257σ2+0.0938σ2d2 2.5610 0.0097σ2+0.0234σ2d2 

0.6 3.4558 0.0035σ2+0.0067σ2d2 1.6087 0.0219σ2+0.0800σ2d2 2.5571 0.0083σ2+0.0200σ2d2 

0.7 3.4511 0.0028σ2+0.0053σ2d2 1.6051 0.0175σ2+0.0638σ2d2 2.5537 0.0066σ2+0.0159σ2d2 

0.8 3.4469 0.0020σ2+0.0038σ2d2 1.6018 0.0124σ2+0.0450σ2d2 2.5506 0.0047σ2+0.0113σ2d2 

0.9 3.4431 0.0010σ2+0.0020σ2d2 1.5989 0.0065σ2+0.0238σ2d2 2.5479 0.0025σ2+0.0059σ2d2 
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Table 1.5 The variance of estimated derivatives (slopes) for the factor 3 8v   factors using 

BIBD 

  

Balanced incomplete block designs 

7, 7, 6, 6, 5v b r k       

238, 2 476n N n    

7, 21, 6, 2, 1v b r k       

98, 2 196n N n    

8, 14, 7, 4, 3v b r k       

240, 2 480n N n    
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-0.9 4.3137 0.0008σ2+0.0012σ2d2 1.6312 0.0065σ2+0.0475σ2d2 3.0546 0.0015σ2+0.0040σ2d2 

-0.8 4.2670 0.0016σ2+0.0023σ2d2 - - 2.9763 0.0028σ2+0.0075σ2d2 

-0.7 4.2307 0.0022σ2+0.0032σ2d2 - - 2.9198 0.0040σ2+0.0106σ2d2 

-0.6 4.2022 0.0028σ2+0.0040σ2d2 - - 2.8792 0.0050σ2+0.0133σ2d2 

-0.5 4.1796 0.0033σ2+0.0047σ2d2 - - 2.8495 0.0058σ2+0.0156σ2d2 

-0.4 4.1614 0.0037σ2+0.0053σ2d2 - - 2.8272 0.0066σ2+0.0175σ2d2 

-0.3 4.1465 0.0040σ2+0.0057σ2d2 - - 2.8100 0.0071σ2+0.0190σ2d2 

-0.2 4.1341 0.0042σ2+0.0060σ2d2 - - 2.7963 0.0075σ2+0.0200σ2d2 

-0.1 4.1236 0.0044σ2+0.0062σ2d2 - - 2.7853 0.0078σ2+0.0206σ2d2 

0 4.1147 0.0044σ2+0.0063σ2d2 - - 2.7762 0.0078σ2+0.0208σ2d2 

0.1 4.1071 0.0044σ2+0.0062σ2d2 - - 2.7686 0.0078σ2+0.0206σ2d2 

0.2 4.1005 0.0043σ2+0.0060σ2d2 - - 2.7622 0.0075σ2+0.0200σ2d2 

0.3 4.0946 0.0040σ2+0.0057σ2d2 - - 2.7567 0.0072σ2+0.0190σ2d2 

0.4 4.0895 0.0037σ2+0.0053σ2d2 - - 2.7519 0.0066σ2+0.0175σ2d2 

0.5 4.0849 0.0033σ2+0.0047σ2d2 - - 2.7477 0.0059σ2+0.0156σ2d2 

0.6 4.0808 0.0028σ2+0.0040σ2d2 - - 2.7440 0.0050σ2+0.0133σ2d2 

0.7 4.0772 0.0023σ2+0.0032σ2d2 - - 2.7407 0.0040σ2+0.0106σ2d2 

0.8 4.0738 0.0016σ2+0.0023σ2d2 - - 2.7377 0.0028σ2+0.0075σ2d2 

0.9 4.0708 0.0008σ2+0.0012σ2d2 - - 2.7351 0.0015σ2+0.0040σ2d2 

 

 

 

 

 


