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Abstract 

Based on the transmuted generalized inverted exponential (TGIE) distribution (Elbatal 2013), 

Khan (2018) revisited the TGIE distribution with an illustrative application to a reliability data-set. 

Here, we revisit the data application and discuss the inadequacy of the TGIE distribution to the applied 

data-set. 

_____________________________ 
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1.  Introduction 

Recent advancements in statistics and probability include the generalization of standard probability 

distributions through parameter induction and distribution mixing. Generalizations of distributions 

have received the resounding attention of several scholars. Standard probability distributions are 

extended with the exclusive objective of improving their fitting tendencies in real-life application 

situations. In most cases the distributions in their generalized forms demonstrate better flexibility and 

fitting ability than their standard forms in modelling real-life data; for instance, the exponentiated 

Kumaraswamy-power function distribution due to Bursa and Ozel (2017), Marshall-Olkin Kappa 

distribution due to Javed et al. (2018), Burr X Pareto Distribution due to Korkmaz et al (2017), a new 

extension of Weibull distribution due to Nassar et al. (2017), the modified power function distribution 

due to Okorie et al. (2017a), extended Erlang-truncated exponential distribution due to Okorie et al. 

(2017b), and so on.  

A couple of years ago Elbatal (2013) introduced the transmuted generalized inverted exponential 

(TGIE) distribution as an extension of the generalized inverted exponential (GIE) distribution due to 

Abouammoh and Alshingiti (2009). The TGIE distribution follows from the pioneering work of Shaw 

and Buckley (2007) - quadratic rank transmutation map (QRTM). The cumulative distribution function 

(CDF) of the TGIE distribution is given by  
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and the probability density function (PDF) is given by 
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Elbatal (2013) studied various statistical properties of the TGIE distribution such as the qth 

quantile, moments, and order statistics. The maximum likelihood estimates and the corresponding 

information matrix of the parameters were derived and discussed. However, Elbatal (2013) failed to 

illustrate the potential usefulness of the TGIE distribution with real-life data. 

More recently, Khan (2018) revisited the TGIE distribution with mainly diagrammatic 

contributions (plots of the PDF, reliability function, hazard rate function, median, coefficient of quartile 

deviation, skewness, and kurtosis) and numerical contributions (computation of some quartile and 

related measures and a Monte-Carlo simulation study of the parameter estimates based on the method 

of maximum likelihood estimation (MLE)) and a particular focus on the real-data application of the 

distribution. 

Credit should be given to Khan (2018) for making the first attempt to illustrate the utility and 

flexibility of the TGIE distribution by fitting the distribution to a real data-set (survival times of 50 

devices put on life test at time zero (see;  Aarset  1987) and comparing its fit with those of known 

special cases of the TGIE distribution namely, the transmuted inverted exponential (TIE) due to 

Oguntunde and  Adejumo (2014), generalized inverted exponential (GIE) due to Abouammoh and 

Alshingiti (2009), and the inverted exponential (IE) distributions. Based on the smallest AIC (Akaike 

1974) and AICc (Hurvich and Tsai 1989) values of the TGIE distribution, Khan (2018) concluded that 

the TGIE distribution provides an adequate fit to the survival times’ data-set. The TGIE distribution 

may provide fantastic fits to many real data-sets, particularly the unimodal data-sets. For the data set 

on the survival times of 50 devices put on life test at time zero  (Aarset  1987) considered by Khan 

(2018); however, several one and two-parameter distributions can perform better than the TGIE 

distribution. This is illustrated in Section 2.  

The aim of this note is to point out that the TGIE distribution is inadequate for modeling the 

survival times’ data of 50 devices put on life test at time zero (Aarset 1987) because the distribution of 

the data has a bathtub or bimodal characteristics. But the TGIE distribution with unimodal density 

function could provide excellent fits to some other real-life unimodal distributed data-sets but, 

definitely not the survival times’ data of 50 devices put on life test at time zero in Aarset (1987). The 

four-parameter Weibull-power function distribution with more flexible shape characteristics (including 

bathtub shape) due to Tahir et al. (2014) is known to provide better fit to the survival times’ data of 50 

devices put on life test at time zero (Aarset  1987). 

 

2.  Data Application 

In this section, we compare the fit of the three-parameter TGIE distribution to some standard and 

well-known one and two-parameter unimodal distributions in modeling the survival times’ data of 50 

devices put on life test at time zero. We give evidence that some of the one and two-parameter 

distributions perform better than the TGIE distribution; although their fits are not adequate for the 

survival times’ data. The TGIE distribution of Elbatal (2013) may give adequate fits to many unimodal 
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data-sets but, certainly not the survival times’ data. The intention of this note is not to vilify the 

phenomenal contribution by Khan (2018); but generally, in trying to access the fit of a generalized 

distribution to a real data-set it is often a good practice to compare the fits of some simple, standard, 

and well-known distributions with that of the generalized one which in most cases have complicated 

analytical expression.  

The fitted distributions and their corresponding CDF’s are: 
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generalized exponential (EE) due to Gupta and Kundu (2001):    1 ; , , 0,x
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and Lindley-geometric (LP) due to Zakerzadeh and Mahmoudi (2012):  
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All the distributions are fitted to the survival times data of 50 devices put on life test at time zero 

by the method of maximum likelihood estimation and the goodness-of-fit of the fitted distributions are 

compared by their AIC, BIC (Schwarz 1978), AICc, and  Kolmogorov-Smirnov (K-S) (see; 

Kolmogorov 1933, Smirnoff 1939, Scheffé 1943, and Wolfowitz 1949) values. In comparison, the 

distribution with the smallest values of all these goodness-of-fit statistics is said to offer a better fit to 

the data-set than the others. 

The analytical forms of the goodness-of-fit measures are:  
  2 2log ,AIC k L     

  log 2log ,BIC k n L     

and 

    sup | |,n X
x

K S F x F x     

where k  is the number of parameters in the distribution, n  is the total number of observations in the 

data,  log    is the estimated value of the minimized log-likelihood function of the PDF,  nF x  is 

the empirical CDF, and  XF x  is the fitted CDF. 
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Figure 1 Histogram of the data and fitted densities of the Weibull, Rayleigh, gamma, EE, Erlang, 

Lindley, Lindley-geometric and TGIE distributions 

 

The results in Table 1 indicate that the Weibull, Rayleigh, gamma, EE, Erlang, Lindley, and 

Lindley-geometric, distributions with comparatively smaller AIC, BIC, AICc, K-S values, and larger 

K-S p-values performs better than the TGIE distribution which gave the largest AIC, BIC, AICc, K-S 

values, and the smallest K-S p-value. Figure 1 indicates that none of the fitted unimodal distributions 

provides a good fit to the survival times’ data of 50 devices put on life test at time zero (Aarset 1987). 

For now, we are not aware of any probability distribution providing a better fit than the Weibull-power 

function distribution for the survival times’ data of 50 devices put on life test at time zero hence; we 

recommend the Weibull-power function distribution for modeling the survival times’ data of 50 devices 

put on life test at time zero (Aarset 1987); for detail see, Tahir et al. (2014). 
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Table 1 Parameter estimates, log-likelihood values, AIC values, BIC values, AICc values and 

Kolmogorov-Smirnov (K-S) statistic and K-S p-values for the fitted distributions 

Distributions 
MLEs 

[Standard errors] 
 log L   

Weibull 
ˆ : 0.9490425

[0.1195723]


 

ˆ : 44.9125137

[6.9465188]


 

 
241.0018 

Rayleigh 
ˆ : 39.64718

[2.804178]


   264.0528 

Gamma 
ˆ : 0.79911358

[0.13837959]


 

ˆ : 0.01749159

[0.004132499]


  240.1902 

EE 
ˆ : 0.77983525

[0.13520767]


 

ˆ : 0.01870096

[0.003647848]


  239.9951 

Erlang 
ˆ : 0.79907439

[0.13837218]

k
 

0.01749007ˆ :
[0.00413218]

   240.1902 

Lindley 
ˆ : 0.04287723

[0.004299543]


   251.4303 

LG 

6ˆ : 2.049295 10

[0.5213013]

p 
 

2ˆ : 4.314914 10

[0.008239275]

 
  251.4323 

TGIE 
ˆ : 0.3763702

[0.05068110]


 

ˆ : 0.6032954

[0.20582068]


 

ˆ : 0.8447299

[0.12497786]

 
 270.4390 

 

Table 1 (Continued) 

Distributions 

Goodness-of-fit measures 

AIC BIC AICc K-S 
K-S  

p-values 

Weibull 486.0036 489.8277 486.2590 486.2590 0.048600 

Rayleigh 530.1057 532.0177 530.1890 0.2621 0.002081 

Gamma 484.3804 488.2045 484.6358 0.2022 0.033490 

EE 483.9903 487.8143 484.2456 0.2042 0.030950 

Erlang 484.3804 488.2045 484.6358 0.2022 0.033500 

Lindley 504.8606 506.7726 504.9439 0.1990 0.038090 

LG 506.8646 510.6886 507.1199 0.2021 0.033700 

TGIE 546.8780 552.6140 547.3997 0.8668 <2.2×10-16 
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