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Abstract

Based on the transmuted generalized inverted exponential (TGIE) distribution (Elbatal 2013),
Khan (2018) revisited the TGIE distribution with an illustrative application to a reliability data-set.
Here, we revisit the data application and discuss the inadequacy of the TGIE distribution to the applied
data-set.
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1. Introduction

Recent advancements in statistics and probability include the generalization of standard probability
distributions through parameter induction and distribution mixing. Generalizations of distributions
have received the resounding attention of several scholars. Standard probability distributions are
extended with the exclusive objective of improving their fitting tendencies in real-life application
situations. In most cases the distributions in their generalized forms demonstrate better flexibility and
fitting ability than their standard forms in modelling real-life data; for instance, the exponentiated
Kumaraswamy-power function distribution due to Bursa and Ozel (2017), Marshall-Olkin Kappa
distribution due to Javed et al. (2018), Burr X Pareto Distribution due to Korkmaz et al (2017), a new
extension of Weibull distribution due to Nassar et al. (2017), the modified power function distribution
due to Okorie et al. (2017a), extended Erlang-truncated exponential distribution due to Okorie et al.
(2017b), and so on.

A couple of years ago Elbatal (2013) introduced the transmuted generalized inverted exponential
(TGIE) distribution as an extension of the generalized inverted exponential (GIE) distribution due to
Abouammoh and Alshingiti (2009). The TGIE distribution follows from the pioneering work of Shaw
and Buckley (2007) - quadratic rank transmutation map (QRTM). The cumulative distribution function
(CDF) of the TGIE distribution is given by
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Fy (x):{l—[l—eZ]aH1+/’t[l—eija];e,a >0, <1,

and the probability density function (PDF) is given by

ae 0 0 a-1 0 a
fy (X)= e x[l—e ] l—/1+2/1(1—e J ;0,0>0,| <1,
X

Elbatal (2013) studied various statistical properties of the TGIE distribution such as the gth
quantile, moments, and order statistics. The maximum likelihood estimates and the corresponding
information matrix of the parameters were derived and discussed. However, Elbatal (2013) failed to
illustrate the potential usefulness of the TGIE distribution with real-life data.

More recently, Khan (2018) revisited the TGIE distribution with mainly diagrammatic
contributions (plots of the PDF, reliability function, hazard rate function, median, coefficient of quartile
deviation, skewness, and kurtosis) and numerical contributions (computation of some quartile and
related measures and a Monte-Carlo simulation study of the parameter estimates based on the method
of maximum likelihood estimation (MLE)) and a particular focus on the real-data application of the
distribution.

Credit should be given to Khan (2018) for making the first attempt to illustrate the utility and
flexibility of the TGIE distribution by fitting the distribution to a real data-set (survival times of 50
devices put on life test at time zero (see; Aarset 1987) and comparing its fit with those of known
special cases of the TGIE distribution namely, the transmuted inverted exponential (TIE) due to
Oguntunde and Adejumo (2014), generalized inverted exponential (GIE) due to Abouammoh and
Alshingiti (2009), and the inverted exponential (IE) distributions. Based on the smallest AIC (Akaike
1974) and AlCc (Hurvich and Tsai 1989) values of the TGIE distribution, Khan (2018) concluded that
the TGIE distribution provides an adequate fit to the survival times’ data-set. The TGIE distribution
may provide fantastic fits to many real data-sets, particularly the unimodal data-sets. For the data set
on the survival times of 50 devices put on life test at time zero (Aarset 1987) considered by Khan
(2018); however, several one and two-parameter distributions can perform better than the TGIE
distribution. This is illustrated in Section 2.

The aim of this note is to point out that the TGIE distribution is inadequate for modeling the
survival times’ data of 50 devices put on life test at time zero (Aarset 1987) because the distribution of
the data has a bathtub or bimodal characteristics. But the TGIE distribution with unimodal density
function could provide excellent fits to some other real-life unimodal distributed data-sets but,
definitely not the survival times’ data of 50 devices put on life test at time zero in Aarset (1987). The
four-parameter Weibull-power function distribution with more flexible shape characteristics (including
bathtub shape) due to Tahir et al. (2014) is known to provide better fit to the survival times’ data of 50
devices put on life test at time zero (Aarset 1987).

2. Data Application

In this section, we compare the fit of the three-parameter TGIE distribution to some standard and
well-known one and two-parameter unimodal distributions in modeling the survival times’ data of 50
devices put on life test at time zero. We give evidence that some of the one and two-parameter
distributions perform better than the TGIE distribution; although their fits are not adequate for the
survival times’ data. The TGIE distribution of Elbatal (2013) may give adequate fits to many unimodal
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data-sets but, certainly not the survival times’ data. The intention of this note is not to vilify the
phenomenal contribution by Khan (2018); but generally, in trying to access the fit of a generalized
distribution to a real data-set it is often a good practice to compare the fits of some simple, standard,
and well-known distributions with that of the generalized one which in most cases have complicated
analytical expression.
The fitted distributions and their corresponding CDF’s are:
,(1]”
Weibull: F, (x)=1-e "/ ;x>0,a,8>0,
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generalized exponential (EE) due to Gupta and Kundu (2001): F, (x)= (1—e’“ )a (X, 0, A >0,
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and Lindley-geometric (LP) due to Zakerzadeh and Mahmoudi (2012):
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All the distributions are fitted to the survival times data of 50 devices put on life test at time zero
by the method of maximum likelihood estimation and the goodness-of-fit of the fitted distributions are
compared by their AIC, BIC (Schwarz 1978), AlCc, and Kolmogorov-Smirnov (K-S) (see;
Kolmogorov 1933, Smirnoff 1939, Scheffé 1943, and Wolfowitz 1949) values. In comparison, the
distribution with the smallest values of all these goodness-of-fit statistics is said to offer a better fit to
the data-set than the others.

;x>0,60>0,pe(0,1).

The analytical forms of the goodness-of-fit measures are:
AIC =2k -2log L(H),
BIC =klogn—2logL (),
and
K-S =sup|F,(x)-F (X)],
where k is the number of parameters in the distribution, n is the total number of observations in the

data, —Iog(&) is the estimated value of the minimized log-likelihood function of the PDF, F, (x) is
the empirical CDF, and F, (x) is the fitted CDF.
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Figure 1 Histogram of the data and fitted densities of the Weibull, Rayleigh, gamma, EE, Erlang,
Lindley, Lindley-geometric and TGIE distributions

The results in Table 1 indicate that the Weibull, Rayleigh, gamma, EE, Erlang, Lindley, and
Lindley-geometric, distributions with comparatively smaller AIC, BIC, AlCc, K-S values, and larger
K-S p-values performs better than the TGIE distribution which gave the largest AIC, BIC, AlCc, K-S
values, and the smallest K-S p-value. Figure 1 indicates that none of the fitted unimodal distributions
provides a good fit to the survival times’ data of 50 devices put on life test at time zero (Aarset 1987).
For now, we are not aware of any probability distribution providing a better fit than the Weibull-power
function distribution for the survival times’ data of 50 devices put on life test at time zero hence; we
recommend the Weibull-power function distribution for modeling the survival times” data of 50 devices
put on life test at time zero (Aarset 1987); for detail see, Tahir et al. (2014).
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Table 1 Parameter estimates, log-likelihood values, AIC values, BIC values, AlCc values and
Kolmogorov-Smirnov (K-S) statistic and K-S p-values for the fitted distributions
MLEs

istributi —logL(8
Distributions [Standard errors] gL(0)
Weibull 10.9490425 p:44.9125137 241.0018
[0.1195723] [6.9465188] '
- 6 :39.64718 264,052
aylelg [2.804178] '
4 :0.79911358 -
Gamma f:0.01749159 240.1902
[0.13837959] [0.004132499]
4 :0.77983525 4:0.01870096
EE 239.9951
[0.13520767] [0.003647848]
k :0.79907439 ~ 0.01749007
Erlang A 240.1902
[0.13837218] [0.00413218]
):0.0428772
Lindley 0:0.04287723 251.4303
[0.004299543]
0:2.049295x10°  9:4. -2
LG P :2.049295%10 0:4.314914x10 251 4323
[0.5213013] [0.008239275]
4 :0.3763702 ):0.6032954 1:-0.8447299
TGIE 0 270.4390
[0.05068110] [0.20582068] [0.12497786]
Table 1 (Continued)
Goodness-of-fit measures
Distributi -
istributions AIC BIC AlCe K-S K-S
p-values
Weibull 486.0036 489.8277 486.2590 486.2590 0.048600
Rayleigh 530.1057 532.0177 530.1890 0.2621 0.002081
Gamma 484.3804 488.2045 484.6358 0.2022 0.033490
EE 483.9903 487.8143 484.2456 0.2042 0.030950
Erlang 484.3804 488.2045 484.6358 0.2022 0.033500
Lindley 504.8606 506.7726 504.9439 0.1990 0.038090
LG 506.8646 510.6886 507.1199 0.2021 0.033700
TGIE 546.8780 552.6140 547.3997 0.8668 <2.2x10%6
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