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Abstract 

This paper proposes an adaptive cluster sampling using unequal probability without replacement 

for selecting an initial sample. Midzuno scheme was applied for selecting an initial sample in adaptive 

cluster sampling. Two unbiased estimators of the population total are proposed. The variances of the 

proposed estimators and their unbiased estimators were also derived. A small population was also 

used to show the unbiased property of the estimators under the proposed sampling design. The 

simulation study was used to compare the efficiency of the proposed sampling design to the original 

adaptive cluster sampling. The auxiliary variable is created to construct the initial probability. The 

coefficient of correlation between the study variable and auxiliary variable consists of 0.3, 0.5, 0.7 

and 0.9. The results showed that the proposed sampling design was more efficient than the original 

adaptive cluster sampling. In particular, when the correlation coefficient between the auxiliary and 

the study variables increases, the proposed sampling scheme was more efficient. In addition, the units 

in the initial sample are easy to draw and the proposed estimates are easy to compute. 

______________________________ 
Keywords: Adaptive cluster sampling, unbiased estimator, Horvitz-Thompson estimator, rare population. 

 

1.  Introduction  

It is difficult to find the most efficient sampling design for a rare and clustered population. In 

order to collect samples from this population, Thompson (1990) proposed adaptive cluster sampling 

designs and demonstrated that an adaptive cluster sampling strategy can be more efficient than a 

simple random sampling strategy. In applications, the design can be used to estimate the number of 

rare plants or animals in a given area or to draw a hidden human population. For example, Smith et 

al. (2003) applied adaptive cluster sampling to survey freshwater mussels. For the simplest form of 

adaptive cluster sampling, an initial sample of units is drawn by simple random sampling. Whenever 

the value of study variable from a sampled unit in the initial sample satisfies a specified condition, 

its neighboring units are added to be sampled. If the values of study variable from the added 

neighboring units satisfy the condition, then their neighborhoods of these units are also added to be 

sample. This procedure is continued until none of units satisfy the condition. Many researchers 

studied about adaptive cluster sampling. Thompson (1991a) considered an adaptive cluster sampling 

in which the initial sample is selected by stratified sampling. Thompson (1991b) proposed an adaptive 

cluster sampling when the initial sample is drawn by systematic sampling. 
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When we use the simple random sampling to draw an initial sample, the initial sample might not 

contain units of interest. Therefore, the estimates do not use the information form units of interest. 

However if the size measure is available which is positively correlated with the study variable, it is 

advantage to select units with unequal probability. Roesch (1993) presented an adaptive cluster 

sampling with initial unequal probability design with replacement. Smith et al. (1995) compared the 

efficiency of four sampling designs using simulation study: simple random sampling, unequal 

probability sampling, adaptive cluster sampling with initial simple random sample and adaptive 

cluster sampling with initial unequal probability sample with replacement. Sangngam (2013) 

considered adaptive cluster sampling with initial unequal probability inverse sample with 

replacement. In theorem, for a given sample size, sampling with replacement is usually less efficient 

than sampling without replacement. 

There are many sampling procedures in which units are drawn with unequal probability without 

replacement. One was introduced by Midzuno (1952). In this procedure, the first unit in a sample is 

drawn by unequal probability sampling and the remaining units in the sample will be drawn by simple 

random sampling. In this procedure, the units are easy to be drawn because only the first unit is 

selected with unequal probabilities. In addition, the initial probabilities of all units in the sample are 

used to construct the unbiased estimators of population total. 

This paper applies Midzuno scheme to select an initial sample in adaptive cluster sampling. 

Unbiased estimators of the population total are derived. The variances of the unbiased estimators and 

their unbiased estimators are also derived. A small population is used to demonstrate the computation 

of the estimates and to study the properties of the estimates. The simulation study is used to compare 

the efficiency of the proposed sampling strategies to the original adaptive cluster sampling. These 

results can be used to suggest the researchers to select the suitable sampling design for rare and 

clustered populations. 

 

2. Proposed Sampling Design 

Suppose that a finite population consists of N  distinct units with label 1, 2, , .N  Associated 

with the N  units are the values of a study; 1 2, , , .Ny y y  Let 1 2, , , Nx x x  be the size measures of 

the units and assume that the measure of sizes are known before selection. Let 0/i iz x X  be an 

initial selection probability of the thi  unit where 0
1

.
N

i
i

X x


   The parameter to be estimated is the 

population total 
1

.
N

i
i

y


   

For every unit i in the population, the neighborhood of a unit is defined as a collection of units 

which includes the unit .i  These neighborhoods do not depend on the study values, .iy The 

neighborhoods are symmetric; if unit i  is in the neighborhood of unit ,j  then unit j  is also in the 

neighborhood of unit .i  The condition for selecting neighborhood units is given by  :C y y c   

where c  is a given constant. The unit i  satisfies the condition if the study value iy  is greater than or 

equal to the constant .c  

The proposed sampling procedure consists of an initial sample of size n  to be selected by 

Midzuno scheme and other units to be drawn by adaptive sampling. The sampling procedure can be 

implemented using the following method. To draw the initial sample of size ,n  the first unit is drawn 

by using the initial selection probability, and other units in the initial sample are drawn by simple 
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random sampling without replacement. Whenever each study value of a unit in the initial sample 

satisfies the condition ,C  its neighborhood units are added to be sampled and observed. For any units 

in the added neighborhood, if they satisfy the condition ,C  their neighborhoods are also included to 

the sample and observed. The procedure continues until none of units satisfy the condition. The final 

sample of size 1n  consists of the initial sample and all adaptively units. This sampling scheme 

combines the concept of adaptive cluster sampling and unequal probability sampling without 

replacement. 

The collection of all units that are observed from an initial unit i is called cluster. Within a cluster, 

a subcollection of units is called a network, with the property that if any units within a network are 

selected, every other unit in the network is also included. The units that are adaptively sampled that 

did not satisfy the condition are called edge units. By this way, if any unit in the thk  network is 

selected in the initial sample, all units in that network will be included in the final sample. Any unit 

not satisfying the condition is called network of size 1. From definition of network, the population 

can be divided into K  mutually exclusive networks.  

Let 0s  be the set of units under the initial sample. With the Midzuno scheme, the probability of 

getting the initial sample (Sampath 2005, pp.73-74) is 

0

0

1
( ) .

1

1

i
i s

P s z
N

n




 

 
 

  

Let 1s  be the final sample. Under the proposed sampling scheme, the probability of getting the 

final sample is 

0 1 0

1

1
( ) ,

1

1

i
s s i s

P s z
N

n

 


 

 
 

   

where 
0 1s s
 refers to the summation of all initial samples leading to the final sample 1.s  

If the initial probability of selecting the unit i  equals to 1/ N  for every unit in the population, 

the proposed sampling design will become the design of Thompson (1990). 

 

3.  Proposed Estimators 

In this section, we would like to derive the estimators of population total and the variances of 

these estimators. Finally, the unbiased property of the population total estimators and the variances 

of these estimators can be also illustrated. 

For any sampling designs, if the probability that unit i  will be drawn into the sample is known 

for every unit in the population, the Horvitz-Thompson estimator is an unbiased estimator of the 

population total. With the proposed sampling design, the unit i  will be included in the sample if 

either some units in its network are selected to be the sample or any unit of a network of which unit 

i  is an edge unit is drawn to be the sample. Unfortunately, under the proposed design, these inclusion 

probabilities might be unknown for some units in the final sample. 

The first unbiased estimator of the population total is derived by applying the Horvitz-Thompson 

estimator. The new study value of a population unit i  is the mean of study values in a network which 

includes the thi  unit. The observations not satisfying the condition will not be used in the estimator 
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except when they are included in the initial sample. Let k  be the set of units comprising the thk   

network and km  be the number of units in the network .k  The total and the average of study values 

in the thk  network is represented by *

k

k j
j

y y


   and * 1
,

k

k j
jk

y y
m 

   respectively. The population 

total can be written as *

1 1

.
N N

i i
i i

y y
 

    In order to obtain an unbiased estimator, the study value iy  

will be replaced by the new study value given by *.iy  Under Midzuno scheme in Sampath (2005, 

pp.74-76), the probability that the thi  unit will be selected to be an initial sample is 

 

2

1
1 1 .

1

1

i i

N

n
z

N

n



 
 

   
 

 
 

 

In addition, the probability that both unit i  and unit j  are selected in the initial sample is given 

by 

     

2 2 3

1 1 1
1 1 1 1 .

1 1 1

1 1 1

ij i j i j

N N N

n n n
z z z z

N N N

n n n



       
     

              
       

     
       

 

 

Theorem 1 Under the initial sample 0s  of size n  in the proposed sampling design, an unbiased 

estimator of the population total is 

 
*

1
1

ˆ .
n

i

i i

y




   (1) 

The variance of 1̂  is given by 

 * *
1

1 1

ˆ( ) .
N N

ij i j

i j
i j i j

V y y
  


  

 
  

 
 

  (2) 

An unbiased estimator of this variance is 

 
* *

1
1 1

ˆ ˆ( ) .
n n

ij i j i j

i j i j ij

y y
V

  


   

 
  

 
 

         (3) 

 

Proof: Let *
iy  be a new study value of the thi  unit for 1, 2, , .i N   We knew that  *

1

.
N

i
i

y


   

Define the indicator function 
1 ; the   unit is included in the initial sample

 
0 ; otherwise.

th

i

i
I


 


 

The estimator 1̂  can be written as 
*

1
1

ˆ .
N

i
i

i i

y
I



   Since   ,i iE I   using Horvitz-Thompson 

approach, we can prove that 



Prayad Sangngam and Wipawan Laoarun            47 

   
*

*
1

1 1

ˆ .
N N

i
i i

i ii

y
E E I y 

 

     

That is 
*

1
1

ˆ ,
n

i

i i

y




   is an unbiased estimator of the population total, .  

Since ,i j ijE I I      we have 

 

2

2

** *

1
1 1

** *

2
1 1

** *

2
1 1

ˆ( ) ,

         (1 ) ,

         (1 ) ( ).

N N N
ji i

i i j
i i j ii i j

N N N
ji i

i i i j
i i j i i ji

N N N
ji i

i i ij i j
i i j i i ji

yy y
V V I Cov I I

yy y
Cov I I

yy y


  

 
 

    
 

  

  

  

  
    

    

     

   

 

 

 

 

* *
1

1 1

ˆHence, ( ) .
N N

ij i j

i j
i j i j

V y y
  


  

 
  

 
 


 

Since   2
i i iE I E I      and ,i j ijE I I      an unbiased estimator of 1̂( )V   is given by 

 

2 ** *

1 2
1 1

* *

1 1

ˆ ˆ( ) (1 )

         .

N N N
j ij i ji i

i i i i j
i i j i i j iji

N N
ij i j i j

i j
i j i j ij

yy y
V I I I

y y
I I

  
  

  

  

  

  

 

 
     

 

 
   

 

 

  

* *

1
1 1

ˆ ˆHence, ( ) .
n n

ij i j i j

i j i j ij

y y
V

  


   

 
  

 
 

  

 

Note that the initial selection probabilities of units are used in the estimator only when these units 

were selected in the initial sample, although all study values in a network are used to construct the 

estimate. 

The second unbiased estimator will be also derived by modifying the Horvitz-Thompson 

estimator. The new study value is the total of study values in the networks. Any network size one 

will not be used in this estimator except when it is selected to be the initial sample. This estimator 

uses new inclusion probabilities. To obtain the inclusion probabilities of a network to be use in the 

estimator, it is convenient to deal with networks.  

Let *

k

k j
j

z z


   be the total of initial probabilities in the thk  network. Under the notations of 

networks, the population total can be written as *

1 1 1

.
k

K K N

k j i
k k j i

y y y



   

       The network k  will 

be used in the estimator when any unit in its network was selected to be the initial sample. The 

probability that a network will be drawn into an initial sample is given by Lemma 1. 

 

Lemma 1 Under the proposed sampling design, the probability that at least one unit in a network k  

is included in an initial sample is given by, 
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 *

*

11
1

1 1
.

1

1

k

k

k

N mN
z

n n

N

n



    
   

    
 

 
 

 

 

Proof: The thk  network is included in an initial sample when any unit in its network is selected in 

the initial sample. Let k  denote the event that any unit in the network k  is selected in the initial 

sample and k  the event that the initial sample does not contain any unit in the thk  network. The 

event k  occurs when all units in the network are not selected in the first draw and the remaining 

( 1)n   draws. Let  k, 1
  denote the event that all units in the thk  network are not selected in the first 

draw. We found that  
*

k, 1
( ) 1 .kP z    Let  k, n 1

  be the event that all units in the network k  were 

not selected in the remaining ( 1)n   draws. We can find the conditional probability, 

   k, 1 k, 1

1

1
( | ) .

1

1

k

n

N m

n
P

N

n

 


  
 

   
 

 
 

 

From the definition of * ,k  we get that 

   

     

*

k, 1 k, 1

k, 1 k, 1 k, 1

*

( ) 1 ( )

    1 ( )

    1 ( ) ( | )

1

1
    1 (1 ) .

1

1

k k k

n

n

k

k

P P

P

P P

N m

n
z

N

n

  

 

  





  

   

   

  
 

   
 

 
 

 

       

*

*

11
(1 )

1 1
Therefore, .

1

1

k

k

k

N mN
z

n n

N

n



    
   

    
 

 
 

 

 

Lemma 2 Under the considered sampling design, the probability that the initial sample contains at 

least one unit in each of networks k  and h  is 

* * * * *

1 1 1

1 1 1
1 (1 ) (1 ) (1 ) .

1 1 1

1 1 1

k h k k

kh k h k h

N m N m N m m

n n n
z z z z

N N N

n n n



           
     

              
       

     
       

 

 

Proof: From the definition of * ,kh  it can be shown that 
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 

* ( )

    1 ( )

    1 ( ) ( ) ( ) .

kh k h

k h

k h k h

P

P

P P P

  

 

   

 

   
 

       

 (4) 

Consider the following probabilities. The probabilities of ( )kP   and ( )hP   can be found in 

Lemma 1. The ( )k hP     in (4) equals to 

       

           

k, 1 h, 1 , 1 h, 1

k, 1 , 1 k, 1 h, 1 k, 1 h, 1

( ) ( ) ( )

                 ( ) ( ) | ( ) .

k h k n n

h n n

P P

P P

     

     

 

 

           

          

 

We can derive that    
* *

k, 1 h, 1
( ) 1 .k hP z z       In addition, the conditional probability can be 

derived by, 

       k, 1 h, 1 k, 1 , 1

1

1
( ) | ( ) .

1

1

k h

n n h

N m m

n
P

N

n

   
 

   
 

          
 

 

 

Substituting these probabilities in (4), we will get the probability that the initial sample contains 

at least one unit in each of networks k  and .h  

 

Theorem 2 Under the proposed sampling design, let v  be the number of distinct networks within the 

initial sample. An unbiased estimator of population total is 

 
*

2 *
1

ˆ .
v

k

k k

y




   (5) 

The variance of the estimator 2̂  can be written as 

 

* * *
* *

2 * *
1 1

ˆ( ) ,
K K

kh k h
k h

k h k h

V y y
  


  

 
  

 
  (6) 

where * *.kk k   An unbiased estimator of the variance of 2̂  is 

 
* * * * *

2 * * *
1 1

ˆ ˆ( ) .
v v

kh k h k h

k h k h kh

y y
V

  


   

 
  

 
  (7) 

 

Proof:  We define the new study variable and indicator function for a network. Let *
ky  be a study 

value of the thk  network for 1, 2, , .k K   We knew that *

1

.
K

k
k

y


   

Let  kI  be the indicator function defined as 

1 ;some units in network  are included in the initial sample

0 ; otherwise.
k

k
I


 


 

The estimator 2̂  can be written as 
*

2 *
1

ˆ .
K

k
k

k k

y
I



   The derivations of (5), (6) and (7) can be 

derived as the proof of Theorem 1. 
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If the initial probability of the unit i  equal to 1/ N  for every unit in the population, the two 

proposed estimators are reduced to the estimators as in Thompson (1990). 

 

4.  A Small Population Example 

In this section, a small population is used to demonstrate the computation of the estimates and to 

show the unbiased property of the estimators. The proposed sampling strategy is also compared with 

the sampling strategy introduced by Thompson (1990).  

In Thompson strategy, the initial sample will be selected by simple random sampling without 

replacement. The probability of getting an initial sample is given by  

0

1
( ) .P s

N

n


 
 
 

 

The unbiased estimator 1̂  of the population total reduces to the modified Hansen-Hurwitz 

(Thompson 1990),  

*

1

ˆ .
n

HH i
i

N
y

n




   

In addition, the estimate 2̂  becomes to be the modified Horvitz-Thompson estimator 

(Thompson 1990), 

*

1

ˆ .
V

HT k
k k

N

n
y

N mN

n n




 
 
 

  
   

   

  

Assume that the population consists of five units, the study values, iy ’s;  50,100, 0, 5, 10iy 

corresponding to the initial probabilities, iz ’s;  0.30, 0.40, 0.05, 0.10, 0.15 .iz   The neighborhood 

of each unit includes all adjacent units (of which there are either one or two). The condition is defined 

by  : 20 .C y y   The initial sample size is given by 2.n   The parameter to be estimated is 

165.   The probabilities of getting the initial sample and the estimates under the two sampling 

strategies are represented in Table 1. 

The following description is one example that we use to clearly illustrate. For example, the 

observations 100, 5; 50, 0 means that the initial sample consists of 100 and 5, and the adaptive 

observations are 50 and 0.  From these observations with the proposed strategy, the probability of 

getting the initial sample  0 100,5s   is 0( ) 0.5 4 0.125P s    and the proposed estimates are 

computed by 

1

4 4
ˆ (75) (5)    151.75

4 (1 0.4)(3) 4 (1 0.1)(3)
   

   
 and 

2

4 4
ˆ (150) (5)    191.86.

4 (1 0.7)(2) 4 (1 0.1)(3)
   

   
 

For Thompson’s strategy, the probability of getting the initial sample is 0( ) 1 10 0.100P s    

and the estimates are 

5
ˆ (75 5)  200

2
HH     and 

10 10
ˆ (150) (5)  226.79.

10 3 10 6
HT   

 
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Table 1 All possible final samples, probabilities of getting the initial sample and the estimates 

under the two sampling strategies 

Observations 
Proposed strategy Thompson’s strategy 

0( )P s  
1̂  2̂  0( )P s  ˆ

HH  ˆ
HT  

50, 100;0 0.175 294.26 176.47 0.100 375.00 214.29 

50, 0;100 0.088 157.89 176.47 0.100 187.50 214.29 

50, 5; 100, 0 0.100 173.28 191.86 0.100 200.00 226.79 

50, 10;100, 0 0.113 185.48 204.06 0.100 212.50 239.29 

100, 0; 50 0.113 136.36 176.47 0.100 187.50 214.29 

100, 5; 50, 0 0.125 151.75 191.86 0.100 200.00 226.79 

100, 10; 50, 0, 5 0.138 163.95 204.06 0.100 212.50 239.29 

0, 5 0.038 15.38 15.38 0.100 12.50 12.50 

0, 10 0.050 27.59 27.59 0.100 25.00 25.00 

5, 10 0.063 42.97 42.97 0.100 37.50 37.50 

Mean  165.00 165.00  165.00 165.00 

Variance  5,810.92 3,307.22  11,118.75 8,507.14 

 

We found that the final sample size varies from sample to sample. The two sampling strategies 

give the unbiased estimators of the population total. In addition, the variances of the estimators under 

the proposed sampling strategy are less than that of the estimators under Thompson’s strategy. 

 

5.  Simulation Study 
The simulation study is used to compare the efficiency of the proposed sampling strategy (PSS) 

to the original adaptive cluster sampling (OACS) given by Thompson (1990). Figure 1 consists of a 

real data, the numbers of ring-necks ducks in a given area (see Smith et al. 1995). The neighborhood 

of each unit includes four adjacent units. The number of ring-necked ducks in a rectangular will be 

used as the study variable ( ).y  The population consists of 200N   units. Auxiliary variable ( )x  

correlated to the study variable are created with the 4 setting coefficients of correlation ( )  : 0.3, 0.5, 

0.7 and 0.9. The condition is defined by  : 0 .C y y   For PSS, the initial sample is selected by 

probability proportional to auxiliary variable. For OACS, the initial sample will be drawn with equal 

probability without replacement. 

The simulation consists of 50,000 samples according to the initial sample sizes for each n  = 5, 

10, 15, 20, 25, 30, 35, 40, 45 and 50. The formulas that are used to estimate the expectation and 

variances of estimators are 
50,000

* *

1

1
ˆ ˆ( )

50,000
j

j

E  


    and  
50,000

2
* *

1

1
ˆ ˆ ˆ( ) ( ) ,

50,000 1
j

j

V E  


   
    respectively, 

where the *ˆ
j  is the value of the estimator for the sample j  for each sampling strategy, and the *ˆ( )E   

is the average of the estimates for the estimator for each sampling strategy. The estimate of relative 

bias is defined as *ˆ( ) / .RB E      
  The estimate of standard error is defined by the squared root 

of the variance. 
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0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 675 0 0 0 

0 0 0 0 100 100 75 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 4,000 13,500 0 0 154 120 200 0 0 0 0 0 0 0 0 0 0 55 0 

0 0 0 0 0 80 585 430 0 4 0 0 0 0 0 35 0 0 0 0 

0 0 0 0 0 0 0 0 40 0 0 0 0 2 0 0 0 1,615 0 0 

0 0 0 0 0 0 0 0 57 0 0 0 0 2 0 0 0 200 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1,141 13 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 107 22 

 

Figure 1 The numbers of ring-necks ducks in a given area 

 

Table 2 The averages of estimates under two sampling strategies 

n  

OACS 
PSS 

0.3   0.5   0.7   0.9   

ˆ
HH  ˆ

HT  1̂  2̂  1̂  2̂  1̂  2̂  1̂  2̂  

5 22,707.2 22,757.6 23,103.7 23,149.4 23,208.4 23,285.0 23,032.7 23,084.1 23,145.4 23,232.9 

10 23,379.9 23,370.6 23,431.4 23,389.9 23,474.5 23,418.9 23,455.1 23,351.8 23,315.6 23,202.1 

15 23,465.8 23,529.6 23,445.6 23,480.8 23,447.1 23,473.9 23,528.0 23,557.7 23,642.1 23,676.1 

20 23,439.1 23,441.6 23,459.4 23,453.9 23,434.2 23,436.9 23,440.9 23,435.3 23,462.2 23,478.4 

25 23,543.3 23,430.2 23,460.2 23,359.6 23,486.5 23,395.5 23,471.6 23,391.7 23,467.9 23,418.2 

30 23,463.8 23,476.2 23,475.7 23,471.4 23,456.6 23,454.5 23,438.4 23,439.7 23,424.1 23,408.6 

35 23,258.4 23,269.8 23,265.2 23,291.9 23,221.0 23,258.7 23,203.5 23,245.8 23,178.8 23,214.8 

40 23,294.2 23,251.1 23,299.6 23,269.8 23,289.3 23,264.9 23,275.9 23,241.8 23,303.1 23,273.2 

45 23,363.8 23,287.1 23,349.1 23,302.0 23,335.7 23,292.0 23,329.8 23,278.1 23,344.4 23,295.0 

50 23,325.7 23,318.1 23,366.4 23,342.2 23,350.3 23,322.8 23,354.2 23,328.2 23,338.7 23,304.9 

 

In Table 2, the averages of estimates of all estimators are very close to the population total 

( 23,333).   The estimates of relative bias of all estimators in Table 3 are also close to zero. These 

results confirm that these estimators are unbiased estimators of the population total. 

Table 4 shows that the proposed sampling design outperforms the original adaptive cluster 

sampling design. For a given initial sample size, the standard error of proposed estimator 1̂( )  is 

small than that of the Modified Hansen-Hurwitz estimator ˆ( )HH  of Thompson (1990) and the 

standard error of the estimator 2̂  is also less than that of the estimator ˆ .HT  
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Table 3 The estimates of relative bias of estimators under two sampling strategies 

n  

OACS 
PSS 

0.3   0.5   0.7   0.9   

ˆ
HH  ˆ

HT  1̂  2̂  1̂  2̂  1̂  2̂  1̂  2̂  

5 -0.027 -0.025 -0.010 -0.008 -0.005 -0.002 -0.013 -0.011 -0.008 -0.004 

10 0.002 0.002 0.004 0.002 0.006 0.004 0.005 0.001 -0.001 -0.006 

15 0.006 0.008 0.005 0.006 0.005 0.006 0.008 0.010 0.013 0.015 

20 0.005 0.005 0.005 0.005 0.004 0.004 0.005 0.004 0.006 0.006 

25 0.009 0.004 0.005 0.001 0.007 0.003 0.006 0.003 0.006 0.004 

30 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.004 0.003 

35 -0.003 -0.003 -0.003 -0.002 -0.005 -0.003 -0.006 -0.004 -0.007 -0.005 

40 -0.002 -0.004 -0.001 -0.003 -0.002 -0.003 -0.002 -0.004 -0.001 -0.003 

45 0.001 -0.002 0.001 -0.001 0.000 -0.002 0.000 -0.002 0.000 -0.002 

50 0.000 -0.001 0.001 0.000 0.001 0.000 0.001 0.000 0.000 -0.001 

 
Table 4 The estimates of standard errors under two sampling strategies 

n  
OACS 

PSS 

0.3   0.5   0.7   0.9   

ˆ
HH  ˆ

HT  
1̂  2̂  1̂  2̂  1̂  2̂  1̂  2̂  

5 75,974.6 75,925.3 73,088.6 71,977.6 69,046.5 67,317.0 63,156.3 60,425.6 54,225.4 50,321.2 

10 54,150.1 53,471.7 52,691.1 51,718.0 51,006.2 49,762.8 48,418.2 46,706.3 43,527.5 41,154.0 

15 43,574.5 43,013.0 42,750.5 41,986.7 41,719.8 40,828.3 40,180.4 39,117.8 37,185.4 35,689.7 

20 37,306.7 36,375.7 36,741.5 35,741.4 36,005.2 34,975.4 34,937.6 33,775.5 32,697.1 31,301.8 

25 33,230.1 31,847.1 32,732.5 31,362.8 32,227.4 30,842.1 31,382.3 29,957.7 29,635.3 28,102.4 

30 29,587.2 28,445.1 29,304.6 28,104.0 28,899.0 27,678.0 28,275.7 26,994.5 26,971.7 25,514.7 

35 26,896.5 25,636.4 26,620.2 25,376.6 26,287.6 25,036.6 25,789.8 24,497.7 24,736.7 23,314.5 

40 24,876.4 23,412.9 24,657.9 23,205.0 24,391.3 22,932.8 24,001.2 22,486.6 23,113.6 21,512.8 

45 23,175.4 21,553.2 22,961.1 21,366.9 22,745.4 21,141.8 22,419.1 20,777.4 21,665.5 19,949.7 

50 21,494.6 19,907.9 21,387.9 19,756.0 21,219.1 19,571.9 20,928.1 19,258.9 20,303.4 18,559.8 

 

When the initial sample size is fixed, the standard error of modified Horvitz-Thomson estimator 

ˆ( )HT  is smaller than that of Hansen-Hurwitz estimator ˆ( ).HH  For given   and ,n  the standard 

error of 2̂  is also smaller than that of 1̂.  The results of Thompson (1990) correspond with these 

results. With fixed the initial sample size ,n  the standard errors of the proposed estimators decrease 

when the coefficients of correlation increase.  

 

6.  Conclusions 

This paper presented an adaptive cluster sampling with unequal probability sample without 

replacement. In the proposed sampling scheme, the initial sample is easy to drawn since only the first 
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unit is selected with unequal probabilities but the others are drawn with equal probabilities. First 

unbiased estimate is created from the initial probabilities of all units in the initial sample and the 

second one is derived from the initial probabilities of all networks that are intersected of the initial 

sample. In addition, the both proposed estimates are easy to compute. The simulation study showed 

that the proposed sampling strategy was more efficient than the original adaptive cluster sampling 

strategy. When the correlation coefficient between the auxiliary and the study variables increases, the 

estimate standard errors of the proposed estimators decrease. However, for the proposed sampling 

design, the number of distinct network ( )v   and the final sample size 1( )n  are random variables. It 

can be seen that the proposed sampling design is suitable for sampling rare and clustered populations. 

In addition, when there are high correlation between the initial probability and the study variable, this 

sampling design will have the high efficiency.  
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