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Abstract 

Adaptive cluster sampling (ACS) is considered to be the most efficient sampling design for the 

estimation of statistical parameters of rare and clustered populations. In this paper, we proposed an 

estimator that jointly incorporate the exponential ratio and exponential product type estimators using 

single auxiliary variable based on the averages of the networks in adaptive cluster sampling. The 

expressions of approximate bias and mean square error of the proposed estimator are derived. A 

numerical study is carried out using real and artificial populations to demonstrate and compare the 

efficiency of the proposed estimator over the traditional variance estimator under simple random 

sampling (SRS). The results of relative efficiencies show that the proposed estimator is more efficient 

than all the adaptive and non-adaptive estimators considered in this paper. 

______________________________ 
Keywords: Auxiliary Information, clustered population, Hansen-Hurwitz estimation, within network variances, 

variance estimation. 

1. Introduction 

Adaptive cluster sampling first proposed by Thompson (1990) is considered to be the most 

suitable and efficient sampling design for the estimation of rare and clustered population parameters. 

Such clustered populations includes plants and animals of rare and endangered species, flocking, 

fisheries, epidemiology of sporadic diseases, noise problems, pollution concentrations, criminal and 

hotspot investigations, drug users, AIDS and HIV patients. The use of auxiliary information is the 

most constructive to get the better estimation results for rare and clustered populations. In many 

environmental surveys, if the count of particular species in a locality is known as survey variable, the 

availability of food, habitat, rainfall and temperature of the same locality would be considered as 

auxiliary variable for the estimation of population parameters, like mean, total, variance etc. 
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Thompson (1990, 1991a, 1991b, 1992) suggested several unbiased estimators for the estimation 

of rare and clustered population mean and variance under ACS design. Smith et al. (1995) applied 

ACS for estimating the density of wintering waterfowl and concluded that the efficiency of ACS 

estimator is highest as compare to the simple random sampling (SRS) design when the within-

network variance is close to the overall population variance. Chao (2004a) and Dryver and Chao 

(2007) proposed ratio estimators based on the modification of Hansen-Hurwitz (1943) and Horvitz-

Thompson (1952) type estimators for the estimation of population mean under ACS. 

In this paper, we propose an estimator that combines the exponential ratio and exponential 

product estimators using probability weighting approach for the estimation of rare and highly 

clustered population variance under the framework of ACS design. The methodology of ACS design 

with a brief example is described in Section 2. Some existing estimators under SRS and ACS designs 

with basic notations are addressed in Section 3. The expressions of approximate bias and minimum 

mean square error (MSE) of the proposed estimator are derived in Section 4 with some special cases 

in which the proposed estimator is reduced to exponential ratio and exponential product type 

estimators on different values of optimization constant. An improved version of the proposed 

estimator is also discussed in the same section. A numerical study is conducted in Section 5 on real 

and artificial clustered populations in order to check the performance of the proposed estimator under 

various initial and expected sample sizes. Conclusions and remarks on the paper are given in Section 

6. 

 

2. Methodology of Adaptive Cluster Sampling 

Consider a study region   that can be spatially partitioned into a grid of N  equal sized 

rectangular units labelled from 1 to .N  The response of the survey variable ( )iy together with 

auxiliary variable ( )ix  is associated with each unit 1, 2,..., .i N  The population vectors of -valuesy

and -valuesx are define as 1 2( , ,..., )NY y y y  and 1 2( , ,..., ),NX x x x  respectively. Let the 

population is divided into K  exhaustive networks ( ' )A s  and iA  denotes the thi  network with im  

units. The dataset d  is selected by using initial sample size from the sampled units say ,s  with the 

associated values of the survey variable ( )sy  along with the corresponding values of the auxiliary 

variable ( )sx  from Y  and ,X  respectively. Hence the dataset d  is defined as { , , }.s sd s y x  

In ACS the initial sample of size n  is selected by a conventional sampling design such as simple 

random sampling (SRS), stratified sampling or systematic sampling. If the value of the survey 

variable from the sampled unit satisfies ,C  usually { ; 0},C y y   the first-order neighboring units 

(up, down, to the left, to the right) will be added to the sample and examined. If the neighboring units 

of first neighbors satisfy the ,C  then their neighboring units will be added to the sample and observed 

and the process remain continuous until no new units met the condition. The final sample comprises 

the initially selected units and all the studied units that satisfied the condition.  A network consists of 

those units that satisfied .C  The units that do not meet condition are known as edge units. A cluster 

is a combination of network and edge units. 

Figure 1 illustrates the idea of a cluster in which the unit having the star is an initially selected 

unit. The shaded units are adaptively added units that satisfying a pre-defined condition, .C  The units 

that do not meet C  (bold) are known as edge units. 
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Figure 1 A cluster, a network with its edge units 

 

3. Existing Estimators in Simple Random Sampling 

Let a random sample of size n  is selected from a clustered population of N  units by using 

simple random sampling without replacement (SRSWOR). The study and auxiliary variables are 

denoted by y  and x  with their respective means and, whereas the standard deviations yS  and xS  

and coefficient of variations, yC  and ,xC  respectively. Further, yx  represents the population 

correlation coefficient between Y and .X  The following notations are used for the expressions of bias 

and MSE of the existing estimators 
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where p  and q  are non-negative integers and ( )E v  is the expected sample size. The quantities, 20  

and 02  be the second order moments and pq  is known as moment ratio’s. 

The usual unbiased sample estimator for population variance with the expression of its variance 

is given as 
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Isaki (1983) first proposed the ratio estimator with single auxiliary variable for the estimation of 

finite population variance in SRS.  The estimator with the expression of its MSE is 
2
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Singh et al. (2011) proposed an exponential ratio-type estimator having a single auxiliary 

variable for population variance. The estimator with the expression of its MSE is 
2 2
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Let the initial sample of n  units is selected with SRSWOR from a clustered population. Suppose

yiw
 
and xiw  denoted the average values of y  and x  in the network which includes unit i  such that; 

1

i

yi i j
j A

w m y



   and 1 ,
i

xi i j
j A

w m x



   respectively. Adaptive cluster sampling can be considered as 

SRSWOR when the averages of networks are considered (Dryver and Chao 2007; Thompson 2012). 
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Consider the notations 
yw  and xw  are the sample means whereas 2

wys  and 2
wxs  are the sample 

variances of the survey and auxiliary variable based on the transformed population, respectively such 

that 
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In ACS, we consider the following notations to obtain the expressions of bias and MSE of the 

proposed estimator. Let us define wy  and wx  are the error terms of the survey and auxiliary 

variables, respectively 
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     (1) 

where r  and s  be the non-negative integers. The quantities 20w  and 02w  be the second order 

moments and wpq  is known as moment ratio for the adaptive estimators. 

Thompson (1992) defined an unbiased estimator for finite population variance in ACS based on 

the modification of Hansen-Hurwitz (HH) type estimator. The estimator with its variance is defined 

as  

2 2
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Chaudhry et al. (2016) modified classical ratio and exponential ratio estimator with single 

auxiliary variable in ACS design as 
2
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The expressions of MSE’s of 2
4Ŝ  and 2

5Ŝ  are given as follows: 

 2 2
4 40 04 22

ˆ( ) ( 1) ( 1) 2( 1) ,w wy w w wMSE S            

 2 2
5 40 04 22

ˆ( ) ( 1) 0.25( 1) ( 1) .w wy w w wMSE S            

 

4. Proposed Estimator 

In this section, an estimator is developed that incorporate the exponential ratio and exponential 

product estimator simultaneously using probability weighting approach for the estimation of highly 

clumped population variance under ACS design. The estimator is defined as 
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where w  is constant that need to be optimized and estimated for the expression of minimum value 

of the MSE of the proposed generalized estimator.

 Using the notations (1), we may rewrite the proposed estimator as 
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Applying Taylor series on (2) and expanding the exponential terms up to the second order 

approximation, we have 
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Simplifying and applying expectation on (3), we have 
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In order to obtain the expression of MSE of the proposed estimator, we may write the proposed 

estimator using first order approximation as 
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The expression of MSE of the proposed estimator may be obtain by squaring and taking expectation 

on both sides of (5), we have 
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In order to obtain the expression of minimum MSE of the proposed estimator, differentiating (6) 

with respect to ‘ w ’ we have 
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The final expression of minimum MSE of the proposed estimator is 
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It is clearly seen that the expression of minimum MSE of the proposed estimator is same as the 

approximate variance of linear regression estimator for population variance. It is noticed that the 

proposed estimator is reduced to exponential ratio and exponential product estimator for the values 

‘1’ and ‘0’ of the optimization constant ( ),w  respectively. Improved version of the proposed 

estimator 
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where w  (i.e., 0 1w  ) is a suitable chosen scalars whose value is to be estimated so that MSE 

of 2ˆ
IRpS  is minimized. The expressions of bias and MSE are given as, respectively 
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In order to obtain the minimum MSE of 2ˆ ,wRpS  differentiating (8) with respect to ,w  we have 
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The expression of minimum MSE of the improved version of proposed estimator is 
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5. Numerical Study 

Two types of numerical studies are conducted in order to deal with the situation in which the 

ACS estimators work more efficiently than the conventional SRS estimators. In ACS, the expected 

sample size usually depends on the initial sample size and varies according to the adaptation of the 

neighboring units. The expected sample size denoted by ‘ ( )E v ’ is the sum of the probabilities of 

inclusion of all the quadrates (Thompson 2012) define as 
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For the fair comparison, the usual formula of sample variance for SRSWOR based on the 

expected sample size is 
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 The general expressions of absolute relative bias (ARB) and MSE of the proposed estimator are 

given as respectively 
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where 2
*Ŝ  is the value of the relevant estimators presented in this paper and r  is the total number of 

iterations. Due to the high variability in the data, one hundred thousand iterations ( 100,000)r   have 

been made for all the estimators to get the high accuracy on various initial and their corresponding 

expected sample sizes. 
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The evaluation of the proposed estimator over the traditional variance estimator under SRS is 

based on the relative efficiency (R.E.). The R.E. of the estimators considered in this paper, compared 

to the usual variance estimator is denoted by 
2*

2

2

( )ˆ. .( ) ,
ˆ( )

y

i

i

Var
R E S

MSE S


  

where 0,1, 2,...,5,i   Rp and IRp. 

 

5.1. Application using real population 

A real population of blue-winged teal (Smith et al. 1995) is used to examine the performance of 

the proposed estimator in comparison of the other competing estimators. The total study area of five 

thousand km2 has been divided into 50-100-km2 equal quadrates in central Florida as shown in Table 

1. The total number count of blue-winged teal is considered as survey variable ( )y  whereas the 

auxiliary variable ( )x  is generated using the linear model (Chutiman and Chiangpradit 2014) 

summarized in Table 2. 

4 ,i i ix y    

where

 

(0, ).i iN y   

 

Table 1 Blue-winged teal data, y (Smith et al. 1995) 

0 0 3 5 0 0 0 0 0 0 

0 0 0 24 14 0 0 10 103 0 

0 0 0 0 2 3 2 0 13,639 1 

0 0 0 0 0 0 0 0 14 177 

0 0 0 0 0 0 2 0 0 122 

 

Table 2 Simulated x-values generated from model 

0 0 13 19 0 0 0 0 0 0 

0 0 0 93 59 0 0 37 419 0 

0 0 0 0 9 10 8 0 45,621 6 

0 0 0 0 0 0 0 0 59 493 

0 0 0 0 0 0 10 0 0 691 

 

The transformed populations for both survey and auxiliary variables are summarized in Table 3 

and Table 4, respectively. 

 

Table 3 Average values of the networks of blue-winged teal data 

0 0 7.57 7.57 0 0 0 0 0 0 

0 0 0 7.57 7.57 0 0 2009.4 2,009.4 0 

0 0 0 0 7.57 7.57 7.57 0 2,009.4 2,009.4 

0 0 0 0 0 0 0 0 2,009.4 2,009.4 

0 0 0 0 0 0 2 0 0 2,009.4 
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Table 4 Average values of simulated auxiliary variable, x 

0 0 204.14
 

204.14
 

0 0 0 0 0 0 

0 0 0 204.14
 

204.14
 

0 0 6760.86
 

6760.86
 

0 

0 0 0 0 204.14
 

204.14
 

204.14
 

0 6760.86
 

6760.86
 

0 0 0 0 0 0 0 0 6760.86
 

6760.86
 

0 0 0 0 0 0 10 0 0 6760.86
 

 

Thompson (2012) suggested that the conventional estimators perform worse than the ACS 

estimator if the within-network variances are high enough as compare to the overall variance of the 

survey variable. The standard HH type variance estimator for ACS will be more efficient than the 

usual unbiased estimator for SRS if 
2 2 ,y wyS S                                                                 (10) 

where the within-network variance is defined as 

2 2
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1
( ) .

1
i

K

wy i i
k i A

S w y
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 


  

The correlation coefficients between survey and auxiliary variables in actual and transformed 

population are 0.9999 and 0.9996, respectively. The variance of the survey variable is 3,716,168 

whereas the variances within the network are 70.29 and 26,302,470, respectively, satisfying (10) for 

different comparable expected sample size given in Table 11 (Appendix B). The within-network 

variances accounting a large portion of the overall variance of survey variable indicating that the 

adaptive estimators perform better than the usual conventional estimators. In this simulation, the ACS 

estimators were calculated on different values of the initial sample sizes n  whereas, for the estimators 

under SRS, the size of the sample was set according to the expected sample size. The initial sample 

sizes of SRSWOR along with their corresponding expected sample sizes are summarized in Table 5 

and Table 6 together with the amount of ARB and RE’s of all the adaptive and non-adaptive 

estimators. 

 

Table 5 Absolute relative bias for all conventional and ACS estimators 
Sample Sizes Non-adaptive Estimators Adaptive Estimators 

n  ( )E v   2
0Ŝ  2

1Ŝ  2
2Ŝ   2

3Ŝ  
2
4Ŝ  2

5Ŝ  
2ˆ
RpS  2ˆ

IRpS
 

5 18.36  6.7586 * 4.5768  0.2954 * 0.7765 0.6798 0.4928 

10 28.77  5.7364 * 3.4756  0.1184 * 0.5467 0.4454 0.1743 

15 34.12  4.8763 * 1.9989  0.0475 * 0.2211 0.1232 0.0776 

20 37.44  2.9867 7.7564 0.7634  0.0112 6.8873 0.0574 0.0765 0.0231 

25 39.91  1.4675 7.2473 0.4487  0.0072 4.5768 0.0101 0.0454 0.0076 

* : (0/0) = undefined 

 

Table 6 Relative efficiencies for all conventional and ACS estimators 
Sample Sizes Non-adaptive Estimators Adaptive Estimators 

n  ( )E v   2
0Ŝ  2

1Ŝ  2
2Ŝ   2

3Ŝ  
2
4Ŝ  2

5Ŝ  
2ˆ
RpS  2ˆ

IRpS
 

5 18.36  6.5465 * 11.6768  13.3452 * 102.3515 112.8987 135.4784 

10 28.77  6.9365 * 12.1232  13.7768 * 112.1943 126.3324 151.5989 

15 34.12  7.5665 * 12.9809  14.6785 * 138.8573 147.3445 176.8134 

20 37.44  7.9684 5.5823 14.6522  15.8674 155.7869 151.2341 178.8734 214.6481 

25 39.91  8.0024 5.7379 16.7684  18.5467 187.6512 154.4595 199.2354 239.0825 

* : (0/0) = undefined 
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From the results of simulation study on all the adaptive and non-adaptive estimators, it can be 

seen that the amount of ARB’s converges to zero by increasing the sample size except the ratio 

estimators as shown in Table 5. The R.E.’s presented in Table 6 indicating that all the adaptive 

estimators are more efficient than the non-adaptive estimators. The conventional ratio estimator 

performs better than the unbiased sample variance estimator and exponential ratio estimator in SRS 

for large sample sizes. Nevertheless, it is not appropriate for the estimation of rare and clustered 

population. Further, the proposed estimator has maximum R.E. among all the estimators considered 

in this paper. The adaptive ratio estimator performs better than the typical ratio estimator under SRS 

on the large sample. 

 

5.2. Application using artificial population 

A clustered population is taken from Thompson (2012), in which the area of the population have 

been partitioned over a study region 20 20 400   square units as the auxiliary variable ( )x  given 

in Table 9 (Appendix A). The pre-defined condition is considered as 1y   with the same ACS 

process in which the immediate first-order neighboring units added to the sample. Dryver and Chao 

(2007) simulated the values of the survey variable using the following two models.  

 4 ,i i iy x    where    ~ (0, )i iN x                        (11) 

 4 ,i xi iy w    where    ~ (0, ).i xiN w                          (12) 

In model (11), the values of the survey variable were generated with original data whereas in model 

(12), the values were generated using averages of the networks of the auxiliary variable. In order to 

evaluate the performance of the proposed estimator, we simulated y-values in such a way that there 

exists an exponential relation between survey and auxiliary variables. 

 0.4 ,i ix

iy e   where    ~ (0, ).i iN x             (13) 

In the given model (13), let iy  be the thi values for the survey variable, which generated in such 

a way that the variability of the survey variable is exponentially proportional to the auxiliary variable 

given in Table 10. As the survey variable is not linearly related to the auxiliary variable, the 

coefficients of correlation at unit and network mean level are 0.4832 and 0.2504, respectively. The 

overall variance of the survey variable is 39,858,467,668 whereas the variances within the networks 

were found to be 89,418,237, 175,481,872 and 1,988,729×105, respectively, satisfying (10) for 

different comparable expected sample size given in Appendix B. The within network variances 

accounting a large portion of the overall variance of survey variable indicating that the adaptive 

estimators performs better than the usual conventional estimators. The initial sample sizes of 

SRSWOR with their corresponding expected sample sizes are summarized in first two columns of 

Table 7 and Table 8 together with the amount of ARB and R.E.’s of all the adaptive and non-adaptive 

estimators. 

 

Table 7 Absolute relative bias for all conventional and ACS estimators 
Sample Sizes Non-adaptive Estimators Adaptive Estimators 

n  ( )E v   2
0Ŝ  2

1Ŝ  2
2Ŝ   2

3Ŝ  
2
4Ŝ  2

5Ŝ  
2ˆ
RpS  2ˆ

IRpS
 

10 26.709  2.7681 * 3.7419  0.0913 * 0.5718 0.4763 0.3312 

20 48.779  1.4512 * 2.6131  0.0411 * 0.2520 0.2713 0.1211 

30 67.315  0.3451 * 1.8221  0.0041 * 0.0911 0.0741 0.0053 

40 83.175  0.0176 6.1571 0.2312  0.0000 4.4459 0.0022 0.0019 0.0001 

50 97.019  0.0010 4.0421 0.0506  0.0000 2.4563 0.0000 0.0000 0.0000 

* : (0/0) = undefined 
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Table 8 Absolute relative bias for all conventional and ACS estimators 
Sample Sizes Non-adaptive Estimators Adaptive Estimators 

n  ( )E v   2
0Ŝ  2

1Ŝ  2
2Ŝ  

 2
3Ŝ  

2
4Ŝ  2

5Ŝ  
2ˆ
RpS  2ˆ

IRpS
 

10 26.709  9.0437 * 13.5695  14.1819 * 111.3515 155.3412 205.0504 

20 48.779  8.0924 * 16.4958  16.9827 * 126.1943 178.7385 235.9348 

30 67.315  9.3872 * 16.8617  18.9855 * 148.8573 190.1170 250.9544 

40 83.175  8.1195 11.523 14.5446  22.3281 71.7362 163.2341 233.8745 308.7143 

50 97.019  9.6644 12.379 18.3706  24.4533 78.7163 188.4595 283.1345 373.7375 

* : (0/0) = undefined 

 

From the results given in Table 7, it can be seen that the amount of ARB’s converges to zero as 

the sample size increases. Lohr (1999) recommended that the amount of bias converges to zero by 

increasing the sample size in ACS. The R.E.’s presented in Table 8 indicates that all the adaptive 

estimators are more efficient than the non-adaptive estimators in terms of R.E.’s. The usual sample 

variance estimator under ACS design performs slightly better than the ratio and exponential ratio 

estimator under SRS design. Further, the proposed estimator and its improved version have maximum 

RE among all the adaptive and non-adaptive estimators considered in this paper. 

 

6. Conclusions 

Unlike existing estimators, our proposed estimator performs considerably better for the 

estimation of clustered population variance. The results of the simulation study indicate that the 

estimators under ACS design perform better than the estimators under conventional sampling design 

on various initial and their corresponding expected sample sizes. Dryver and Chao (2007) assumed 

that 0/0 as zero for ratio estimators. In this simulation, 0/0 is not considered as zero, therefore the 

conventional and adaptive ratio estimators did not perform and return no value (*) for small sample 

sizes. The within-network variances of the survey variable in both populations accounting a large 

portion of the overall variance indicating that the conventional estimators perform worse than the 

adaptive estimators. Further, the amount of ARB tends to zero and the proposed estimator performs 

better as the sample size increases. Thus, it is suggested that the proposed estimator is useful for 

variance estimation of clustered populations like rare and clustered species, fisheries, flocking, HIV 

and AIDS patients. 
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Appendix A 

 

Table 9 Auxiliary variable x (Thompson 2012) for population 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 25 2 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 38 3 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 11 26 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 22 19 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 17 26 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 10 26 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 10 Simulated y-values using model (13) 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 275 22,017 7 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 6,632 392,788 8 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 11 3 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 7 6 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 84 32,862 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 6,635 2,001 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 9 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 903 32,853 41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 11 54 32,855 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 5 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Appendix B 

 

Table 11 Thompson efficiency condition for real and artificial populations 

Real Population Artificial Population 

n  ( )E v  2
yS  2

wyS  n  ( )E v  2
yS  2

wyS  

5 18.93 3,716,168 846,002,409 10 26.769 39,858,550,873 239,532×107 

10 28.77 3,716,168 1,730,250,857 20 48.779 39,858,550,873 7,306,704×106 

15 34.12 3,716,168 2,169,959,542 30 67.315 39,858,550,873 1,249,543×107 

20 37.44 3,716,168 2,092,823,318 40 83.175 39,858,550,873 168,845×108 

25 39.91 3,716,168 1,811,654,534 50 97.019 39,858,550,873 2,120,333×108 

 

 

 


