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Abstract

Adaptive cluster sampling (ACS) is considered to be the most efficient sampling design for the
estimation of statistical parameters of rare and clustered populations. In this paper, we proposed an
estimator that jointly incorporate the exponential ratio and exponential product type estimators using
single auxiliary variable based on the averages of the networks in adaptive cluster sampling. The
expressions of approximate bias and mean square error of the proposed estimator are derived. A
numerical study is carried out using real and artificial populations to demonstrate and compare the
efficiency of the proposed estimator over the traditional variance estimator under simple random
sampling (SRS). The results of relative efficiencies show that the proposed estimator is more efficient
than all the adaptive and non-adaptive estimators considered in this paper.

Keywords: Auxiliary Information, clustered population, Hansen-Hurwitz estimation, within network variances,
variance estimation.

1. Introduction

Adaptive cluster sampling first proposed by Thompson (1990) is considered to be the most
suitable and efficient sampling design for the estimation of rare and clustered population parameters.
Such clustered populations includes plants and animals of rare and endangered species, flocking,
fisheries, epidemiology of sporadic diseases, noise problems, pollution concentrations, criminal and
hotspot investigations, drug users, AIDS and HIV patients. The use of auxiliary information is the
most constructive to get the better estimation results for rare and clustered populations. In many
environmental surveys, if the count of particular species in a locality is known as survey variable, the
availability of food, habitat, rainfall and temperature of the same locality would be considered as
auxiliary variable for the estimation of population parameters, like mean, total, variance etc.
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Thompson (1990, 1991a, 1991b, 1992) suggested several unbiased estimators for the estimation
of rare and clustered population mean and variance under ACS design. Smith et al. (1995) applied
ACS for estimating the density of wintering waterfowl and concluded that the efficiency of ACS
estimator is highest as compare to the simple random sampling (SRS) design when the within-
network variance is close to the overall population variance. Chao (2004a) and Dryver and Chao
(2007) proposed ratio estimators based on the modification of Hansen-Hurwitz (1943) and Horvitz-
Thompson (1952) type estimators for the estimation of population mean under ACS.

In this paper, we propose an estimator that combines the exponential ratio and exponential
product estimators using probability weighting approach for the estimation of rare and highly
clustered population variance under the framework of ACS design. The methodology of ACS design
with a brief example is described in Section 2. Some existing estimators under SRS and ACS designs
with basic notations are addressed in Section 3. The expressions of approximate bias and minimum
mean square error (MSE) of the proposed estimator are derived in Section 4 with some special cases
in which the proposed estimator is reduced to exponential ratio and exponential product type
estimators on different values of optimization constant. An improved version of the proposed
estimator is also discussed in the same section. A numerical study is conducted in Section 5 on real
and artificial clustered populations in order to check the performance of the proposed estimator under
various initial and expected sample sizes. Conclusions and remarks on the paper are given in Section
6.

2. Methodology of Adaptive Cluster Sampling
Consider a study region €2 that can be spatially partitioned into a grid of N equal sized
rectangular units labelled from 1 to N. The response of the survey variable (y,) together with

auxiliary variable (x;) is associated with each unit i =1,2,..., N. The population vectors of y-values

and x-values are define as Y =(y,,y,,....yy) and X =(x,x,,....X,), respectively. Let the

population is divided into K exhaustive networks (A4's) and 4, denotes the i™ network with m,
units. The dataset d is selected by using initial sample size from the sampled units say s, with the
associated values of the survey variable (y,) along with the corresponding values of the auxiliary
variable (x,) from Y and X, respectively. Hence the dataset d is defined as d ={s,y_,x, }.

In ACS the initial sample of size n is selected by a conventional sampling design such as simple
random sampling (SRS), stratified sampling or systematic sampling. If the value of the survey
variable from the sampled unit satisfies C, usually C = {y; y > 0}, the first-order neighboring units

(up, down, to the left, to the right) will be added to the sample and examined. If the neighboring units
of first neighbors satisfy the C, then their neighboring units will be added to the sample and observed
and the process remain continuous until no new units met the condition. The final sample comprises
the initially selected units and all the studied units that satisfied the condition. A network consists of
those units that satisfied C. The units that do not meet condition are known as edge units. A cluster
is a combination of network and edge units.

Figure 1 illustrates the idea of a cluster in which the unit having the star is an initially selected
unit. The shaded units are adaptively added units that satisfying a pre-defined condition, C. The units
that do not meet C (bold) are known as edge units.
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Figure 1 A cluster, a network with its edge units

3. Existing Estimators in Simple Random Sampling

Let a random sample of size n is selected from a clustered population of N units by using
simple random sampling without replacement (SRSWOR). The study and auxiliary variables are
denoted by y and x with their respective means and, whereas the standard deviations S, and S,
and coefficient of variations, C, and C,, respectively. Further, p represents the population

correlation coefficient between Y and X. The following notations are used for the expressions of bias

and MSE of the existing estimators
Hyy

g = a1 = P(x,—p)" and y=
T e e T 1Z(y, £4,)"(x, = 41, 7= E()

where p and ¢ are non-negative integers and E(v) is the expected sample size. The quantities, g,
and 4, be the second order moments and 2, is known as moment ratio’s.

The usual unbiased sample estimator for population variance with the expression of its variance
is given as

2 2
Sy =5,

Var(S3) =v5" (hy = 1),

& -
2 _ _ 2
where s’ ——n_I;(y,. Y) .

Isaki (1983) first proposed the ratio estimator with single auxiliary variable for the estimation of
finite population variance in SRS. The estimator with the expression of its MSE is

2

~ S
2 _ %y 2
Sl __ZUX’

SX

MSE(S]) = 767 [(Ayg =D+ (Ayy =1)=2(4,, =]

Singh et al. (2011) proposed an exponential ratio-type estimator having a single auxiliary
variable for population variance. The estimator with the expression of its MSE is

ol-s’
S —S expl —— |,
.+,

MSE(S2) = 762 [(A4g —1) +0.25( 2, =)~ (A, = 1)].

Let the initial sample of » units is selected with SRSWOR from a clustered population. Suppose
w,, and w,, denoted the average values of y and x in the network which includes unit i such that;

w, = m[’lz Yy, and w, = m;Iij, respectively. Adaptive cluster sampling can be considered as
Jed Jod

SRSWOR when the averages of networks are considered (Dryver and Chao 2007; Thompson 2012).
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Consider the notations w, and w, are the sample means whereas s; and s are the sample

variances of the survey and auxiliary variable based on the transformed population, respectively such
that

1 S 1 S
=w,, = (w, W),
i wy n— vi ¥
i=l1

i=l1

=

and
I S 2 I —
Wx =_wai’ wa =_Z(wxi_wx) °
n iz n—1
In ACS, we consider the following notations to obtain the expressions of bias and MSE of the

proposed estimator. Let us define ggwy and & are the error terms of the survey and auxiliary

variables, respectively

Y ﬁ‘,(w i) (w,— 1) and 7, =~
wrs ;W /2 3 % :) ; ’ wrs N _1 P Vi y xi X w n
Soy =0 (148,50, =00, (1+&,,); suchthat E(S,)=E(£,,)=0 M

E(ij) =75 (Asgo =1 E(fjx) =75 (Ag0s =D, E(fwyézwx) =75 (Asn = 1),

where 7 and s be the non-negative integers. The quantities s_,, and u._,, be the second order

moments and A, is known as moment ratio for the adaptive estimators.

Thompson (1992) defined an unbiased estimator for finite population variance in ACS based on
the modification of Hansen-Hurwitz (HH) type estimator. The estimator with its variance is defined
as

2 _ 2
S, =s

wy?

Var(S?) = y-62 (s —1).

Chaudhry et al. (2016) modified classical ratio and exponential ratio estimator with single

auxiliary variable in ACS design as
2

~ A
2 _ w2
S 4 = 2 wa’
wx
2 2
A o —3S
2 _ 2 wx wx
S5 =s,, exXp [—2 2 ]
O\ + Sy

The expressions of MSE’s of S 2 and 3’52 are given as follows:

MSE(S?) = 7,02, [(Ayso =D+ (A =) = 2(Ay, = D),

w40

MSE(S”SZ) =y.o. [(lMO =-1)+0.25(4;, =D = (4s, —1)].

W wy

4. Proposed Estimator

In this section, an estimator is developed that incorporate the exponential ratio and exponential
product estimator simultaneously using probability weighting approach for the estimation of highly
clumped population variance under ACS design. The estimator is defined as
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2 2 2 2
A o _—S S —O
2 _ 2 wx wx _ WX wx
S, =50, | @, exp| = +(1-a, exp| 22— ||,
ol +s ol +sl,

wx wx wx
where ¢, is constant that need to be optimized and estimated for the expression of minimum value

of the MSE of the proposed generalized estimator.
Using the notations (1), we may rewrite the proposed estimator as

$i, =1+ r:m{aw exp (—" 0 (+E,) j +(-a,) exp{—"i’* (L) o ﬂ @

wx

Applying Taylor series on (2) and expanding the exponential terms up to the second order
approximation, we have

2 2 2 2
312 ~ 0_2 1 + a. 1— gwx + gwx + §wx (-« ex 1 + §wx _ §wx + §wx . 3
Rp wy ( gwy ) |: w { 2 4 8 ( w ) p 2 4 8 ( )

Simplifying and applying expectation on (3), we have

Bias(S2) = E(Sk —02) 2 2267 [(Ags = 1) +4(1=2a, )(Ass ~ D). )

wy 8 wy

In order to obtain the expression of MSE of the proposed estimator, we may write the proposed
estimator using first order approximation as

'§1§I1 - O-j’,v ~ O-vzt’y |:§wy + (% - aw j §wx i| N (5)

The expression of MSE of the proposed estimator may be obtain by squaring and taking expectation
on both sides of (5), we have

. 1 g 1
E(S -02) ~y,0%, {(zwm D+ (E_ awj (Mg — D)+ 2(5— aw](/lwzz - 1)}. (6)

In order to obtain the expression of minimum MSE of the proposed estimator, differentiating (6)
with respect to “ ¢, * we have
a =0.5+ Ay, — DAy =D

w(opt)
The final expression of minimum MSE of the proposed estimator is

MSE,,(S3) = 7,04 (Juy = D= p*),

min W wy
(ﬂwzz - 1)

\/(ﬂ*wo _1)\/(ﬂ*w04 _1) '

It is clearly seen that the expression of minimum MSE of the proposed estimator is same as the
approximate variance of linear regression estimator for population variance. It is noticed that the

where p =

proposed estimator is reduced to exponential ratio and exponential product estimator for the values
‘1’ and ‘0’ of the optimization constant (aw), respectively. Improved version of the proposed

2 2 2 2
A o _—S s —O
2 _ 2 wx wx _ wx wx
SIRp - nwswy a, exp[ 2 2 ] + (1 aw) exp[ 2 2 j H
O\ + S O + Syx

where 7, (i.e., 0<n, <1) is a suitable chosen scalars whose value is to be estimated so that MSE

estimator

of S,sz is minimized. The expressions of bias and MSE are given as, respectively
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Bias(i4) ~ 07, [(m ~1) +%me[% —1)+4(1-2a, )( Ao —1)]}-

or
Bias(S,) = (A, ~1)o, +7,Bias(S2,,) @)
and
MSE(S},) = 0, [ (0, =1 + 712 (s = DA = 1) |,
or
MSE(S%,,) = (1, 1) b, + i MSE(S.,,). ®)

In order to obtain the minimum MSE of § 2

vy differentiating (8) with respect to 7,,, we have

4

. o,
= ol +MSE(S%,,)
The expression of minimum MSE of the improved version of proposed estimator is
MSE, , (8},) = (A, =17 0}, + 17, MSE(S},). ©

5. Numerical Study

Two types of numerical studies are conducted in order to deal with the situation in which the
ACS estimators work more efficiently than the conventional SRS estimators. In ACS, the expected
sample size usually depends on the initial sample size and varies according to the adaptation of the
neighboring units. The expected sample size denoted by ‘ E(v)’ is the sum of the probabilities of

inclusion of all the quadrates (Thompson 2012) define as
N

EW)=)m,.
i=1

For the fair comparison, the usual formula of sample variance for SRSWOR based on the
expected sample size is
Var(q‘z,*) = }/Gﬁ (A = D).
The general expressions of absolute relative bias (ARB) and MSE of the proposed estimator are
given as respectively

l 2 ‘§i2 - O-iy

7 i

ARB(S}) = —.
wy

and

wy

MSEGS) =3 (82 - a2, )2,
roia

where S? is the value of the relevant estimators presented in this paper and r is the total number of
iterations. Due to the high variability in the data, one hundred thousand iterations (» =100,000) have

been made for all the estimators to get the high accuracy on various initial and their corresponding
expected sample sizes.
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The evaluation of the proposed estimator over the traditional variance estimator under SRS is
based on the relative efficiency (R.E.). The R.E. of the estimators considered in this paper, compared

to the usual variance estimator is denoted by
. Var(c®
RE(S})= #
MSE(S?)

where i =0,1,2,...,5, Rp and IRp.

5.1. Application using real population

A real population of blue-winged teal (Smith et al. 1995) is used to examine the performance of
the proposed estimator in comparison of the other competing estimators. The total study area of five
thousand km? has been divided into 50-100-km? equal quadrates in central Florida as shown in Table
1. The total number count of blue-winged teal is considered as survey variable () whereas the
auxiliary variable (x) is generated using the linear model (Chutiman and Chiangpradit 2014)
summarized in Table 2.

x, =4y, —g,

where €, ~ N(0,y,).

Table 1 Blue-winged teal data, y (Smith et al. 1995)

0 0 3 5 0 0 0 0 0 0
0 0 0 24 14 0 0 10 103 0
0 0 0 0 2 3 2 0 13,639 1
0 0 0 0 0 0 0 0 14 177
0 0 0 0 0 0 2 0 0 122
Table 2 Simulated x-values generated from model
0 0 13 19 0 0 0 0 0 0
0 0 0 93 59 0 0 37 419 0
0 0 0 0 9 10 8 0 45,621 6
0 0 0 0 0 0 0 0 59 493
0 0 0 0 0 0 10 0 0 691

The transformed populations for both survey and auxiliary variables are summarized in Table 3
and Table 4, respectively.

Table 3 Average values of the networks of blue-winged teal data

0 0 7.57 7.57 0 0 0 0 0 0
0 0 0 7.57 7.57 0 0 20094 2,009.4 0
0 0 0 0 7.57 7.57 7.57 0 2,009.4  2,009.4
0 0 0 0 0 0 0 0 2,009.4  2,009.4
0 0 0 0 0 0 2 0 0  2,0094
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Table 4 Average values of simulated auxiliary variable, x

0 0 20414 204.14 0 0 0 0 0 0
0 0 0 20414 204.14 0 0 6760.86  6760.86 0
0 0 0 0 20414 204.14 204.14 0 6760.86 6760.86
0 0 0 0 0 0 0 0 6760.86 6760.86
0 0 0 0 0 0 10 0 0 6760.86

Thompson (2012) suggested that the conventional estimators perform worse than the ACS
estimator if the within-network variances are high enough as compare to the overall variance of the
survey variable. The standard HH type variance estimator for ACS will be more efficient than the
usual unbiased estimator for SRS if

Sf, < 77Sjy, (10)

where the within-network variance is defined as
2 1 S 2
Soy —EZ;;(W[ )

The correlation coefficients between survey and auxiliary variables in actual and transformed
population are 0.9999 and 0.9996, respectively. The variance of the survey variable is 3,716,168
whereas the variances within the network are 70.29 and 26,302,470, respectively, satisfying (10) for
different comparable expected sample size given in Table 11 (Appendix B). The within-network
variances accounting a large portion of the overall variance of survey variable indicating that the
adaptive estimators perform better than the usual conventional estimators. In this simulation, the ACS
estimators were calculated on different values of the initial sample sizes n whereas, for the estimators
under SRS, the size of the sample was set according to the expected sample size. The initial sample
sizes of SRSWOR along with their corresponding expected sample sizes are summarized in Table 5
and Table 6 together with the amount of ARB and RE’s of all the adaptive and non-adaptive
estimators.

Table 5 Absolute relative bias for all conventional and ACS estimators

Sample Sizes Non-adaptive Estimators Adaptive Estimators
noE®) s s §2 s s2 $2 S3, Sy
5 18.36 6.7586 * 4.5768 0.2954 * 0.7765 0.6798 0.4928
10 28.77 5.7364 * 3.4756 0.1184 * 0.5467 0.4454 0.1743
15 34.12 4.8763 * 1.9989 0.0475 * 0.2211 0.1232 0.0776
20 37.44 29867  7.7564 0.7634 0.0112 6.8873 0.0574 0.0765 0.0231
25 39.91 1.4675 7.2473 0.4487 0.0072 4.5768 0.0101 0.0454 0.0076

*:(0/0) = undefined

Table 6 Relative efficiencies for all conventional and ACS estimators

Sample Sizes Non-adaptive Estimators Adaptive Estimators
no E®) s $? $2 $2 $2 §2 Si Sy
5 18.36 6.5465 * 11.6768 13.3452 * 102.3515 112.8987 135.4784
10 28.77 6.9365 * 12,1232 13.7768 * 112.1943 126.3324 151.5989
15 34.12 7.5665 *12.9809 14.6785 * 138.8573 147.3445 176.8134
20 37.44 7.9684 5.5823  14.6522 15.8674  155.7869  151.2341 178.8734  214.6481
25 39.91 8.0024 5.7379  16.7684 18.5467  187.6512  154.4595 199.2354  239.0825

*:(0/0) = undefined
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From the results of simulation study on all the adaptive and non-adaptive estimators, it can be
seen that the amount of ARB’s converges to zero by increasing the sample size except the ratio
estimators as shown in Table 5. The R.E.’s presented in Table 6 indicating that all the adaptive
estimators are more efficient than the non-adaptive estimators. The conventional ratio estimator
performs better than the unbiased sample variance estimator and exponential ratio estimator in SRS
for large sample sizes. Nevertheless, it is not appropriate for the estimation of rare and clustered
population. Further, the proposed estimator has maximum R.E. among all the estimators considered
in this paper. The adaptive ratio estimator performs better than the typical ratio estimator under SRS
on the large sample.

5.2. Application using artificial population
A clustered population is taken from Thompson (2012), in which the area of the population have
been partitioned over a study region 20x20 =400 square units as the auxiliary variable (x) given

in Table 9 (Appendix A). The pre-defined condition is considered as y =1 with the same ACS
process in which the immediate first-order neighboring units added to the sample. Dryver and Chao
(2007) simulated the values of the survey variable using the following two models.

v, =4x,+¢,, where ¢ ~N(0,x,) (11)

v, =4w_ +¢, where ¢ ~N(O,w,). (12)
In model (11), the values of the survey variable were generated with original data whereas in model
(12), the values were generated using averages of the networks of the auxiliary variable. In order to
evaluate the performance of the proposed estimator, we simulated y-values in such a way that there
exists an exponential relation between survey and auxiliary variables.

v, =e" % where g ~ N(0,x,). (13)
In the given model (13), let y, be the i" values for the survey variable, which generated in such

a way that the variability of the survey variable is exponentially proportional to the auxiliary variable
given in Table 10. As the survey variable is not linearly related to the auxiliary variable, the
coefficients of correlation at unit and network mean level are 0.4832 and 0.2504, respectively. The
overall variance of the survey variable is 39,858,467,668 whereas the variances within the networks
were found to be 89,418,237, 175,481,872 and 1,988,729x10°, respectively, satisfying (10) for
different comparable expected sample size given in Appendix B. The within network variances
accounting a large portion of the overall variance of survey variable indicating that the adaptive
estimators performs better than the usual conventional estimators. The initial sample sizes of
SRSWOR with their corresponding expected sample sizes are summarized in first two columns of
Table 7 and Table 8§ together with the amount of ARB and R.E.’s of all the adaptive and non-adaptive
estimators.

Table 7 Absolute relative bias for all conventional and ACS estimators

Sample Sizes Non-adaptive Estimators Adaptive Estimators

v E § s s § s & & &
10 26.709 2.7681 * 3.7419 0.0913 * 0.5718 0.4763 0.3312
20 48.779 1.4512 * 2.6131 0.0411 * 0.2520 0.2713 0.1211
30 67.315 0.3451 * 1.8221 0.0041 * 0.0911 0.0741 0.0053
40 83.175 0.0176 6.1571 0.2312 0.0000 4.4459 0.0022 0.0019 0.0001
50 97.019 0.0010 4.0421 0.0506 0.0000 2.4563 0.0000 0.0000 0.0000

*:(0/0) = undefined
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Table 8 Absolute relative bias for all conventional and ACS estimators

Sample Sizes Non-adaptive Estimators Adaptive Estimators

n E(v) §2 §2 §2 s2 s $2 S Sho
10 26.709 9.0437 * 13.5695 14.1819 * 111.3515 155.3412  205.0504
20 48.779 8.0924 * 16.4958 16.9827 * 126.1943  178.7385  235.9348
30 67.315 9.3872 * 16.8617 18.9855 * 148.8573  190.1170  250.9544
40 83.175 8.1195 11.523 14.5446 22.3281 71.7362 163.2341 233.8745  308.7143
50 97.019 9.6644  12.379 18.3706 244533 7877163 188.4595 283.1345  373.7375

*:(0/0) = undefined

From the results given in Table 7, it can be seen that the amount of ARB’s converges to zero as
the sample size increases. Lohr (1999) recommended that the amount of bias converges to zero by
increasing the sample size in ACS. The R.E.’s presented in Table 8 indicates that all the adaptive
estimators are more efficient than the non-adaptive estimators in terms of R.E.’s. The usual sample
variance estimator under ACS design performs slightly better than the ratio and exponential ratio
estimator under SRS design. Further, the proposed estimator and its improved version have maximum
RE among all the adaptive and non-adaptive estimators considered in this paper.

6. Conclusions

Unlike existing estimators, our proposed estimator performs considerably better for the
estimation of clustered population variance. The results of the simulation study indicate that the
estimators under ACS design perform better than the estimators under conventional sampling design
on various initial and their corresponding expected sample sizes. Dryver and Chao (2007) assumed
that 0/0 as zero for ratio estimators. In this simulation, 0/0 is not considered as zero, therefore the
conventional and adaptive ratio estimators did not perform and return no value (*) for small sample
sizes. The within-network variances of the survey variable in both populations accounting a large
portion of the overall variance indicating that the conventional estimators perform worse than the
adaptive estimators. Further, the amount of ARB tends to zero and the proposed estimator performs
better as the sample size increases. Thus, it is suggested that the proposed estimator is useful for
variance estimation of clustered populations like rare and clustered species, fisheries, flocking, HIV
and AIDS patients.
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Appendix A

Table 9 Auxiliary variable x (Thompson 2012) for population
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Table 10 Simulated y-values using model (13)

0 0 0 0 0 o o0 o0 O O 0 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 o0 O O 0 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 0 O O 0O 0 0 O 275 22,017 7 0 0 O
0 0 0 0 0 o 0 0 0 0O O O O O 6,632 392,78 8 0 0 O
0 0 0 0 0 o o0 o0 o0 O 0 0 0 O 5 11 3 0 0 O
0 0 0 0 0 o o0 o0 o0 O 0 0 0 O 0 0 0O 0 0 O
0 7 6 10 0 o o0 o0 o0 O 0 0 0 O 0 0 0o 0 0 O
13 84 32,862 7 0 o 0 0 O O 0O 0 0 O 0 0 0o 0 0 O
13 6,635 2,001 17 0 o 0 o0 O O 0 0 0 O 0 0 0o 0 0 O
0 9 15 0 0 o o0 0 O O 0 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 o0 0 O 0 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 o0 O O 0 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 o0 O O O 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 0 O O 0O 0 0 O 0 0 0o 0 0 O
0 0 0 0 7 2 0 0 0 O 0 0 0 O 0 0 0o 0 0 O
0 0 0 903 3283 41 0 O O O O O O O 0 0 0o 0 0 O
0 0 11 54 3285 18 0 0 O O O O O O 0 0 0o 0 0 O
0 0 0 5 3 7 0 0 O O O O 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 o0 O O 0 0 0 O 0 0 0o 0 0 O
0 0 0 0 0 o o0 o0 O O 0 0 0 O 0 0 0o 0 0 O
Appendix B
Table 11 Thompson efficiency condition for real and artificial populations
Real Population Artificial Population
n E®W) Sf, 77Sf,y n E®W) Syz. nSi_y

5 1893 3,716,168 846,002,409 10 26.769 39,858,550,873 239,532x107
10 28.77 3,716,168 1,730,250,857 20 48.779 39,858,550,873 7,306,704x10°
15 34.12 3,716,168 2,169,959,542 30 67.315 39,858,550,873 1,249,543x107
20 3744 3,716,168 2,092,823,318 40 83.175 39,858,550,873 168,845x108
25 3991 3,716,168 1,811,654,534 50 97.019 39,858,550,873 2,120,333x108




