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Abstract 

Ranked set sampling (RSS) is useful for data collection if observations can be ranked cheaply 

without actual measurement. RSS has been studied widely but not enough, especially in case of 

collecting independent interested variables by using multivariate ranked set sampling. There are many 

problems in the sample selection for this case. One important problem is called “Incomplete Ranked 

Set Sampling (InRSS)”, which causes bias in estimating mean. Hence, in this study, modified 

incomplete ranked set sampling (M-InRSS) is proposed for dealing with InRSS in one cycle bivariate 

RSS for independent bivariate normal distribution. Analytical results reveal that problems of bias and 

mean square error (MSE) in InRSS can be solved by using M-InRSS. Moreover, how to apply M-

InRSS to chi-square control chart is shown with the numerical example of bivariate chi-square control 

chart based on M-InRSS. The results show that the charts based on M-InRSS are better than based on 

SRS. 

______________________________ 
Keywords: Incomplete ranked set sampling, Ridout’s method of selecting sample, sample selection. 

 

1. Introduction 

Probability sampling has been used widely to collect data for a long time, so many sampling 

techniques are proposed for various conditions. One of them is ranked set sampling (RSS), which was 

proposed by McIntyre in 1952 (McIntyre 2005). It can be used for estimating mean by a sample whose 

units can be ranked without actual measurement. The RSS procedure is a two-stage-sampling (Chen 

et al. 2004). At the first stage, n n  sample units are collected by using simple random sampling 

(SRS) and divided into n  equal sets. Then the sample units in each set are ranked separately (without 

actual measurement). At the second stage, one sample unit is selected from each set, and these selected 

sample units must have different ranks. Then the selected sample units are measured. This process is 
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one cycle of RSS which can be repeated until enough sample units are collected. The number of cycle 

is denoted by .r  Performing r  cycle RSS will give n r  sample units. RSS is more effective than 

SRS in many applications of univariate problems (Chen and Wang 2004, Ozturk et al. 2005, Wang et 

al. 2009, Tiwari and Pandey 2013). However, only univariate statistics is not enough to solve problems 

in current researches. Hence, multivariate RSS has become a popular topic related to sampling for 

more than twenty years. One of the interesting issues in this topic is concerned with RSS on 

independent multivariate population. A problem in this issue is that the sample selection in the second 

stage is complicated. Ridout (2003) proposed a method of selecting samples to deal with this problem. 

It is a convenient method in which a sample could be selected easily. However, sample units according 

to some ranks might not be selected if the number of cycle is less than the number of variable. This 

situation is called “incomplete ranked set sampling (InRSS) whose arithmetic mean is a bias estimator 

(Nakakate and Sarikavanij 2017). Later, the Ridout method was modified to reduce InRSS occurrence 

by Nakakate et al. (2016). This method is called “modified Ridout ranked set sampling (M-RRSS)”. 

However, the InRSS occurrence is not eliminated. Hence, in this study, we propose a method called 

“modified incomplete ranked set sampling (M-InRSS)” to improve M-RRSS under following 

assumptions. Population distribution is independent bivariate normal and means of order statistics are 

known. 

In this study, we also demonstrated that M-InRSS could be applied to the chi-square control chart 

(Duncan 1950) based on RSS which was used to detect a shift of mean in a production process. This 

chart is consisted of center line (CL), upper control limit (UCL), and lower control limit (LCL). The 

effectiveness of this chart is considered by in-control average run length (ARL0) and out-of-control 

average run length (ARL1). These average run lengths (ARL) are used to measure “false alarm rate” 

and “detection ability”, respectively. In application, if the sample used for constructing control limits 

(sample used for estimating mean and variance) is very large, this chart will be effective. Therefore, 

the population variance is reasonable to assume to be known in an application which is suitable for 

chi-square chart because an error in variance estimation is very small. This population variance can 

be used for determining the difference between two means of order statistics. This is the reason why 

the chi-square chart is selected to demonstrate the benefits of our proposed method. The independent 

assumption is selected due to the motivation from the following studies. The first study is to use the 

multivariate control chart for controlling the process of automotive body manufacturing in , ,X Y  and 

Z  dimensions. The results revealed that data of X  and Z  dimensions were independent (Liu et al. 

2014). The latter is to use the control chart for controlling automotive stamped parts manufacturing by 

defining position of flange surface dimensions as characteristics. The results showed that covariance 

between SP9 and SP28 was equal to −0.0016 (Talib et al. 2014). We notice that two variables, which 

are independent, can be found in automotive industry. Therefore, our proposed method is an initial 

study for extending the bivariate control chart based on M-InRSS to trivariate cases with some 

correlated variables in the future. 

The remaining parts of this article are arranged as follows. Univariate RSS is described in 

Section 2. Bivariate RSS is discussed in Section 3 consisting of four parts as follows. In Section 3.1, 

Ridout’s method is reviewed. In Section 3.2, InRSS is reviewed, and then we determine mean square 

error (MSE) of mean estimator based on InRSS. In Section 3.3, M-RRSS is reviewed and discussed. 

In Section 3.4, we propose M-InRSS to improve M-RRSS, and then the expected value and MSE of 

mean estimator based on M-InRSS are determined. After that, the distribution shape of this mean is 

compared to normal probability density function (PDF) to check the suitability of chi-square test. In 

Section 4, we demonstrate how to apply M-InRSS to the bivariate chi-square control chart based on 
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RSS. In Section 5, the numerical example of the bivariate chi-square chart based on M-InRSS is 

shown, and Section 6 is the conclusion. 

 

2. Ranked Set Sampling (RSS) 

In this study, ranked set sampling (RSS) is selected for data collection. It was proposed first for a 

univariate case by McIntyre (2005). It is better than SRS for estimating mean. However, it is only 

suitable for a case in which orders of observations can be known without actual measurement. 

Variance of sample mean is reduced because of these orders. This reduction can be applied to reduce 

a sample size. Readers, who are interested in this issue, can study RSS procedures in Chen et al. (2004). 

The unbiased estimator of mean based on r  cycle RSS with set size n  is 

 :
1 1

1
,

r n

RSS i n j
j i

X X
nr  

   

when  :i n j
X  is the thi  order observation of n  sample from the thj  cycle, and r  is a number of cycles 

(Wolfe 2012). 

The variance of this mean estimator is as follows: 
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when :i n  is the mean of the thi order statistics in a sample of size n  (Wolfe 2004). 

This variance is clearly lower than the variance of mean estimator based on SRS. In this paper, 

only one cycle RSS ( 1r  ) is considered, so a mean estimator based on one cycle RSS and its variance 

can be determined by substituting 1r   on the above equation. 

 

3. Bivariate Ranked Set Sampling (BVRSS) and Problems 

The bivariate ranked set sampling procedure is still similar to RSS. The mean estimator based on 

one cycle bivariate RSS ( )RSSX  can be defined by using multivariate order statistic notation (Arnold 

et al. 2009) as 

 :
1

1
,

s

n

RSS n
sn 

  i
X X  

when  :s ni
X is a two-dimensional-vector containing observation of all variables from ranks 

corresponding to vector ,si  si  is a two-dimensional-vector from the ths  set containing observation 

rank of all variables, respectively and n  is set size. 

A mean estimator for two interested variables based on RSS is a two-dimensional-vector 

containing all arithmetic means of variables. This estimator is unbiased so MSE of this estimator is as 

follows: 

 tr ,
RSS

RSS RSS RSS RSSE
          
 

X
X μ X μ Σ                                       (1) 

when RSSμ  is a two-dimensional-vector containing population mean of both variables, 
RSSX

Σ  is a 

variance-covariance matrix of the  mean estimator based on RSS, and tr(.)  is a trace operator. 

In addition, MSE of BVRSS is clearly lower than bivariate SRS. At the initial study about 

collecting samples for bivariate RSS, McIntyre RSS was applied to the bivariate rank set sampling 

with auxiliary variables in ordering (Norris et al. 1995). Although the method proposed by Norris 
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works effectively for highly correlated variables, it is not suitable for our interested problem due to an 

independent assumption. In case of bivariate   1 2 ,X XX  if 1X  and 2X  are independent, and 

the observations are ranked based on 1 ,X  so selecting sample based on RSS for both variables will be 

complicated as shown in Figure 1.  , ':i i n s
X  in Figure 1 is denoted the sample units in the ths  set with 

ranked i  and i  of the first and second variable, respectively. If sample selections are performed 

under the situation in this figure based on McIntyre,
 1X  will be selected as RSS, but 2X  being order 

pair of 1X
 
will be selected as SRS. 

Hence, the selecting sample based on RSS cannot be done regularly. As a matter of fact, there are 

other studies about sample selections for RSS which are suitable for this situation. In this paper, the 

method of selecting samples proposed by Ridout is modified for this situation. 

 

 

 

 

 

 

 

 

 
 

Figure 1 Selecting sample in one cycle RSS with set size three when 1X  and 2X  are independent 

 

3.1. Ridout’s method of selecting sample 

After the first stage of RSS, ranked samples units are considered set by set in the second stage. 

Ridout chose the minimum sum of variance calculated by using sample unit quantity from each rank 

of each variable to be an indicator, which is used for selecting sample set by set. This sum of variance 

was defined by Ridout (2003) as follows: 
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where n  is a set size, and [ ]a iq  is a quantity of sample unit having the thi  order based on the tha

variable. This sum of variance can be rewritten in a vector form as 

1

1
,

1

p

a a
a

V
n 



e e  
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.a a a a aa a a n a n

q q q q q q q q


  
 

e    

Selecting sample by using this indicator is the same method as a sample selection that the sample 

units are selected under the condition. In this condition, the rank of sample unit must differ from the 

ranks of all previous selected sample units. If there are many sample units satisfying this condition, 

one of them will be selected randomly. Hence, the sample units in the first set are selected randomly, 

but the sample units in the last set are selected under many conditions from all of the previous sets. 

Although this method is convenient and fast, there are many cases which all sample units in the last 

set do not satisfy the conditions. For instance, if we have one cycle bivariate RSS with the set size 

X(1,2:3)1 
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three, the sample ranks are the same as shown in Figure 1, the selected sample units from the first and 

the second sets are from the st1  and the nd2  rank based on the first variable and the nd2  and the rd3  

rank based on the second variable, respectively then either the sample unit on the left or on the right 

of the last set will be selected randomly because all sample units in the last set are at least one from 

the same rank of the first two. Hence, there is no sample unit from the rd3  rank based on the first 

variable or from the st1  rank based on the second variable in the sample set. This situation is called 

“Incomplete Ranked Set Sampling (InRSS)”. Next, the effectiveness of the mean estimator based on 

InRSS is analyzed. 

 

3.2. Incomplete Ranked Set Sampling (InRSS) 

To consider one cycle BVRSS, InRSS will occur in only one variable from a sample based on one 

cycle RSS, which is collected by Ridout’s method. The mean estimator for this variable (its arithmetic 

mean) is defined as  

                       : :

1
,  ,  1, , ,  1, , ,RSSmk i n m n

i M

X X X m M M n k k n
n 

 
      

 
                 (2) 

where 
:i nX  is the thi  order observation from all n  orders, :m nX  is the thm  order observation from all 

n  orders, m  is the repeated order, k  is the missing order,  

and              : :( ) .m n k n
RSSmkE X

n

 



                   (3) 

Thus, it is obvious that the second term is the biased term. MSE of the mean estimator based on InRSS 

can be derived as follows: 

     
2 2

2

: : : : : : :
1

1 1 1 1n

RSSmk i n m n i n i n i n m n k n
i M i i M

E X E X X E X X
n n n n

   
  

                                  
  

       
2 2

: : : : : : : :

1 1 1 1
2i n i n i n i n m n k n m n k n

i M i M

E X E X X E X
n n n n

   
 

         
               

            
 

       
2 2

: : : : : : : :

1 1 1 1
2 .i n i n i n i n m n k n m n k n

i M i M

E X E X E X E X
n n n n

   
 

           
                 

              
   

Hence, we get 

                      2 2 2
: : : :2
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The variance of the mean estimator based on RSS can be rewritten to the same form as follows: 
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MSE of the mean estimator based on InRSS and RSS are compared by considering dissimilar terms in 

Equations (4) and (5), which are    
2 2

: : : :  and  .m n k n k n k nE X E X     
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       
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                            2 2
: : : : : : : : ( ) ( ) ( ) ( ) ( ) ( ).m n m n k n m n k n m n k n k nVar X Var X Var X Var X            

In this study, we only consider the independent bivariate normal distribution. All possible cases 

of 2
: : : : :( ) ( ) ( ) ( )m n k n m n k n k nVar X Var X Var X      can be investigated by using the table of 

expected value of order statistics and products of order statistics (Teichroew 1956) when n  starts from 

2 to 20. The results from investigating reveal as follows.  

In all cases, 2
: : : :( ) ( ) ( ) 0.m n k n m n k nVar X Var X       

Hence, 2 2
: : : :( ) > ( )m n k n k n k nE X E X          and ( ) ( ).RSSmk RSSMSE X MSE X  

We can conclude that InRSS causes bias and the increase of MSE in estimating mean of the 

variable where InRSS occurs. Furthermore, InRSS increases overall MSE (Equation (1)). To deal with 

this problem, modified Ridout ranked set sampling (M-RRSS) (Nakakate et al. 2016) will be 

considered in Section 3.3. After that, modified incomplete ranked set sampling (M-InRSS) will be 

proposed in Section 3.4. 

 

3.3. Modified Ridout Ranked Set Sampling 

Modified Ridout ranked set sampling (M-RRSS) is a technique of selecting the sample modified 

from Ridout’s method. It is different from Ridout’s method because sample units are considered cycle 

by cycle. Therefore, if there are sample units in a cycle which satisfies a condition in Ridout’s method 

of selecting sample, they will be selected. This selection reduces InRSS occurrence. Moreover, the 

indicator used for sample selection is modified. This modified indicator of M-RRSS for one cycle is 

defined as 

1

,
p

a a
a

V


 e e    

where          1 2 1
1 1 1 1 ,a a a a n a n

q q q q


  
 

e    and [ ]a iq  is a quantity of the sample 

unit at the thi  order based on the tha  variable. 

The second term of ae  is based on RSS, and it can be adjusted for many types of RSS 

modification. However, this study considers only the case of RSS. Nevertheless, this technique cannot 

eliminate InRSS occurrence in one cycle RSS. Hence, M-InRSS is proposed in this paper for solving 

the problem in bivariate cases. M-InRSS is applied when M-RRSS cannot eliminate InRSS 

occurrence. In the next section, the mean estimator based on M-InRSS will be defined, and then the 

expected value and MSE of this mean estimator will be analyzed. After that, the distribution of sample 

mean based on M-InRSS will be compared to normal PDF by using histograms. 

 

3.4. Modified Incomplete Ranked Set Sampling (M-InRSS) 

If M-RRSS is unsuccessful for selecting sample based on RSS, InRSS will occur and mean 

estimator will be biased as Equation (3). In case of normal distribution, this bias causes MSE to 

increase. We would like to modify the mean estimator based on InRSS to be unbiased. The value of 

sample unit, which is assigned to be the repeated order :( ),m nX  will be added by the means of the thm  

order statistics and negative value of the mean of thk  order statistics in this modification. This 

modified mean estimator of the improved method is called “M-InRSS”. It is defined as follows. 
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*
: :

1
,M InRSS i n m n

i M

X X X
n




 
  

 
  

where *
: : : : ,m n m n m n k nX X      and : ,i nX m and :m nX  are defined as in Equation (2). 

 

Proposition 1 Properties of a sample mean based on M-InRSS are as follows. 

(a) The sample mean based on M-InRSS is unbiased. 

(b) If 1,m n k    the variance of the mean estimator based on M-InRSS will be equal to the 

variance of the mean estimator based on RSS. 

 

Proof:  

(a)   *
: :

1
.M Inrss i n m n

i M

E X E X X
n




 
   

 
                   (6) 

(b) Substitute :m nX  by *
:m nX  in Equation (4). We get the variance of this mean estimator as 

      
2 2 2

: : : :2

1
.M InRSS i n i n m n m n

i M

E X E X E X
n

  

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For a symmetric distribution,    
2 2

i: i: 1: 1: .n n n i n n i nE X E X    
     
   

 Hence, if 1,m n k    

the variance of the mean estimator will become as 

        
2 2

.M InRSS M InRSS RSS RSSVar X E X E X Var X  
             

              (8) 

Equations (6) and (8) show that the mean estimator based on M-InRSS is unbiased and the variance 

of this mean estimator is the same as the variance of the mean estimator based on RSS. The result 

from modifying the estimator shows that the mean estimator based on M-InRSS in this case is not less 

effective than based on RSS, so this result is satisfied for estimating mean. 

Although skewness of distribution of :m nX and 
:k nX  are equal when 1,m n k    they have 

opposite signs. Hence, the distribution of M InRSSX   is slightly asymmetric. To illustrate the distribution 

shape of ,M InRSSX   the set of selected order with set size n  is defined as  1 2 ... .no o o  The element 

so  is an order of selected sample unit from the ths set. The permutations of the selected order are 

considered to be the same set. If a sample is selected based on one cycle McIntyre RSS, so the set of 

the selected order will be {1 2 3 4 5}. The histograms generated under M-InRSS with set sizes 3, 4, 

and 5 are compared to the normal PDF as shown in Figures 2 to 4. Those figures reveal that all 

histograms are close to the normal PDF. 

Since RSS works effectively in univariate control charts (Abujiya and Lee 2013 and Al-Nasser et 

al. 2013), RSS is expected to work effectively in bivariate control charts. The next section will 

demonstrate how to apply M-InRSS in the chi-square control charts. 

 

4. Chi-Square Control Chart 

The chi-square control chart (Duncan 1950) is applied when there are more than one interested 

variable and known parameters. This section is divided into three parts which are control charts based 

on SRS, RSS and M-RRSS. 
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Figure 2 A normal curve fitting of sample mean based on M-InRSS with set size 3 and a sample set 

{1 2 1} 

 

 
Figure 3 Normal curves fitting of sample mean based on M-InRSS with set size 4 and two sample 

sets; (a) {1 2 3 1}, (b) {1 2 2 4} 

 

 
Figure 4 Normal curves fitting of sample mean based on M-InRSS with set size 5 and two sample 

sets; (a) {1 2 3 2 5}, (b) {1 2 3 4 1} 
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4.1. Chi-square control chart based on SRS 

In general, a sample is collected based on SRS. If we have 1 ... px x   x  and x  is  , ,pN μ Σ  

statistics of this control chart based on SRS with sample size n  (Rakitzis and Antzoulakos 2010) will 

be 

        2 1 1' ' ,
SRSi SRS SRS SRS SRST n       xx μ Σ x μ x μ Σ x μ               (9) 

when μ  is a 1p -dimensional-vector of population mean,  

              SRSx  is a 1p -dimensional-vector of sample mean based on SRS, 

 

11 1

1

,
p

p pp

 

 

 
 

  
 
 

Σ



  



1( . )  is an inverse matrix operator and 

 

   

   

1,1 1,

,1 ,

111

1

1
,  .

SRS SRS p

SRS

SRS p SRS p p

p

p pp

n n

n

n n


 

   

 
   
   

       
   

    
  

x x

x

x x

Σ

 

     




 

 This statistic is distributed as 2 ,p  and the control limits of this chart are 

0,LCL CL   

and 2
, ,pUCL                                                                 (10) 

where 2
, p  is the (1 )  percentile point of chi-square distribution with p  degrees of freedom, and 

p  is a number of the variables. 

 

4.2. Chi-square control chart based on RSS 

It is obvious that the variance term in Equation (9) depends on the sampling technique and the 

sample size. If a sample with size n  is collected based on RSS, statistic of the chi-square control chart 

will be 

    2 1' ,
RSSi RSS RSST   xx μ Σ x μ               (11) 

where RSSx  is a 1p -dimensional vector of sample mean based on RSS, and  

   

   

1,1 1,

,1 ,

.
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RSS p RSS p p
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If we have 1 ... px x   x  and x  is  , ,pN μ Σ  RSSx  will be a multivariate normal distribution. Under 

assumptions of normality and perfect ranking in this paper, this statistic is also distributed as 2 .p  

Hence, the control limits of this chart are 

0,LCL CL   

and   2
, .pUCL                                                                     (12) 

Since the sample selection in BVRSS is complicated, the technique of selecting samples like M-

RRSS is necessary for the chi-square chart. 
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4.3. Chi-square control chart based on M-RRSS 

The chi-square chart based on M-RRSS can be divided into two cases for consideration. If M-

RRSS is succeeded to select a sample based on RSS, RSS will be applied in the chi-square chart. In 

contrast, M-InRSS will be applied in the chi-square chart if a selection based on M-RRSS is 

unsuccessful. From the comparison of histogram in Section 3.4, it is reasonable to set UCL of chi-

square chart based on M-InRSS as the same as UCL of chi-square chart based on RSS because those 

histograms are close to normal PDF. Under known parameter assumption, Σ can be used to determine 

: :k n m n   by using a mean of a standard normal order statistic table (Arnold et al. 1992) and scaling 

property of a normal distribution. Hence, *
:m nX  can be determined from : .m nX  : :k n m n   of the tha  

variable can be determined as
 

              2
:n : :n :: :

,k m n aa k m n aa k n a m n
E Z E Z E Z E Z           

where Z  is (0,1),N   :a k n
  is the mean of the thk  order statistics, and  :a m n

  is the mean of the thm  

order statistics based on the tha  variable in a sample of size .n  For example, if X is  2 , ,N μ Σ  the 

set size equals 5, and InRSS occurs at 2X  with 2k   and 4;m   then    2 2:5 2 4:5
   will equal

220.990038  or 2
20.990038 .  In addition, 

In RSS RSS
x xΣ Σ  because 12  and 21  are zero.  

For three charts from Sections 4.1 to 4.3, the stage of the process will be considered as the out-

of-control stage and stopped in order to investigate some problems if 2 ,iT UCL  otherwise the process 

will be operated continually within the fixed time period, and then a new sample will be collected for 

reconsideration.  

The effectiveness of the chi-square chart based on M-InRSS is illustrated in an example of the 

bivariate chi-square chart in the next section by using computer simulation. Both variables are assumed 

to be independent which makes all covariance in all cases become zero.  

 

5. Numerical Results  

From Section 3.2, InRSS causes the estimated mean to be biased. This bias causes type I error to 

increase in statistical hypothesis testing. Therefore, InRSS will cause the false alarm rate and the chi-

square chart based on InRSS to be worse than the chi-square chart based on SRS. These reasons show 

that InRSS should not be applied in the control charts. Hence, we recommend that M-InRSS should 

be applied in the chi-square chart instead of InRSS. ARL of the chi-square control chart based on RSS 

and M-InRSS are used to be representatives of the chi-square control chart based on improved one 

cycle M-RRSS and are compared to ARL of the chi-square control chart based on SRS. These ARL

are calculated from simulated data under the standard normal assumption. This comparison shows the 

effectiveness of the chi-square control chart based on M-InRSS. The numerical comparison of ARL

is generated under the following assumptions. First, the bivariate standard distribution of population 

is normal, and both variables are independent. Second, the set sizes are 3, 4, and 5. These set sizes are 

chosen because they are used frequently, and the large set sizes often cause errors in ranking. Third, 

the shift sizes of both variables are denoted by 1  and 2 ,  respectively, and they are set at 0.1, 0.5, 

1.0, 1.5 and 2.0. The last assumption is concerned with the fact that the probability limits used for 

controlling 0ARL  of the chi-square chart based on RSS and SRS are equal. 0ARL  of the chi-square 

chart based on M-InRSS depends on the probability limit of the chi-square chart based on RSS 

according to the reason discussed in Section 4.3. In general, the probability limits are used in the case 

of non-normality population (Xie et al. 2002). However, a comparing detection ability by using 1ARL  
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should be controlled by setting 0ARL  of all cases equally. The probability limits work perfectly in 

this role. Parameters of the chi-square chart based on M-InRSS and RSS are equal because the mean 

estimators of these techniques are unbiased and the variances of these mean estimators are equal. The 

simulated ARL based on these sampling techniques are shown in Tables 1 to 3. The mirror images of 

the cases shown in these tables are omitted. 
The comparison results from Tables 1 to 3 show that there are three main results.  The first result 

shows that 1ARL  of the chi-square control chart based on RSS 1, RSS(ARL )  is much lower than 1ARL  

of the chi-square control chart based on SRS 
1,SRS(ARL ).  Hence, the chi-square chart has better 

detection ability when it is performed based on RSS instead of SRS. The second result shows that 

1ARL  of the chi-square control chart based on M-InRSS 1, M-InRSS(ARL )  is slightly different from 

1, RSSARL  but much lower than 1, RSSARL .  Thus M-InRSS is suitable for solving InRSS problems. The 

last result shows that the increasing shift size causes 1, M-InRSSARL  to be closer to 1, RSSARL  in the shift 

of one and two variables. 1, M-InRSSARL  and 1, RSSARL  are not different in the following cases: 1) cases 

of {1 2 2 4}, {1 2 3 4 1} and {1 2 3 2 5} when 1 0   and 2 0.3,   2) cases of {1 2 3 1} when 1 0   

and 2 0.4,  and 3) cases of {1 2 1} when 1 0   and 2 0.5.   From these results, we can conclude 

that the chi-square chart based on M-InRSS is effective in detecting the shift of mean when 1 0   

and 2 0.5.   Moreover, the differences of their 1ARL  are less than 0.03 at 1 0   and 2 1.   

Therefore, M-InRSS is effective in the chi-square chart because this chart is one of the Shewhart charts 

which is good for detecting the large shift size ( ).   

 

Table 1 The simulated ARL of chi-square chart with set size 3  

Shift size ARL 

1  2  SRS RSS 
M-InRSS 

{1 2 1} 

0.0 0.0 370.3808 370.3736 365.6421 

0.0 0.1 341.3636 319.4615 319.1775 

0.0 0.2 270.4204 215.1017 220.0491 

0.0 0.3 195.4385 130.5273 134.2454 

0.0 0.4 135.1188 76.9693 78.5195 

0.0 0.5 91.4463 45.6868 46.2957 

0.0 1.0 15.2795 5.3980 5.3732 

0.0 1.5 4.1083 1.6359 1.6437 

0.0 2.0 1.7782 1.0783 1.0786 

0.1 0.1 314.2497 275.8030 275.4929 

0.2 0.2 207.9348 141.5608 144.7749 

0.3 0.3 123.0312 67.5297 68.3031 

0.4 0.4 70.8257 32.6996 32.9584 

0.5 0.5 41.4042 16.8322 16.9000 

1.0 1.0 4.8260 1.8912 1.8901 

1.5 1.5 1.5469 1.0414 1.0426 

2.0 2.0 1.0606 1.0004 1.0004 
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Table 2 The simulated ARL of chi-square chart with set size 4 

Shift size ARL 

1  2  SRS RSS 
M-InRSS 

{1 2 3 1} {1 2 2 4} 

0.0 0.0 370.3597 370.3118 369.8751 366.4815 

0.0 0.1 329.4120 289.6595 294.0902 289.5548 

0.0 0.2 245.6153 164.5727 168.2725 163.9554 

0.0 0.3 164.2360 84.5169 85.7630 83.9741 

0.0 0.4 105.3943 43.3404 43.6854 43.2271 

0.0 0.5 67.0061 22.9681 23.2032 23.0866 

0.0 1.0 9.3439 2.4721 2.4843 2.48155 

0.0 1.5 2.5512 1.1080 1.1167 1.1168 

0.0 2.0 1.3323 1.0047 1.0030 1.0030 

0.1 0.1 296.8657 234.4084 237.0478 234.0209 

0.2 0.2 176.7981 94.5601 95.5047 94.3583 

0.3 0.3 94.5478 36.9291 37.0874 36.9072 

0.4 0.4 50.3040 15.7441 15.7529 15.7338 

0.5 0.5 27.5963 7.5365 7.5496 7.5516 

1.0 1.0 3.0706 1.1902 1.1885 1.1890 

1.5 1.5 1.2140 1.0005 1.0009 1.0008 

2.0 2.0 1.0096 1.0000 1.0000 1.0000 

 

Table 3 The simulated ARL of chi-square chart with set size 5  

Shift size ARL 

1  2  SRS RSS 
M-InRSS 

{1 2 3 4 1} {1 2 3 2 5} 

0.0 0.0 370.3656 370.3785 371.3230 372.7401 

0.0 0.1 320.8103 262.6452 264.4636 262.6676 

0.0 0.2 224.6287 123.6940 126.0813 124.2921 

0.0 0.3 140.9219 54.7619 55.1087 54.7202 

0.0 0.4 82.2780 25.1787 25.1925 25.1550 

0.0 0.5 51.8697 12.5068 12.4977 12.5043 

0.0 1.0 6.4337 1.5250 1.5262 1.5261 

0.0 1.5 1.9057 1.0137 1.0131 1.0131 

0.0 2.0 1.1407 1.0000 1.0001 1.0000 

0.1 0.1 282.4474 197.2275 197.8654 196.2731 

0.2 0.2 153.1623 62.8604 63.0087 62.9279 

0.3 0.3 75.6020 21.0611 21.0350 21.0285 

0.4 0.4 37.7944 8.3096 8.2980 8.2932 

0.5 0.5 19.8878 3.9598 3.9552 3.9573 

1.0 1.0 2.2283 1.0282 1.0284 1.0283 

1.5 1.5 1.0799 1.0000 1.0000 1.0000 

2.0 2.0 1.0014 1.0000 1.0000 1.0000 
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6. Conclusions 

In this study, we propose a new method called M-InRSS for improving M-RRSS under bivariate 

normal assumption. This proposed method is one option to handle the InRSS problem which cannot 

receive the sample units from all ranks. The mean estimator based on M-InRSS is unbiased and has 

the same MSE as the mean estimator based on RSS. This method requires the difference between two 

means of order statistics. Applying M-InRSS in a control chart is studied by simulation under the 

independent bivariate standard normal assumption. 0ARL  and 1ARL  of the chi-square control chart 

in three cases which are SRS, RSS, and M-InRSS are compared. The results show that the false alarm 

rate and the detection ability of the M-InRSS case are close to the RSS case by considering 0ARL  and 

1ARL ,  respectively. 1ARL  in the M-InRSS case is obviously lower than in the SRS case. Therefore, 

the effectiveness of the chart based on M-InRSS is almost the same as the chart based on RSS and 

better than the chart based on SRS. For the interesting issue in further study, it is possible to apply chi-

square chart based on M-RRSS to the empirical data set which two variables are independent and the 

data collection is performed for a long period of time. For instance, data of automotive body 

manufacturing which is collected based on width, length, and height as , ,X Y  and Z  dimensions, 

respectively. From the study of Liu et al. (2014), X  and Z  dimensions are independent. However, 

using multivariate Shewhart charts based on M-RRSS for monitoring correlated variables has not been 

studied. Therefore, the multivariate chart based on M-RRSS for correlated variables is an interesting 

topic. In addition, applying this method to non-Shewhart multivariate control charts is another 

interesting topic for future researches. 
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