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Abstract

Ranked set sampling (RSS) is useful for data collection if observations can be ranked cheaply
without actual measurement. RSS has been studied widely but not enough, especially in case of
collecting independent interested variables by using multivariate ranked set sampling. There are many
problems in the sample selection for this case. One important problem is called “Incomplete Ranked
Set Sampling (InRSS)”, which causes bias in estimating mean. Hence, in this study, modified
incomplete ranked set sampling (M-InRSS) is proposed for dealing with InRSS in one cycle bivariate
RSS for independent bivariate normal distribution. Analytical results reveal that problems of bias and
mean square error (MSE) in InRSS can be solved by using M-InRSS. Moreover, how to apply M-
InRSS to chi-square control chart is shown with the numerical example of bivariate chi-square control
chart based on M-InRSS. The results show that the charts based on M-InRSS are better than based on
SRS.

Keywords: Incomplete ranked set sampling, Ridout’s method of selecting sample, sample selection.

1. Introduction

Probability sampling has been used widely to collect data for a long time, so many sampling
techniques are proposed for various conditions. One of them is ranked set sampling (RSS), which was
proposed by MclIntyre in 1952 (Mclntyre 2005). It can be used for estimating mean by a sample whose
units can be ranked without actual measurement. The RSS procedure is a two-stage-sampling (Chen
et al. 2004). At the first stage, nxn sample units are collected by using simple random sampling
(SRS) and divided into n equal sets. Then the sample units in each set are ranked separately (without

actual measurement). At the second stage, one sample unit is selected from each set, and these selected
sample units must have different ranks. Then the selected sample units are measured. This process is
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one cycle of RSS which can be repeated until enough sample units are collected. The number of cycle
is denoted by r. Performing r cycle RSS will give nxr sample units. RSS is more effective than
SRS in many applications of univariate problems (Chen and Wang 2004, Ozturk et al. 2005, Wang et
al. 2009, Tiwari and Pandey 2013). However, only univariate statistics is not enough to solve problems
in current researches. Hence, multivariate RSS has become a popular topic related to sampling for
more than twenty years. One of the interesting issues in this topic is concerned with RSS on
independent multivariate population. A problem in this issue is that the sample selection in the second
stage is complicated. Ridout (2003) proposed a method of selecting samples to deal with this problem.
It is a convenient method in which a sample could be selected easily. However, sample units according
to some ranks might not be selected if the number of cycle is less than the number of variable. This
situation is called “incomplete ranked set sampling (InRSS) whose arithmetic mean is a bias estimator
(Nakakate and Sarikavanij 2017). Later, the Ridout method was modified to reduce InRSS occurrence
by Nakakate et al. (2016). This method is called “modified Ridout ranked set sampling (M-RRSS)”.
However, the InRSS occurrence is not eliminated. Hence, in this study, we propose a method called
“modified incomplete ranked set sampling (M-InRSS)” to improve M-RRSS under following
assumptions. Population distribution is independent bivariate normal and means of order statistics are
known.

In this study, we also demonstrated that M-InRSS could be applied to the chi-square control chart
(Duncan 1950) based on RSS which was used to detect a shift of mean in a production process. This
chart is consisted of center line (CL), upper control limit (UCL), and lower control limit (LCL). The
effectiveness of this chart is considered by in-control average run length (ARLj) and out-of-control
average run length (ARL,). These average run lengths (ARL) are used to measure “false alarm rate”
and “detection ability”, respectively. In application, if the sample used for constructing control limits
(sample used for estimating mean and variance) is very large, this chart will be effective. Therefore,
the population variance is reasonable to assume to be known in an application which is suitable for
chi-square chart because an error in variance estimation is very small. This population variance can
be used for determining the difference between two means of order statistics. This is the reason why
the chi-square chart is selected to demonstrate the benefits of our proposed method. The independent
assumption is selected due to the motivation from the following studies. The first study is to use the
multivariate control chart for controlling the process of automotive body manufacturing in X, Y, and

Z dimensions. The results revealed that data of X and Z dimensions were independent (Liu et al.
2014). The latter is to use the control chart for controlling automotive stamped parts manufacturing by
defining position of flange surface dimensions as characteristics. The results showed that covariance
between SP9 and SP28 was equal to —0.0016 (Talib et al. 2014). We notice that two variables, which
are independent, can be found in automotive industry. Therefore, our proposed method is an initial
study for extending the bivariate control chart based on M-InRSS to trivariate cases with some
correlated variables in the future.

The remaining parts of this article are arranged as follows. Univariate RSS is described in
Section 2. Bivariate RSS is discussed in Section 3 consisting of four parts as follows. In Section 3.1,
Ridout’s method is reviewed. In Section 3.2, InRSS is reviewed, and then we determine mean square
error (MSE) of mean estimator based on InRSS. In Section 3.3, M-RRSS is reviewed and discussed.
In Section 3.4, we propose M-InRSS to improve M-RRSS, and then the expected value and MSE of
mean estimator based on M-InRSS are determined. After that, the distribution shape of this mean is
compared to normal probability density function (PDF) to check the suitability of chi-square test. In
Section 4, we demonstrate how to apply M-InRSS to the bivariate chi-square control chart based on
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RSS. In Section 5, the numerical example of the bivariate chi-square chart based on M-InRSS is
shown, and Section 6 is the conclusion.

2. Ranked Set Sampling (RSS)

In this study, ranked set sampling (RSS) is selected for data collection. It was proposed first for a
univariate case by Mclntyre (2005). It is better than SRS for estimating mean. However, it is only
suitable for a case in which orders of observations can be known without actual measurement.
Variance of sample mean is reduced because of these orders. This reduction can be applied to reduce
a sample size. Readers, who are interested in this issue, can study RSS procedures in Chen et al. (2004).
The unbiased estimator of mean based on » cycle RSS with set size # is

_ 1 <
Xpss :;;;X[z’:n]ja

h

when X, (i) is the i order observation of n sample from the j" cycle, and 7 is a number of cycles

(Wolfe 2012).
The variance of this mean estimator is as follows:

— — 1 n 1 2 1 &
Va”(XRss)= E|:(XRS _:u)z:| ZW;E[(XHI — Hiy )Z:I zr_z{%_? ” (Iui:n _,U)Z:|,

when y,, is the mean of the i" order statistics in a sample of size n (Wolfe 2004).

This variance is clearly lower than the variance of mean estimator based on SRS. In this paper,
only one cycle RSS (r =1) is considered, so a mean estimator based on one cycle RSS and its variance
can be determined by substituting » =1 on the above equation.

3. Bivariate Ranked Set Sampling (BVRSS) and Problems
The bivariate ranked set sampling procedure is still similar to RSS. The mean estimator based on
one cycle bivariate RSS (X ) can be defined by using multivariate order statistic notation (Arnold
et al. 2009) as
1 n
RSS = ; Z X[i\.:n] ’

s=1

X
when X[i ] is a two-dimensional-vector containing observation of all variables from ranks

. . . . . . h .. .
corresponding to vector i, i, is a two-dimensional-vector from the s set containing observation

rank of all variables, respectively and » is set size.

A mean estimator for two interested variables based on RSS is a two-dimensional-vector
containing all arithmetic means of variables. This estimator is unbiased so MSE of this estimator is as
follows:

E([XRSS ~ Ppss ] [XRSS ~ Mgss ]’) = tr(Z)—(m )’ (1)

when p g is a two-dimensional-vector containing population mean of both variables, Xy —is a

variance-covariance matrix of the mean estimator based on RSS, and tr(.) is a trace operator.

In addition, MSE of BVRSS is clearly lower than bivariate SRS. At the initial study about
collecting samples for bivariate RSS, MclIntyre RSS was applied to the bivariate rank set sampling
with auxiliary variables in ordering (Norris et al. 1995). Although the method proposed by Norris
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works effectively for highly correlated variables, it is not suitable for our interested problem due to an
independent assumption. In case of bivariate (X =[x, X 2]), if X, and X, are independent, and
the observations are ranked based on X, so selecting sample based on RSS for both variables will be
complicated as shown in Figure 1. X, in Figure 1 is denoted the sample units in the s™ set with
ranked i and i' of the first and second variable, respectively. If sample selections are performed
under the situation in this figure based on Mclntyre, X, will be selected as RSS, but X, being order

pair of X, will be selected as SRS.

Hence, the selecting sample based on RSS cannot be done regularly. As a matter of fact, there are
other studies about sample selections for RSS which are suitable for this situation. In this paper, the
method of selecting samples proposed by Ridout is modified for this situation.
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Figure 1 Selecting sample in one cycle RSS with set size three when X, and X, are independent

3.1. Ridout’s method of selecting sample

After the first stage of RSS, ranked samples units are considered set by set in the second stage.
Ridout chose the minimum sum of variance calculated by using sample unit quantity from each rank
of each variable to be an indicator, which is used for selecting sample set by set. This sum of variance
was defined by Ridout (2003) as follows:

2
R ar- (%m‘@) _ 3 %
V_ZZ }’l—l > qa_; n )

a=1 i=1
where n is a set size, and g, is a quantity of sample unit having the i" order based on the a"

variable. This sum of variance can be rewritten in a vector form as

P

V: ’
o ;eaeu,
where ¢, =[ a0 dup ¢ Qe D)1 @ @ @

Selecting sample by using this indicator is the same method as a sample selection that the sample
units are selected under the condition. In this condition, the rank of sample unit must differ from the
ranks of all previous selected sample units. If there are many sample units satisfying this condition,
one of them will be selected randomly. Hence, the sample units in the first set are selected randomly,
but the sample units in the last set are selected under many conditions from all of the previous sets.
Although this method is convenient and fast, there are many cases which all sample units in the last
set do not satisfy the conditions. For instance, if we have one cycle bivariate RSS with the set size
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three, the sample ranks are the same as shown in Figure 1, the selected sample units from the first and
the second sets are from the 1" and the 2™ rank based on the first variable and the 2™ and the 3"

rank based on the second variable, respectively then either the sample unit on the left or on the right
of the last set will be selected randomly because all sample units in the last set are at least one from

the same rank of the first two. Hence, there is no sample unit from the 3" rank based on the first

variable or from the 1* rank based on the second variable in the sample set. This situation is called
“Incomplete Ranked Set Sampling (InRSS)”. Next, the effectiveness of the mean estimator based on
InRSS is analyzed.

3.2. Incomplete Ranked Set Sampling (InRSS)

To consider one cycle BVRSS, InRSS will occur in only one variable from a sample based on one
cycle RSS, which is collected by Ridout’s method. The mean estimator for this variable (its arithmetic
mean) is defined as

X pssm = (me +anj, meM, M ={l,...n}-{k}, ke{l,...,n}, )

ieM

. .th . . h .
where X isthe i order observation fromall n orders, X, isthe m" order observation from all

n orders, m is the repeated order, k is the missing order,
v ﬂ”lfﬂ _u n
and E(X pssi) = ﬂ+Tk~ 3)

Thus, it is obvious that the second term is the biased term. MSE of the mean estimator based on InRSS
can be derived as follows:

L R NI o)
_ [GZM (X, — 1, )jz } + 2E{(%EZM(X i = P )j%(X = Hi )} +E {G(X — )ﬂ
_ EKL (5, )]lel pACRVE| PEESRIE E{G(X 4, )ﬂ

Hence, we get
E[ (X gssms — u)]— (ZE[(X“, ) |+ E[(X,, - m.,) ]]. @

The variance of the mean estimator based on RSS can be rewritten to the same form as follows:

B[ (Xus =) ] 2 [ (e ) ]
(ZE[ b ) ]+E[(Xk:,,—uk¢,,)2]j. (5)

ieM

MSE of the mean estimator based on InRSS and RSS are compared by considering dissimilar terms in

Equations (4) and (5), which are E[(Xm:n -4, )2} and E [(X,m - )ZJ
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E[(X =110 | ZE[ (X = B+ s = 110, | = B[ (X = 110 [+ (bt =10, )

= Var(Xm:n ) + (/um:n - Iuk:n )2 = Var(Xm:n ) - Var(Xk:n ) + (/um:n - Iuk:n )2 + Var(Xk:n )

In this study, we only consider the independent bivariate normal distribution. All possible cases
of Var(X,,)-Var(X,)+(u,, —u,.) +Var(X,,) can be investigated by using the table of

expected value of order statistics and products of order statistics (Teichroew 1956) when » starts from
2 to 20. The results from investigating reveal as follows.
In all cases, Var(X,,,)~Var(X,,)+ (4, - #,,)* > 0.

Hence, E[ (X, = 1,)" |E[(X,, — 14,,)" | and MSE(X ;) > MSE(X ;).

We can conclude that InRSS causes bias and the increase of MSE in estimating mean of the
variable where InRSS occurs. Furthermore, InRSS increases overall MSE (Equation (1)). To deal with
this problem, modified Ridout ranked set sampling (M-RRSS) (Nakakate et al. 2016) will be
considered in Section 3.3. After that, modified incomplete ranked set sampling (M-InRSS) will be
proposed in Section 3.4.

3.3. Modified Ridout Ranked Set Sampling

Modified Ridout ranked set sampling (M-RRSS) is a technique of selecting the sample modified
from Ridout’s method. It is different from Ridout’s method because sample units are considered cycle
by cycle. Therefore, if there are sample units in a cycle which satisfies a condition in Ridout’s method
of selecting sample, they will be selected. This selection reduces InRSS occurrence. Moreover, the
indicator used for sample selection is modified. This modified indicator of M-RRSS for one cycle is
defined as

~ I)
V=>¢&ze,
a=1
where €, :[qam Gy " Gupuy qa[n]]—[l 1 - 1 1], and g, is a quantity of the sample

unit at the i" order based on the a" variable.
The second term of €, is based on RSS, and it can be adjusted for many types of RSS

modification. However, this study considers only the case of RSS. Nevertheless, this technique cannot
eliminate InRSS occurrence in one cycle RSS. Hence, M-InRSS is proposed in this paper for solving
the problem in bivariate cases. M-InRSS is applied when M-RRSS cannot eliminate InRSS
occurrence. In the next section, the mean estimator based on M-InRSS will be defined, and then the
expected value and MSE of this mean estimator will be analyzed. After that, the distribution of sample
mean based on M-InRSS will be compared to normal PDF by using histograms.

3.4. Modified Incomplete Ranked Set Sampling (M-InRSS)

If M-RRSS is unsuccessful for selecting sample based on RSS, InRSS will occur and mean
estimator will be biased as Equation (3). In case of normal distribution, this bias causes MSE to
increase. We would like to modify the mean estimator based on InRSS to be unbiased. The value of

sample unit, which is assigned to be the repeated order (X, ), will be added by the means of the m®

order statistics and negative value of the mean of k"™ order statistics in this modification. This
modified mean estimator of the improved method is called “M-InRSS”. It is defined as follows.
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Xy InRSS — {ZX mnj’

ieM

where X, =X, —pu  +u,.,,and X, ,mand X, = are defined as in Equation (2).

Proposition 1 Properties of a sample mean based on M-InRSS are as follows.
(@) The sample mean based on M-InRSS is unbiased.

(b) If m=n—k+1, the variance of the mean estimator based on M-InRSS will be equal to the

variance of the mean estimator based on RSS.

Proof:

(@) E(X,_ In,SA)——E(ZXm+X;;:,,)=ﬂ. (6)

ieM

(b) Substitute X, by X, inEquation (4). We get the variance of this mean estimator as

E| (X s —11) == (ZE[ ) ]+E[(Xm—ﬂmm)2]]- ()

ieM
For a symmetric distribution, E[(Xi;,, -, )2} = E[(XHH:” — Ly i )2} Hence, if m=n—k+1,
the variance of the mean estimator will become as
_ _ 2 - 2 =
Var(XM—InRSS) = E[(XM—[nRSS _,u) j| = E[(XRSS _/U) j| = Var(XRss ) (®)

Equations (6) and (8) show that the mean estimator based on M-InRSS is unbiased and the variance
of this mean estimator is the same as the variance of the mean estimator based on RSS. The result
from modifying the estimator shows that the mean estimator based on M-InRSS in this case is not less
effective than based on RSS, so this result is satisfied for estimating mean.

Although skewness of distribution of X, and X, ~are equal when m=n—k+1, they have

opposite signs. Hence, the distribution of X is shghtly asymmetric. To illustrate the distribution

M —InRSS

shape of X the set of selected order with set size n is defined as {0, o, ...0,}. The clement

M —InRSS >
o, is an order of selected sample unit from the s" set. The permutations of the selected order are

considered to be the same set. If a sample is selected based on one cycle McIntyre RSS, so the set of
the selected order will be {1 2 3 4 5}. The histograms generated under M-InRSS with set sizes 3, 4,
and 5 are compared to the normal PDF as shown in Figures 2 to 4. Those figures reveal that all
histograms are close to the normal PDF.

Since RSS works effectively in univariate control charts (Abujiya and Lee 2013 and Al-Nasser et
al. 2013), RSS is expected to work effectively in bivariate control charts. The next section will
demonstrate how to apply M-InRSS in the chi-square control charts.

4. Chi-Square Control Chart
The chi-square control chart (Duncan 1950) is applied when there are more than one interested

variable and known parameters. This section is divided into three parts which are control charts based
on SRS, RSS and M-RRSS.
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Figure 2 A normal curve fitting of sample mean based on M-InRSS with set size 3 and a sample set
{121}

18000

10000 -

10000

0.8 [ o8

b}
Figure 3 Normal curves fitting of sample mean based on M-InRSS with set size 4 and two sample
sets; (a) {123 1},(b) {1224}

() ib)

Figure 4 Normal curves fitting of sample mean based on M-InRSS with set size 5 and two sample
sets; (a) {12325},(b) {12341}
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4.1. Chi-square control chart based on SRS
In general, a sample is collected based on SRS. If we have x = [xl xp] and x is N, (u,):),

statistics of this control chart based on SRS with sample size n (Rakitzis and Antzoulakos 2010) will
be

T'=n [§SRS - ll] 'z [ims - ll] = [iSRS - l‘]'Z;;RS [iSRS - l"]a ©)
when p isa px1-dimensional-vector of population mean,

X5 18 @ px1-dimensional-vector of sample mean based on SRS,

Oy Oy,
X=| : . i |,(.)" isaninverse matrix operator and
Gpl G/’/’
o . %w
| n n O-ims( 1) O-ismu »)
L o=-3 %= i i |=
SRS n
O 1 . O pp O-Ysm( »1) o O-ism( pop)
n n

This statistic is distributed as ;(i, and the control limits of this chart are
LCL=CL=0,
2
and UCL=yx, ,» (10)
where y, , is the (1—«a) percentile point of chi-square distribution with p degrees of freedom, and

p is a number of the variables.

4.2. Chi-square control chart based on RSS

It is obvious that the variance term in Equation (9) depends on the sampling technique and the
sample size. If a sample with size n is collected based on RSS, statistic of the chi-square control chart
will be

2 _ < _ 1yl = _
I’ = [XRSS ll] Zim [XRSS ”]a (1)
where X, isa pxI-dimensional vector of sample mean based on RSS, and
iRss(u) o O-iRSS(Lp)
s
XRss(p.1) o Gil\’SS(p,p)

If we have x = [xl xp] and x is N, (1, X), Xgg will be a multivariate normal distribution. Under

assumptions of normality and perfect ranking in this paper, this statistic is also distributed as ;(;

Hence, the control limits of this chart are
LCL=CL=0,

and UCL=y. . (12)

Since the sample selection in BVRSS is complicated, the technique of selecting samples like M-
RRSS is necessary for the chi-square chart.



Panlop Nakakate et al. 117

4.3. Chi-square control chart based on M-RRSS

The chi-square chart based on M-RRSS can be divided into two cases for consideration. If M-
RRSS is succeeded to select a sample based on RSS, RSS will be applied in the chi-square chart. In
contrast, M-InRSS will be applied in the chi-square chart if a selection based on M-RRSS is
unsuccessful. From the comparison of histogram in Section 3.4, it is reasonable to set UCL of chi-
square chart based on M-InRSS as the same as UCL of chi-square chart based on RSS because those
histograms are close to normal PDF. Under known parameter assumption, X can be used to determine
M, — 1, by using a mean of a standard normal order statistic table (Arnold et al. 1992) and scaling

m:n

property of a normal distribution. Hence, X' can be determined from X, . ., —u,, of the a”

n

variable can be determined as
/uu(k:n) _/uu(m:n) = (E[Zk:n ] - E[Zm:n ]) O = (E[Zk:n ] - E[Zm:n ]) ' O-az >

where Z is N(0,1), 4., isthe mean of the k™ order statistics, and M,y 18 the mean of the m"

m:n)
order statistics based on the a™ variable in a sample of size n. For example, if Xis N, (u,):), the

set size equals 5, and InRSS occurs at X, with k=2 and m=4; then 4,5 — 5 Wwill equal

4:5)

-0.99003805,, or —0.990038c. In addition, £, =X_ , because o}, and o, are zero.

X/n-RSS Xgs.
For three charts from Sections 4.1 to 4.3, the stage of the process will be considered as the out-
of-control stage and stopped in order to investigate some problems if 7> > UCL, otherwise the process

will be operated continually within the fixed time period, and then a new sample will be collected for
reconsideration.

The effectiveness of the chi-square chart based on M-InRSS is illustrated in an example of the
bivariate chi-square chart in the next section by using computer simulation. Both variables are assumed
to be independent which makes all covariance in all cases become zero.

5. Numerical Results

From Section 3.2, InRSS causes the estimated mean to be biased. This bias causes type I error to
increase in statistical hypothesis testing. Therefore, InRSS will cause the false alarm rate and the chi-
square chart based on InRSS to be worse than the chi-square chart based on SRS. These reasons show
that InRSS should not be applied in the control charts. Hence, we recommend that M-InRSS should
be applied in the chi-square chart instead of InRSS. ARL of the chi-square control chart based on RSS
and M-InRSS are used to be representatives of the chi-square control chart based on improved one
cycle M-RRSS and are compared to ARL of the chi-square control chart based on SRS. These ARL
are calculated from simulated data under the standard normal assumption. This comparison shows the
effectiveness of the chi-square control chart based on M-InRSS. The numerical comparison of ARL
is generated under the following assumptions. First, the bivariate standard distribution of population
is normal, and both variables are independent. Second, the set sizes are 3, 4, and 5. These set sizes are
chosen because they are used frequently, and the large set sizes often cause errors in ranking. Third,
the shift sizes of both variables are denoted by &, and J,, respectively, and they are set at 0.1, 0.5,
1.0, 1.5 and 2.0. The last assumption is concerned with the fact that the probability limits used for
controlling ARL, of the chi-square chart based on RSS and SRS are equal. ARL, of the chi-square
chart based on M-InRSS depends on the probability limit of the chi-square chart based on RSS
according to the reason discussed in Section 4.3. In general, the probability limits are used in the case
of non-normality population (Xie et al. 2002). However, a comparing detection ability by using ARL,
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should be controlled by setting ARL, of all cases equally. The probability limits work perfectly in

this role. Parameters of the chi-square chart based on M-InRSS and RSS are equal because the mean
estimators of these techniques are unbiased and the variances of these mean estimators are equal. The
simulated ARL based on these sampling techniques are shown in Tables 1 to 3. The mirror images of
the cases shown in these tables are omitted.

The comparison results from Tables 1 to 3 show that there are three main results. The first result
shows that ARL, of the chi-square control chart based on RSS (ARL, ) is much lower than ARL,

1,RSS

of the chi-square control chart based on SRS (ARL, .,,). Hence, the chi-square chart has better

1,SRS
detection ability when it is performed based on RSS instead of SRS. The second result shows that
ARL, of the chi-square control chart based on M-InRSS (ARL, ,,,rss) 18 slightly different from

ARL but much lower than ARL Thus M-InRSS is suitable for solving InRSS problems. The

1,RSS 1,RSS*

last result shows that the increasing shift size causes ARL to be closer to ARL in the shift

1,M-InRSS 1,RSS

of one and two variables. ARL, ;s and ARL
of {1224},{12341}and {12325} when 6, 20 and &, >0.3, 2)casesof {1 23 1} when &, >0

and &, > 0.4,and 3) cases of {1 2 1} when 6, 20 and o, = 0.5. From these results, we can conclude

1rss are not different in the following cases: 1) cases

that the chi-square chart based on M-InRSS is effective in detecting the shift of mean when o, >0
and 0, >20.5. Moreover, the differences of their ARL, are less than 0.03 at 6, 20 and o, >1.

Therefore, M-InRSS is effective in the chi-square chart because this chart is one of the Shewhart charts
which is good for detecting the large shift size (0 > o).

Table 1 The simulated ARL of chi-square chart with set size 3
Shift size ARL

M-InRSS

{121}
0.0 0.0 370.3808 370.3736 365.6421
0.0 0.1 341.3636 319.4615 319.1775
0.0 0.2 2704204 2151017 220.0491
0.0 03 1954385 130.5273 134.2454
00 04 1351188 76.9693  78.5195
0.0 0.5 914463 456868 462957
00 1.0 152795 53980 53732
00 1.5 41083 16359  1.6437
00 20 17782 10783  1.0786
0.1 0.1 314.2497 275.8030 275.4929
02 02 207.9348 141.5608 144.7749
03 03 123.0312 67.5297  68.3031
04 04 708257 32.6996  32.9584
0.5 0.5 414042 16.8322  16.9000
1.0 1.0 48260  1.8912  1.8901
15 1.5 15469  1.0414  1.0426
20 20  1.0606  1.0004  1.0004

5 0 SRS RSS
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Table 2 The simulated ARL of chi-square chart with set size 4

Shift size ARL
M-InRSS

A SRS RSS {1231} {1224}
0.0 0.0 370.3597 370.3118 369.8751 366.4815
0.0 0.1 329.4120 289.6595 294.0902 289.5548
0.0 02 2456153 164.5727 1682725 163.9554
0.0 03 1642360 84.5169 85.7630  83.9741
0.0 04 1053943 433404 43.6854 432271
0.0 05 67.0061 229681 232032 23.0866
00 1.0 93439 24721 24843  2.48155
00 1.5 25512 1.1080 1.1167 1.1168
0.0 2.0 1.3323 1.0047 1.0030 1.0030
0.1 0.1 296.8657 234.4084 237.0478 234.0209
02 02 176.7981 945601  95.5047  94.3583
03 03 945478  36.9291 37.0874  36.9072
0.4 04 503040 15.7441 15.7529  15.7338
0.5 05 27593  7.5365  7.5496 = 7.5516
1.0 1.0  3.0706 1.1902 1.1885 1.1890
15 15 1.2140 1.0005 1.0009 1.0008
20 2.0 1.0096 1.0000 1.0000 1.0000

Table 3 The simulated ARL of chi-square chart with set size 5

Shift size ARL
M-InRSS

a4 9 SRS RSS {12341} {12325}
0.0 0.0 370.3656 370.3785  371.3230  372.7401
0.0 0.1 320.8103 262.6452  264.4636  262.6676
0.0 0.2 2246287 123.6940  126.0813  124.2921
0.0 0.3 1409219 54.7619 55.1087 54.7202
00 04 822780 25.1787 25.1925 25.1550
00 0.5 51.8697 12.5068 12.4977 12.5043
00 1.0 64337  1.5250 1.5262 1.5261
00 1.5 19057  1.0137 1.0131 1.0131
00 2.0  1.1407  1.0000 1.0001 1.0000
0.1 0.1 2824474 197.2275 197.8654  196.2731
02 0.2 153.1623  62.8604 63.0087 62.9279
03 03 756020 21.0611 21.0350 21.0285
04 04 37.7944 83096 8.2980 8.2932
0.5 0.5 19.8878  3.9598 3.9552 3.9573
1.0 1.0 22283  1.0282 1.0284 1.0283
1.5 1.5 1.0799  1.0000 1.0000 1.0000
20 2.0  1.0014  1.0000 1.0000 1.0000
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6. Conclusions

In this study, we propose a new method called M-InRSS for improving M-RRSS under bivariate
normal assumption. This proposed method is one option to handle the InRSS problem which cannot
receive the sample units from all ranks. The mean estimator based on M-InRSS is unbiased and has
the same MSE as the mean estimator based on RSS. This method requires the difference between two
means of order statistics. Applying M-InRSS in a control chart is studied by simulation under the
independent bivariate standard normal assumption. ARL, and ARL, of the chi-square control chart

in three cases which are SRS, RSS, and M-InRSS are compared. The results show that the false alarm
rate and the detection ability of the M-InRSS case are close to the RSS case by considering ARL, and

ARL,, respectively. ARL, in the M-InRSS case is obviously lower than in the SRS case. Therefore,

the effectiveness of the chart based on M-InRSS is almost the same as the chart based on RSS and
better than the chart based on SRS. For the interesting issue in further study, it is possible to apply chi-
square chart based on M-RRSS to the empirical data set which two variables are independent and the
data collection is performed for a long period of time. For instance, data of automotive body
manufacturing which is collected based on width, length, and height as X, Y, and Z dimensions,

respectively. From the study of Liu et al. (2014), X and Z dimensions are independent. However,
using multivariate Shewhart charts based on M-RRSS for monitoring correlated variables has not been
studied. Therefore, the multivariate chart based on M-RRSS for correlated variables is an interesting
topic. In addition, applying this method to non-Shewhart multivariate control charts is another
interesting topic for future researches.
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