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Abstract 

The use of subspace information for estimating parameters of the model has gained increasing 

attention in recent years. However, the quality of the subspace information is usually unknown, and 

in consequence the classical maximum likelihood estimation strategies, which rely on this information, 

become biased and inefficient. Our goal was to improve the performance of estimation strategies for 

a Poisson regression model for which subspace information is available. We proposed estimators 

based on the linear shrinkage, preliminary test, and Stein-type strategies and investigated their 

asymptotic properties using the notation of asymptotic distributional bias and risk. Comprehensive 

Monte Carlo simulations were conducted to assess the simulated relative efficiency of the proposed 

estimators. Further, comparisons were made with the two penalized likelihood estimators: least 

absolute shrinkage and selection operator (LASSO) and ridge. Finally, the proposed estimators were 

applied to a real data set, to confirm their usefulness. Based on our findings, the proposed estimators 

were more efficient than the classical estimator when the accuracy of the subspace information was 

unknown. 

______________________________ 
Keywords: Linear shrinkage, preliminary test, Stein-type, penalized likelihood, Monte Carlo simulation. 

 

1. Introduction 

In many fields, such as physical biology, social sciences, and epidemiology, the response of 

interest is represented by count data in which large count numbers are rare. A widely-used statistic 

tool in the analysis of count data is the Poisson regression model, given as follows: 
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where iy  is the independent Poisson response variable for the 
thi  subject, T

1 2( , ,..., )i i i ipx x xx  is a 

1p  predictor vector for the
thi  subject, T

1 2(β ,β ,...,β )pβ is a 1p  vector of regression 
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coefficients, and Texp( )i iμ = βx  is the mean parameter for the 
thi  subject. For a detailed discussion 

see, for example, Cameron and Trivedi (2013) or Myers et al. (2012). 

Our primary focus was on parameter estimation for the Poisson regression model in cases when 

many predictors are available, but these may or may not be significant for the response of interest. A 

range of variable selection procedures can be used to produce the insignificant predictors, including 

the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). This 

information, which is commonly called subspace information, gives two choices of model. The first 

is a full model that takes all predictors into account. The second is a submodel, based on the subspace 

information that retains only the significant predictors. We can therefore split the parameter vector of 

the full model β  into two subvectors as T T T
1 2( , ) ,β = β β  where 1β  and 2β  represent a 1 1p   significant 

parameter subvector and a 2 1p   insignificant parameter subvector, respectively, such that 

1 2 .p p p   Under available subspace information, we are interested in the estimation of the 

significant parameter subvector 1β  when 2β  is a known vector 0
2 ,β  so that 0

2 2 .β = β  Without loss of 

generality, 0
2β  may be set to zero vector.  It is important to keep in mind that the efficiency of both 

full model and submodel estimators are directly impacted by the uncertain of subspace information. 

As previously stated, Hossain and Ahmed (2012) studied Stein-type shrinkage estimators and 

applied three penalty procedures, including least absolute shrinkage and selection operator (LASSO), 

adaptive LASSO, and smoothly clipped absolute deviation (SCAD), to estimate the parameters in a 

Poisson regression model when the subspace information was available. They reported that the 

shrinkage estimators dominated classical maximum likelihood estimator across a wide class of models. 

However, these estimators outperformed the penalty estimators only when the number of insignificant 

predictors was moderate to large. 

Another way of dealing with the problem from the uncertain of subspace information is to use the 

preliminary test strategy that checks the validity of subspace information. In this study, therefore, we 

extend the work of Hossain and Ahmed (2012) by applying a preliminary test to remove the 

uncertainty concerning the available subspace information before the information 0
2 2β = β  is 

incorporated into the estimation process. We further also applied the ridge estimator, which improves 

the precision of parameter estimation when many predictors are present in the model and/or the 

multicollinearity problem exists, see Ahmed (2014) and Mansson and Shukur (2011). Previous studies 

that have applied these strategies to estimation of a parameter of interest include Ahmed et al. (2015), 

Al-Kandari et al. (2007), Al-Momani et al. (2017), Gao et al. (2017), Reangsephet et al. (2018), and 

Y z iu bas  and Ahmed (2015). These have reported that estimators based on preliminary test and Stein-

type strategies performed better than the classical estimators. 

The rest of this paper is organized as follows. In section 2, some common estimation strategies 

are discussed. We present and compare their asymptotic properties in Section 3. We conducted Monte 

Carlo simulations to compare the performance of the proposed estimators. The results are reported in 

Section 4, and a real data example is given in Section 5. Finally, in Section 6, we present our 

conclusions and make recommendations. 

 

2. Estimation Strategies 

Consider the log-likelihood function of the Poisson regression model defined in (1) is given by 

 T T

1

( ) = - exp( ) - ln( !) .
n

i i i i
i

y y

 x xβ β β                                               (2) 
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The derivatives of the log-likelihood function with respect to β  are obtained by solving the 

following score equation 

 T

1

( )
= - exp( ) .

n

i i i p
i

y






 x x

β
β 0

β


                                                (3) 

2.1. Full model and submodel estimators 

The full model (FM) estimator, denoted by of 
FM

,β  is the maximum likelihood estimator (MLE), 

which is obtained by solving the score equation in (3). Since, this score equation is the nonlinear 

function in parameter ,β  we need to solve (3) by using the Newton-Raphson iterative method to obtain 

the value of 
FM

.β  As the results of Santos and Neves (2008), we can state the following theorem. 

 

Theorem 1 Under the usual regularity conditions of MLE, as ,n   
FM

1( , ( ) ),D
pN β β V β   

where T T

1

( ) exp( )
n

i i i
i

 V β βx x x  is the Fisher information matrix. 

 

The FM estimator 
FM

β  can be partitioned as 




FM

FM 1

FM

2

.
 
 
 
 

β
β

β
 Consequently, the Fisher information 

matrix ( )V β  can be written as 11 12

21 22

( ) ,
 
 
 

V V
V β

V V
 and then

1 1 1

1 11.2 11 12 22.1

1 1 1

22 21 11.2 22.1

( ) ,
  



  






 
 
 

V V V V
V β

V V V V

where 1
11.2 11 12 22 21

 V V V V V  and 1
22.1 22 21 11 12 . V V V V V  

Now, we consider the information 0
2 2β = β  and then add this information on model in (1). Hence, 

we have the candidate submodel (SM), so that only 1β  is unknown vector. The SM estimator of 1,β

denoted by 
SM

1 ,β  can be obtained by solving (3), subject to 
2

0
2 2 .p β β 0  

 

2.2. Linear shrinkage estimator 

The linear shrinkage (LS) estimator of the parameter vector 1,β denoted by 
LS

1 ,β  is a linear 

combination of the full model and the submodel estimator 

   LS FM FM SM

1 1 1 1( ),  β β β β                                                       (4) 

where [0,1]  represents the degree of confidence in the given subspace information. Its value may 

be set by using the researcher’s belief in the accuracy of the available subspace information or by 

minimizing the mean squared error of this estimator. 

 

2.3. Shrinkage pretest estimator 

The shrinkage pretest (SP) estimator of the parameter vector 1β  is defined as 

   SP FM FM LS

,1 1 1 1( ) ( ).n nI D d    β β β β                                            (5) 

Alternatively, 
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    SP FM FM SM

,1 1 1 1( ) ( ),n nI D d    β β β β                 (6) 

where (.)I  is an indicator function, and 
,nd 

 is the l-leve  critical value of the exact distribution of 

a suitable test statistic nD  for testing 
2

0
0 2 2: .pH  β β 0  This estimator determines the choice of the 

full model or submodel. We note that this estimator is called as the preliminary test (PT) estimator 

when 1.   In this study, we suggest the likelihood ratio statistic nD  in (7) for testing 0H  

 
2

FM FM
0 T 0
2 22.1 22 2( ) ( ) (1).n pD n o   β β V β β                                           (7) 

Under 0 ,H  as ,n   the distribution of  nD  converges to a 2  distribution with 2p  degrees of 

freedom. 

 

2.4. Stein-type and positive-part Stein-type shrinkage estimators 

The Stein-type shrinkage estimator (SE) and positive-part Stein-type shrinkage estimator (PSE) 

for Poisson regression model are proposed and discussed by Hossain and Ahmed (2012). We now 

briefly introduce these estimators. The SE and PSE of the parameter vector 1β  are respectively given 

by 

    SE SM FM SM
1

2 21 1 1 1(1 ( 2) )( ), 3np D p     β β β β                (8) 

and 

    PSE SM FM SM
1

2 21 1 1 1(1 ( 2) ) ( ), 3,np D p      β β β β                (9) 

where  1 1
2 2(1 ( 2) ) max 0,1 ( 2) .n np D p D        Alternatively, the PSE can be written in the 

canonical form as 

    PSE SE FM SM
1

2 2 21 1 1 1(1 ( 2) )( ) ( ( 2)), 3.n np D I D p p       β β β β             (10) 

 

2.5. Penalized likelihood estimator 

The penalized likelihood estimation strategies are different from the previously mentioned 

strategies in that they shrink all the coefficients toward zero equally. In this study, we consider the 

widely recognized penalized likelihood procedures, which commonly produce more precise and 

accurate estimates, including the least absolute shrinkage and selection operator estimator (LASSO) 

and ridge estimator. Suppose that 0   represents the tuning parameter and it controls the amount of 

shrinkage. The LASSO estimator performs simultaneous variable selection and parameter estimation. 

It uses an 1L   penalty and is therefore given by 

  
LASSO

1 1

arg min exp( ) ln( !) .
pn

T T
i i i i j

i j

y x x y
 

 
        

 
 

β

β                        (11) 

The ridge estimator of Hoerl and Kennard (1970) uses an 2L  penalty and is defined by 

   2

1 1

arg min exp( ) ln( !) .
pnRidge

T T
i i i i j

i j

y x x y
  

 
         

 
                           (12) 

Practically, the cross-validation method is a way of selecting an optimal tuning parameter   for 

the penalized likelihood estimators. 
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3. Asymptotic Properties 

To study the asymptotic properties in terms of bias and risk of the proposed estimators, we now 

define the sequence of local alternatives 
( )nH  as follows 

( ) ( ) 0
( ) 2 2 2 2: , .n n
nH

n
 

δ
β = β β β                                               (13) 

Here, 2

2

T
1 2= ( , ,..., ) p

p   δ   is a 2 1p   fixed vector. The quantity of 
n

δ
 measures the extent to 

which the local alternatives ( )nH  differ from the subspace information 0
2 2 .β = β  

For simplicity, we use the notation ( )νψ x;  as to represent the cumulative distribution function 

of a noncentral 2  distribution with non-centrality parameter   and ν  degrees of freedom. Further, 

2 2

0

( ) ( ).j j
ν νE x dψ x;


         In order to prove the asymptotic properties of the proposed estimators, 

we first present important lemmas: 

 

Lemma 1 Following Judge and Bock (1978), let z  be a k -dimensional random vector that follows 

multivariate normal distribution with mean μz  and covariance matrix .zΣ  Then, for any measurable 

function φ,  we have 

 T 2
2[ ( )] [ ( ( ))],kE φ E φ   μzz z z               (14) 

 T T 2 T 2
2 4[ ( )] [ ( ( ))] [ ( ( ))],k kE φ E φ E φ      

zz zzz z z Σ μ μ              (15) 

where   is the non-centrality parameter. 

 

Lemma 2 Under the sequence of local alternative ( )nH  and the usual regularity condition of MLE, 

as ,n   the test statistic nD  converges to a non-central 2  distribution with non-centrality 

parameter T
22.1  δ V δ  and 2p  degrees of freedom. 

 

Lemma 3 Under the sequence of local alternative ( )nH  and the usual regularity condition of MLE, 

as ,n    

1

1 2

1 1 1
11.2 11 12 22.1

1 1 1
22 21 11.2 22.1

, ,
pn D

p p

n

N
  

   

       
                

W W

Z Z

0 V V V V

V V V Vδ
                (16) 

1

1 1 1 1 1
11 12 11.2 11 12 22.1 21 11( , ),D

n pN      X X V V δ V V V V V V                                (17) 

 
1

1 1 1 1
11 12 11 12 22.1 21 11( , ),D

n pN     Y Y V V δ V V V V V                                         (18) 

where  FM

11( ),n n W β β   FM

22( ),n n Z β β  SM

11( ),n n X β β  and  FM SM

1 1( ).n n Y β β  

 

Proof: See Appendix A. 

 

Throughout this work, we assumed the normalized parameter estimators to be uniformly 

integrable. We present the asymptotic distributional bias and the asymptotic distributional risk results 

of the estimators in the following section. 
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3.1. Asymptotic distributional bias 

The asymptotic distributional bias (ADB) for any estimator 
*

1β  can be defined as  

 * *

11 1( ) lim ( ) .
n

B E n


  
  

β β β                                                   (19) 

By virtue of Lemmas 1 to 3 and by using the definition of ADB in (19), we give the ADBs of the 

proposed estimators in the following theorem. 

 

Theorem 2 Under the sequence of local alternatives ( )nH  and the usual regularity conditions of MLE, 

as ,n   

  FM

1( ) ,B β 0                (20) 

 SM
1

11 121( ) ,B β V V δ                (21) 

 LS
1

11 121( ) ,B  β V V δ                (22) 

 
2 2

SP
2 1

2 , 11 121( ) ( ; )  .p pB ψ 
    β V V δ               (23) 

Here, T
22.1 .  δ V δ  

 

Proof: See Appendix B. 

 

Following Hossain and Ahmed (2012), we found that the ADBs of the SE and PSE are respectively, 

as follows: 


2

SE
2 1

2 2 11 121( ) ( 2) E[ ( )]  ,pB p  
   β V V δ                                          (24) 

and 

   
2 2 2

PSE
2 2 1

2 2 2 2 2 2 11 121( ) ( 2) E[ ( )] ( ( ) ( 2)) + ( 2; )  .p p pB p I p ψ p 
           β V V δ        (25) 

Further, when 1,   SP

1( )B β  becomes the ADB of the PT estimator, denoted by 
PT

1 ,β   which is given 

by 
2 2

PT
2 1

2 , 11 121( ) ( ; )  .p pB ψ 
   β V V δ  The ADB expressions for the estimators are not in scalar form. 

To obtain a scalar quantity of *
1( ),B β  we take the recourse by converting them to the quadratic form. 

This is called the asymptotic quadratic distributional bias (ADQB), and is defined as  

  * * *
T

11.21 1 1( ) [ ( )] [ ( )].QB B Bβ β V β                                                (26) 

Using the definition in (26), we present the ADQBs of the estimators as follows: 

 FM

1( ) 0,QB β  

SM
*

1( ) ,QB  β  

 LS
2 *

1( ) ,QB   β  

  
2 2

SP 2
2 *

2 ,1( ) ( ; ) ,p pQB ψ      β  

  
2

SE 2
2 *

2 21( ) ( 2) E[ ( )] ,pQB p 
    β  
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  
2 2 2

PSE 2
2 2 *

2 2 2 2 2 21( ) ( 2) E[ ( )] ( ( ) ( 2)) + ( 2; ) .p p pQB p I p ψ p
            β  

Here, * T 1 1
21 11 11.2 11 12 .   δ V V V V V δ  

The proofs of the above ADQB expressions can be easily obtained by using results of ADB in 

Theorem 2. From the bias results, the 
FM

1β  is an unbiased estimator of 1,β  while other estimators are 

biased and their biases depend on the quantity of *.  The AQDBs of 
SM

1β  and 
LS

1β  are the unbounded 

functions of *.  The AQDB of 
SP

1β  depends on both the degree of confidence in the subspace 

information   and size of the test .  That of 
SP

1β  increases to a maximum and then slowly decreases 

to zero as   increases. Similarly, at 0,   the AQDBs of 
SE

1β  and 
PSE

1β  start from zero, increase to 

a maximum point, and then decrease again towards zero, for the reason that 
2

2
2[ ( )]pE 

   is the 

decreasing log convex function of .  Moreover, the AQDB of 
PSE

1β  is always smaller than or equal 

to 
SE

1β  for all values of .  

 

3.2. Asymptotic distributional risk 

Let Q  be a known positive semi-definite matrix, and 
*

1β  be any estimator of 
SM

1 ,β  
LS

1 ,β  
SP

1 ,β  
SE

1β  

or 
PSE

1 .β   We consider the quadratic loss function   * * *
T

1 11 1 1( ; ) ( ) ( ).L n  Q Qβ β β β β  Then, the 

asymptotic distributional risk (ADR) of 
*

1β  is defined as 

 * *

1 1( ; ) [ ( )].R trace MSEQ Qβ β                                                   (27) 

Here, *
1( )MSE β is the asymptotic mean squared error matrix (MSE) of the estimator 

*

1 ,β  which can 

be defined as 

  * * *
T

1 11 1 1( ) lim ( )( ) .
n

MSE E n


   
  

β β β β β                                      (28) 

Using the definitions in (27) and (28) and Lemmas 1 to 3, the ADRs of the proposed estimators 

are contained in the following theorem. 

 

Theorem 3 Expressions for the ADRs of the proposed estimators under the sequence of local 

alternatives ( )nH  and the usual regularity conditions of MLE, as ,n    

 FM
1

11.21( ; ) [ ],R trace Q Qβ V                                                                                               (29) 

SM
1 1 1 1

11.2 11 12 22.1 21 111( ; ) [ ] [ ] ,RR trace trace      Q Q Qβ V V V V V V                                         (30) 

 LS
1 1 1 1 2

11.2 11 12 22.1 21 111( ; ) [ ] (2 ) [ ] ,RR trace trace          Q Q Qβ V V V V V V                       (31) 



 
2 2

2 2 2 2

SP
1 2 1 1 1

11.2 2 , 11 12 22.1 21 111

2 2
2 , 4 ,

( ; ) [ ] (2 ) ( ; ) [ ]

2 ( ; ) (2 ) ( ; ) .

p p

p p p p R

R trace ψ trace

ψ ψ

   
 

   

     

        

Q Q Qβ V V V V V V
             (32) 

Here, T 1 1
21 11 11 12 .R

   Qδ V V V V δ  
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Proof: See Appendix C. 

 

Following Hossain and Ahmed (2012), we get 



  

2

2

2 2 2

2
SE 21 1 1 1

11.2 2 11 12 22.1 21 111 4
2 2

4 2 2
2 2 4 4 2

[ ( )]
( ; ) [ ] ( 2) [ ]

( 2) [ ( )]

( 2) ( 2) [ ( )] 2 [ ( )] [ ( )] ,

p

p

p p p R

     2E
R trace p trace

p E

p p E E E


   




  
  

   
    

     

           

Q Q Qβ V V V V V V
 

and 

 

 

 

 

2 2

2 2

2 2

PSE SE

1 1

2
2 2 1 1 1

2 2 2 2 11 12 22.1 21 11

2 2
2 2 2 2

2
2 2

2 4 4 2

( ; ) ( ; )

1 ( 2) ( ) ( ( ) 2) [ ]

1 ( 2) ( ) ( ( ) 2)

.
1 ( 2) ( ) ( ( ) 2)

p p

p p

R

p p

R R

E p I p trace

2E p I p

E p I p

   
 


 


 


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Q Q

Q

β β

V V V V V  

We see that if 12 ,V 0  all ADR results reduce to a common value 1
11.2[ ]trace QV  for all .Q  Assuming 

that 12 ,V 0  then 

(i)  FM

1( ; )R Qβ  remains a constant with 1
11.2[ ].trace QV  

(ii) The ADRs of 
SM

1β  and 
LS

1β  are unbound functions of [0, )R   . Since [0,1],  
SM

1β  

outperforms 
LS

1β  when R  is equal to or close to zero. However, it has a higher risk than 
LS

1β  as 

.R   In summary,   FM LS SM

1 1 1( ; ) ( ; ) ( ; )R R R Q Q Qβ β β  for 0.R   

(iii) SP

1( ; )R Qβ  is bounded in .  
SP

1β  achieves its smallest risk and outperforms 
FM

1β  at 0. 

However, as   increases, its risk increases to a maximum value which is higher than  FM

1( ; ).R Qβ  

After passing through the maximum point, SP

1( ; )R Qβ  monotonically approaches  FM

1( ; ).R Qβ    

(iv) For all values of   with 2 3,p   we have   PSE SE FM

1 1 1( ; ) ( ; ) ( ; ).R R R Q Q Qβ β β  However, 

when   is small, 
SE

1β  and 
PSE

1β  are less beneficial than the other estimators, except 
FM

1 .β  

 

4. Simulation Results 

In this section, we report the results of Monte Carlo simulations conducted to investigate the 

performance of the proposed estimators. The risk was estimated in term of the simulated mean squared 

error (SMSE) in estimation, and the performance of the listed estimators was compared using the 

simulated relative efficiency (SRE). The SRE of the estimator 
*

1β  with respect to 
FM

1β  was defined as 

 




FM
FM *

1
1 1 *

1

( )
( ; ) .

( )

SMSE
SRE

SMSE


β
β β

β
                                                (33) 
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Here, 
*

1β  is any estimator of 
SM

1 ,β  
LS

1 ,β  
SP

1 ,β  
SE

1 ,β  
PSE

1 ,β  
LASSO

1β  or 
Ridge

1 .β  An SRE is greater than 

one indicates that 
*

1β  is superior to 
FM

1 .β  

Our simulations were based on a Poisson regression model with sample size 60.n   The 

simulated Poisson response was generated from the following model: Texp( ),i iy x= β where 

( , )i p pNx Σ0  for 1,2,..., .i n  We considered two correlation structures of ,Σ  AR(1) and constant. 

They were commonly used in many studies including Arashi et al. (2018), Yuzbasi et al. (2017b), and 

and Yuzbasi et al. (2017a). For AR(1) structure, the 
th( , )j k  elements of Σ  were defined to be equal 

to | | ,j-k
jkΣ r 1,2,..., ;j p 1,2,..., .k p  For constant structure, all off-diagonal elements of Σ  

were defined to be equal to .r  We set 0.00r   and 0.75 in order to distinguish between uncorrelated 

and correlated predictors. The condition number (CN) was used to detect the existence of 

multicollinearity. A rule of thumb is that if CN is greater than 30, there is a reason to be concerned 

about multicollinearity problem. 

Without loss of generality, we considered the hypothesis 
2

0
2 2 pβ = β 0  in the simulation studies. 

We partitioned β  as T T T
1 2( , ) ,β = β β  where 1β  and 2β  are the 1 1p   and 2 1p   subvectors, 

respectively, so that 1 2 .p p p   We defined a parameter sim  as sim (0) T (0)( ) ( ),   β β β β where 

2

(0) T T T
1( , ) ,pβ β 0  to represent how far the true value of parameter vector β  deviated from the 

parameter vector of the model under subspace information (0) .β  In this study, we considered the two 

following cases for the true value of β : 

1. At sim 0,   
2

T
1 2(1.20, 0.80,0.15) , .p  β β 0  

2. At sim 0,   
2

T T T
1 2 4 1( 1.20,0.80,0.25) , (β , ) ,p   β β 0  so that sim 2

4β .   

We set 1 3,p   2 3,5,7,10,15,p   and sim [0, 2].   We also used the three common significance 

levels   0.01, 0.05 and 0.10 and the different values  0.25, 0.50 and 0.75 to study their impact 

on the proposed estimators. The other values of r  and other correlation structures, including 

compound symmetric and unstructured, were studied. However, their results were similar. Hence, we 

did not report them for space saving. 

In this study, the tuning parameters   of two penalized likelihood estimators were estimated 

using 10-fold cross-validation. 1,000N   iterations were run to obtain stable results for each 

configuration. All computations and graphics were conducted using the R programming (R Core Team 

2015). 

 

4.1. Case 1 subspace information is correct 

The SREs of listed estimators with respect to the FM estimator are reported in Tables 1 and 3. 

According to these results, the SREs of all estimators increased as 2p  increased, and, with the 

exception of 
Ridge

1 ,β  were superior to 
FM

1β  in the case of uncorrelated predictors. At sim 0,   as we 

would anticipate, 
SM

1β  produced the maximum risk reduction, especially when 2p  and r  were large. 

For fixed 2 ,p  the SRE of 
LS

1β  decreased sharply to 1 as 0,   while the performance of 
SP

1β  
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became poorer as   increased and   decreased. 
PSE

1β  dominated 
SE

1β  in every case, and its SRE 

increased rapidly as 2p  increased. 

LASSO

1β  outperformed 
SE

1β  only when 2p  was small and 0.00.r   For 0.00,r   
Ridge

1β  

performed poorly, but improved when multicollinearity was a serious concern. Moreover, as 2p  

increased, 
Ridge

1β  became dominated by LASSO, as it does not perform variable selection. 

 

Table 1 Simulated relative efficiency of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators with 

respect to FM at sim 0   when the predictors are perfectly uncorrelated ( 0.00)r   

Estimator Number of insignificant predictors  
3 5 7 10 15 

RE 2.460 4.573 6.557 12.882 20.871 
LS      

   0.25   1.354 1.500 1.542 1.657 1.714 
   0.50   1.810 2.335 2.512 3.119 3.497 
   0.75   2.264 3.731 4.852 7.337 9.310 

SP      
   0.25, 0.01    1.339 1.481 1.504 1.634 1.692 
   0.25, 0.05    1.278 1.388 1.446 1.535 1.621 
   0.25, 0.10    1.238 1.335 1.403 1.467 1.534 
   0.50, 0.01    1.764 2.258 2.347 2.986 3.345 
   0.50, 0.05    1.593 1.923 2.119 2.483 2.914 
   0.50, 0.10    1.491 1.755 1.969 2.203 2.478 
   0.75, 0.01    2.175 3.316 4.601 6.467 8.085 
   0.75, 0.05    1.867 2.718 3.560 4.280 5.588 
   0.75, 0.10    1.697 2.325 2.806 3.232 3.934 

SE 1.208 1.947 2.574 3.937 5.275 
PSE 1.402 2.316 3.265 5.096 8.250 

LASSO 1.209 1.511 2.203 3.255 4.636 
Ridge 0.829 0.898 0.920 1.045 1.563 

CN 3.133 3.920 4.505 5.137 13.965 
 

4.2. Case 2 subspace information may be correct or incorrect 

In this case, the penalized likelihood estimators were not included in the sim 0   case because 

these estimators do not take advantage of the subspace information 
22 .pβ 0  For the sake of brevity, 

we report here only the results for 2p  5, 10 and 15 with 0.75   and 0.00.r   The SREs of the 

proposed estimators are reported in Table 4, and to ease comparison, shown as graphs in Figures 1 to 

3. 

The maximum SRE of all estimators was observed at sim 0.   The submodel estimator 
SM

1β  

dominated all other estimators when the subspace information was either true or nearly true. As sim  

moved away from zero, its SRE decreased and converged to zero. The SRE of 
LS

1β  approached zero 

as sim  moved away from zero, though more slowly than that of 
SM

1 .β  However, it outperformed other 

estimators in some space of sim.  
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Table 2 Simulated relative efficiency of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators with 

respect to FM at sim 0   when the predictors are correlated ( 0.75)r   with AR(1) 

Estimator Number of insignificant predictors  
3 5 7 10 15 

RE 3.242 5.617 6.542 11.292 27.955 
LS      

   0.25   1.440 1.558 1.596 1.659 1.729 
   0.50   2.094 2.593 2.772 3.140 3.611 
   0.75   2.867 4.328 4.928 6.800 10.404 

SP      
   0.25, 0.01    1.417 1.530 1.581 1.329 1.706 
   0.25, 0.05    1.363 1.469 1.500 1.545 1.348 
   0.25, 0.10    1.283 1.400 1.428 1.470 1.552 
   0.50, 0.01    2.014 2.464 2.695 2.962 3.438 
   0.50, 0.05    1.835 2.212 2.327 2.533 3.066 
   0.50, 0.10    1.605 1.962 2.053 2.216 2.562 
   0.75, 0.01    2.686 3.897 4.633 5.846 8.811 
   0.75, 0.05    2.309 3.181 3.461 4.120 6.346 
   0.75, 0.10    1.887 2.588 2.773 3.193 4.206 

SE 1.329 1.983 2.644 3.540 6.538 
PSE 1.509 2.525 3.278 4.918 9.333 

LASSO 1.127 1.566 2.114 2.974 4.937 
Ridge 1.161 1.306 1.329 1.794 2.584 

CN 44.160 50.347 60.671 100.850 150.459 
 

Table 3 Simulated relative efficiency of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators with 

respect to FM at sim 0   when the predictors are correlated ( 0.75)r   with constant structure 

Estimator Number of insignificant predictors  
3 5 7 10 15 

RE 2.749 4.550 6.935 12.135 24.443 
LS      

   0.25   1.388 1.521 1.596 1.670 1.719 
   0.50   1.918 2.420 2.782 3.206 3.543 
   0.75   2.484 3.740 5.034 7.150 9.801 

SP      
   0.25, 0.01    1.361 1.498 1.566 1.651 1.678 
   0.25, 0.05    1.301 1.426 1.506 1.582 1.594 
   0.25, 0.10    1.246 1.362 1.427 1.506 1.515 
   0.50, 0.01    1.832 2.324 2.631 3.088 3.261 
   0.50, 0.05    1.656 2.058 2.370 2.710 2.773 
   0.50, 0.10    1.512 1.836 2.055 2.358 2.401 
   0.75, 0.01    2.311 3.462 4.457 6.461 7.553 
   0.75, 0.05    1.978 2.793 3.614 4.736 5.002 
   0.75, 0.10    1.732 2.318 2.793 3.575 3.703 

SE 1.256 1.890 2.565 3.792 5.733 
PSE 1.425 2.328 3.290 5.444 8.041 

LASSO 1.120 1.229 2.242 2.952 5.428 
Ridge 0.844 1.395 1.530 1.837 3.780 

CN 28.121 44.005 55.230 73.926 230.650 
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Table 4 Simulated relative efficiency of SM, LS, SP, SE, and PSE with respect to the FM for 

0.75  and 0.00r   

2p  sim  
Estimator 

SM LS SP SE PSE 
  0.01   0.05   0.10     

5 0.00 4.024 3.377 2.996 2.438 2.083 1.788 2.160 
 0.05 1.023 1.395 1.170 1.093 1.058 1.263 1.306 
 0.10 0.556 0.852 0.885 0.919 0.937 1.148 1.155 
 0.15 0.416 0.662 0.870 0.926 0.950 1.093 1.095 
 0.20 0.314 0.511 0.905 0.953 0.983 1.077 1.078 
 0.25 0.253 0.419 0.910 0.968 0.984 1.055 1.055 
 0.50 0.117 0.199 0.989 1.000 1.000 1.022 1.022 
 0.75 0.075 0.130 1.000 1.000 1.000 1.015 1.015 
 1.00 0.052 0.091 1.000 1.000 1.000 1.007 1.007 
 2.00 0.020 0.035 1.000 1.000 1.000 1.003 1.003 

10 0.00 8.786 5.904 5.215 3.920 2.962 3.464 4.364 
 0.05 2.139 2.730 1.883 1.478 1.309 1.986 2.081 
 0.10 1.251 1.791 1.244 1.128 1.083 1.620 1.636 
 0.15 0.864 1.319 1.058 1.019 1.004 1.435 1.436 
 0.20 0.704 1.104 0.989 0.993 0.998 1.348 1.349 
 0.25 0.557 0.896 0.973 0.986 0.989 1.262 1.267 
 0.50 0.270 0.459 0.996 0.998 0.998 1.136 1.136 
 0.75 0.169 0.291 1.000 1.000 1.000 1.077 1.077 
 1.00 0.117 0.203 1.000 1.000 1.000 1.057 1.057 
 2.00 0.048 0.084 1.000 1.000 1.000 1.017 1.017 

15 0.00 14.968 8.027 6.582 4.703 3.644 5.254 7.090 
 0.05 4.049 4.401 2.941 2.058 1.661 2.987 3.224 
 0.10 2.239 2.911 1.565 1.321 1.223 2.179 2.207 
 0.15 1.655 2.323 1.279 1.108 1.065 1.898 1.904 
 0.20 1.220 1.796 1.117 1.048 1.030 1.656 1.665 
 0.25 0.969 1.503 1.029 1.006 1.003 1.543 1.543 
 0.50 0.503 0.827 0.997 0.998 0.998 1.260 1.260 
 0.75 0.333 0.562 1.000 1.000 1.000 1.172 1.172 
 1.00 0.227 0.390 1.000 1.000 1.000 1.116 1.116 
 2.00 0.099 0.174 1.000 1.000 1.000 1.043 1.043 

 

The shrinkage pretest estimator 
SP

1β  performed well at sim 0,   then became inferior to 
FM

1β  as 

sim  increased, before equaling 
FM

1β  as sim  increased further. Both estimators based on the Stein-

type strategy outperformed 
FM

1β  across the entire space of sim ,  and also outperformed all other 

estimators in the wider space of sim.  Further, their gain in risk reduction became more pronounced 

as 2p  increased. Clearly, the departure from the subspace information is central to 
SM

1β  and 
LS

1 ,β  but 

had a smaller impact on the preliminary test and Stein-type strategies. These results were in agreement 

with the asymptotic results presented in Section 3. Though none of all estimators uniformly 

outperformed all others, the estimators based on the linear shrinkage, preliminary test, and Stein-type 

strategies were robust when there was the subspace information with uncertainty of correctness. 
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Figure 1 Simulated relative efficiency of FM, SM, LS, SP, SE, and PSE as a function of sim   

when 2 5p   for   0.01, 0.05 and 0.10 

Figure 2 Simulated relative efficiency of FM, SM, LS, SP, SE, and PSE as a function of sim   

when 2 10p   for   0.01, 0.05 and 0.10 
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Figure 3 Simulated relative efficiency of FM, SM, LS, SP, SE, and PSE as a function of sim   

when 2 15p   for   0.01, 0.05 and 0.10 

 

5. Real Data Example 

A data set of 189 pregnant women (reported in Hosmer and Lemeshow, 2000) was used to test 

the proposed estimators. The task was to make predictions about the number of physician visits during 

the first trimester. Multiple predictors were used: age of mother (AGE), history of hypertension (HT), 

where 1 = yes and 0 = no, weight of mother at last menstrual period (WEIGHT), smoking status during 

pregnancy (SMOKE), where 1 = yes and 0 = no, history of premature labor (PL), presence of uterine 

irritability (UI), where 1 = yes and 0 = no, birth weight (BW), and race (RACE), where 1 = white, 2 = 

black, and 3 = other. We found that a multicollinearity problem existed in the data (CN 30 ). 

We first applied variable selection methods based on AIC and BIC to generate the subspace 

information. AIC classified AGE, HT, and WEIGHT as significant predictors, whereas BIC assigned 

only AGE as significant. Two possible candidate submodels were therefore considered. For assessing 

the efficiency of the proposed estimators, 100m   bootstrap rows were drawn with replacement 

1,000N   times from the complete dataset. The estimation of regression coefficients for only 

significant predictors selected by AIC and BIC are reported in Table 5. 
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Table 5 Point estimates and standard errors (in the parenthesis) for only significant coefficients 

selected by AIC and BIC 

Criteria 
Estimator  

FM SM LS SP SE PSE LASSO Ridge 

AIC         

Intercept −1.559 −1.822 −1.691 −1.634 −1.668 −1.167 −1.017 −0.933 

 (1.125) (0.766) (0.904) (1.008) (0.957) (0.954) (0.985) (0.963) 

   AGE 0.045 0.046 0.045 0.045 0.046 0.045 0.023 0.020 

   (0.026) (0.024) (0.024) (0.025) (0.024) (0.024) (0.028) (0.027) 

   HT −0.563 −0.599 −0.581 −0.573 −0.579 −0.578 −0.127 −0.157 

 (0.726) (0.672) (0.691) (0.709) (0.696) (0.695) (0.578) (0.534) 

   WEIGHT 0.002 0.004 0.003 0.002 0.003 0.001 0.001 0.001 

 (0.007) (0.005) (0.006) (0.006) (0.006) (0.006) (0.004) (0.004) 

BIC         

   Intercept −1.514 −1.404 −1.459 −1.533 −1.505 −1.504 −1.008 −0.945 

 (1.132) (0.698) (0.807) (1.029) (0.884) (0.883) (1.057) (1.017) 

   AGE 0.043 0.048 0.046 0.044 0.045 0.045 0.022 0.020 

 (0.027) (0.026) (0.025) (0.027) (0.026) (0.026) (0.030) (0.029) 

 

In fact, the true parameter values in the real data are unknown, making the exact value of sim  to 

be unknown. Note that if a candidate submodel yields a most accurate prediction of response, it is 

indicated that sim 0.   In contrast, when such submodel performs poorly in predicting, sim 0.   

Hence, the performance of each of the proposed estimators was evaluated using the simulated relative 

prediction error (SRPE), derived as 

 

 
 

2FM
T

1
FM *

1
1 1 2*

T
1

1

Simulated exp( )

( ; ) , 1, 2,..., ,

Simulated exp( )

m

i i
i

m

i i
i

y

SRPE i m

y







 







x

x

β

β β

β

                 (34) 

where 
*

1β  is any proposed estimator. Here, the degree to which SRPE exceeds one reflects the degree 

of superiority of 
*

1β  over 
FM

1 .β  Since the accuracy of the subspace information were unknown, we 

conservatively selected   0.50 and   0.05, while the tuning parameters of the LASSO and ridge 

estimators were computed using 10-fold cross-validation. Table 6 shows the results. 

 

Table 6 Simulated relative prediction error of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators 

with respect to the FM estimator 

Model 
Estimator 

SM LS SP SE PSE LASSO Ridge 

AIC 2.008 1.774 1.315 1.569 1.578 1.746 1.724 

BIC 3.934 3.189 2.712 2.490 2.496 2.142 2.131 

 

As can be seen, all estimators outperformed the full model estimator. The prediction accuracy of 

both candidate submodel estimators was superior to that of all other estimators, suggesting that the 
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sparse models based on the AIC-based and BIC-based subspace information were suitable for this 

data, especially BIC-based. Based on the more suitable BIC-based model, it can be concluded that 

only the age of mother was a highly significant effect on the number of physician visits during the first 

trimester.  

The performance of the linear shrinkage and shrinkage pretest estimators depended on the validity 

of the subspace information, whereas that of Stein-type estimators improved as the number of 

insignificant predictors increased. The LASSO and ridge estimator were dominated by the Stein-type 

estimators when 2p  was large. The ridge estimator had a high degree of precision, but was less 

efficient than the LASSO estimator because the sparsity pattern was satisfied. These results were 

consistent with the simulation results, in which case the obtained subspace information was correct   
sim( 0)   and 2p  increased. 

 

6. Conclusions 

In this study, we considered estimators based on the preliminary test, Stein-type, and penalized 

likelihood strategies for the parameter estimation of a Poisson regression model under restricted 

subspace information. Their asymptotic distributional bias and risk were derived and discussed. A 

Monte Carlo simulation was implemented to support the theoretical analysis. Further, the predictive 

performance of the proposed estimators was studied using a real application. 

From these theoretical and numerical findings, the full model estimation suffered from an 

overfitting, as too many confounding predictors are retained in the model. However, the unreliable 

subspace information consequently resulted in submodel estimator becoming inefficient. The 

proposed estimators showed higher performance than the submodel estimators when the information 

was unreliable. The performance of the linear shrinkage and shrinkage pretest estimators depended on 

either the degree of confidence in the subspace information or the significance level, outperforming 

the submodel estimator when the information was unreliable. They were also shown to work better 

than the estimators based on Stein-type shrinkage strategy when the information was either true or 

nearly true. 

Regardless of whether the subspace information was trustworthy or not, the Stein-type shrinkage-

based estimator proved superior to the full model estimator, especially in its truncated version. They 

outperformed the other estimators in some part of the parameter space. The LASSO estimator was 

superior to the Stein-type shrinkage-based estimators only when the number of insignificant predictors 

was small. The ridge estimator performed poorly with sparse models and uncorrelated predictors, 

however, it performed well when the predictors were highly correlated. 

When the accuracy of the subspace information is unknown, it is safe to use the preliminary test 

and Stein-type estimation strategies, given their superior performance. It would be interesting to 

extend our approach to high-dimensional data ( ),n p  though we leave this for further study. 
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Appendices 

Appendix A. Proof of Lemma 3 

Under the sequence of local alternative ( ) ,nH  the asymptotic distribution of  FM

11( )n n W β β  

and  FM

22( )n n Z β β  are obtained by using Theorem 1 and we have the covariance between W  

and Z  is given by T 1 1
11 12 22.1( , ) .Cov   W Z V V V   
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Consider   SM FM FM
1 1

1 11 12 2 1 11 121 1 2( ) ( ( ) ) ,n n nn n         X W Zβ β β V V β β β V V  which is a 

linear combination of nW  and .nZ  Therefore, by Slutsky’s theorem, as ,n   

1

1 1 1 1 1
11 12 11.2 11 12 22.1 21 11( , ).D

n pN      X X V V δ V V V V V V  

Similarly, nY  can be written as follows: 

   FM SM FM SM
1

1 1 11 121 1 1 1( ) ( ) ,n nn n       Y Zβ β β β + β β V V  

which is a linear function of .nZ  Again, by Slutsky’s theorem, as ,n   we get

1

1 1 1 1
11 12 11 12 22.1 21 11( , ).D

n pN     Y Y V V δ V V V V V  The covariance between W  and Y  is derived by 

T T 1 T T 1 1 1 1
11 12 11 12 11 12 22.1 21 11( , ) ( , ( ) ) ( , )( ) .Cov Cov Cov        W Y W Z W ZV V V V V V V V V  

 

Appendix B. Proof of Theorem 2 

Using Lemmas 1 to 3, under the sequence of local alternative ( ) ,nH  we get 

 FM FM

11 1( ) lim ( ) lim [ ] [ ] ,n
n n

B E n E E
 

     
  

W Wβ β β 0  

 SM SM
1

1 11 121 1( ) lim ( ) lim [ ] [ ] ,n
n n

B E n E E 

 

     
  

X Xβ β β V V δ  

    LS LS FM FM SM

1 11 1 1 1 1( ) lim ( ) lim ( ( ) )
n n

B E n E n
 

        
      

β β β β β β β  

   
1

11 12

lim [ ] [ ] [ ]

,

n n
n

E E E




   

 

W Y W Y

V V δ
, 

    SP SP FM FM SM

1 , 11 1 1 1 1( ) lim ( ) lim ( ( ) ( ) )n n
n n

B E n E n I D d 
 

         
      

β β β β β β β  

     
2 2

2 2
, ,lim [ ( )] [ ] [ ( ( ) )]n n n n p p

n
E I D d E E I 


        W Y W Y  

 
2 2

2 2

2 2 1
, 11 12

2 1
2 , 11 12

[ ( ( ) )]

( ; )  .

p p

p p

E I

ψ





 

     

   

V V δ

V V δ
 

 

Appendix C. Proof of Theorem 3 

To verify ADR expressions, we first derive the asymptotic mean squared error matrix of the 

proposed estimators. Using Lemmas 1 to 3, under the sequence of local alternative ( ) ,nH  we have  

  FM FM FM
T T T 1

1 1 11.21 1 1( ) lim ( )( ) lim [ ] [ ] [ ] ,n n
n n

MSE E n E E Var 

 

       
  

W W WW Wβ β β β β V  

  SM SM SM
T T T

1 11 1 1

T

1 1 1 1 1 1 T
11.2 11 12 22.1 21 11 11 12 11 12

( ) lim ( )( ) lim [ ] [ ]

[ ] [ ] [ ]

( )( ) ,

n n
n n

MSE E n E E

Var E E

 
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     
  

 

  

X X XX

X X X

β β β β β

V V V V V V V V δ V V δ
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  

   

LS LS LS
T

1 11 1 1

T

T

T T 2 T

1 T T 2 T
11.2

1 1 1 1 2
11.2 11 12 22.1 21 11 1
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B
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By using the rule of conditional expectation and Lemma 1, we have 

2 2

2 2

2 2

2 2

2 2 2 2
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T 2 2
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1 T 2 2
11 12 ,
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Substituting (B) into (A), we obtain 
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Consequently, it is easy to verify Theorem 3 by using (27) and the above asymptotic mean squared 

error matrix expressions. 

 


