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Abstract

The use of subspace information for estimating parameters of the model has gained increasing
attention in recent years. However, the quality of the subspace information is usually unknown, and
in consequence the classical maximum likelihood estimation strategies, which rely on this information,
become biased and inefficient. Our goal was to improve the performance of estimation strategies for
a Poisson regression model for which subspace information is available. We proposed estimators
based on the linear shrinkage, preliminary test, and Stein-type strategies and investigated their
asymptotic properties using the notation of asymptotic distributional bias and risk. Comprehensive
Monte Carlo simulations were conducted to assess the simulated relative efficiency of the proposed
estimators. Further, comparisons were made with the two penalized likelihood estimators: least
absolute shrinkage and selection operator (LASSO) and ridge. Finally, the proposed estimators were
applied to a real data set, to confirm their usefulness. Based on our findings, the proposed estimators
were more efficient than the classical estimator when the accuracy of the subspace information was
unknown.

Keywords: Linear shrinkage, preliminary test, Stein-type, penalized likelihood, Monte Carlo simulation.

1. Introduction

In many fields, such as physical biology, social sciences, and epidemiology, the response of
interest is represented by count data in which large count numbers are rare. A widely-used statistic
tool in the analysis of count data is the Poisson regression model, given as follows:

_ Vi
foq&):fﬁii%ﬁin v, =0,1,2,5i=1,2,m, (1)
y
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where y, is the independent Poisson response variable for the i subject, x, =(x,,x,,,...,X,,) isa

px1 predictor vector for the i" subject, P=(B.B,,...8,)" is a pxI vector of regression
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coefficients, and g, = exp(x,B) is the mean parameter for the i ™ subject. For a detailed discussion

see, for example, Cameron and Trivedi (2013) or Myers et al. (2012).

Our primary focus was on parameter estimation for the Poisson regression model in cases when
many predictors are available, but these may or may not be significant for the response of interest. A
range of variable selection procedures can be used to produce the insignificant predictors, including
the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). This
information, which is commonly called subspace information, gives two choices of model. The first
is a full model that takes all predictors into account. The second is a submodel, based on the subspace
information that retains only the significant predictors. We can therefore split the parameter vector of

the full model B into two subvectors as = (B, ,B,)", where B, and B, representa p, x1 significant
parameter subvector and a p,x1 insignificant parameter subvector, respectively, such that
p,+p, =p. Under available subspace information, we are interested in the estimation of the
significant parameter subvector B, when P, is a known vector B3, so that B, = . Without loss of
generality, BS may be set to zero vector. It is important to keep in mind that the efficiency of both

full model and submodel estimators are directly impacted by the uncertain of subspace information.

As previously stated, Hossain and Ahmed (2012) studied Stein-type shrinkage estimators and
applied three penalty procedures, including least absolute shrinkage and selection operator (LASSO),
adaptive LASSO, and smoothly clipped absolute deviation (SCAD), to estimate the parameters in a
Poisson regression model when the subspace information was available. They reported that the
shrinkage estimators dominated classical maximum likelihood estimator across a wide class of models.
However, these estimators outperformed the penalty estimators only when the number of insignificant
predictors was moderate to large.

Another way of dealing with the problem from the uncertain of subspace information is to use the
preliminary test strategy that checks the validity of subspace information. In this study, therefore, we
extend the work of Hossain and Ahmed (2012) by applying a preliminary test to remove the
uncertainty concerning the available subspace information before the information B, =f) is

incorporated into the estimation process. We further also applied the ridge estimator, which improves
the precision of parameter estimation when many predictors are present in the model and/or the
multicollinearity problem exists, see Ahmed (2014) and Mansson and Shukur (2011). Previous studies
that have applied these strategies to estimation of a parameter of interest include Ahmed et al. (2015),
Al-Kandari et al. (2007), Al-Momani et al. (2017), Gao et al. (2017), Reangsephet et al. (2018), and
Yiizbasi and Ahmed (2015). These have reported that estimators based on preliminary test and Stein-
type strategies performed better than the classical estimators.

The rest of this paper is organized as follows. In section 2, some common estimation strategies
are discussed. We present and compare their asymptotic properties in Section 3. We conducted Monte
Carlo simulations to compare the performance of the proposed estimators. The results are reported in
Section 4, and a real data example is given in Section 5. Finally, in Section 6, we present our
conclusions and make recommendations.

2. [Estimation Strategies
Consider the log-likelihood function of the Poisson regression model defined in (1) is given by

1B = 3y B -exp(B)-In(y) @)
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The derivatives of the log-likelihood function with respect to P are obtained by solving the

following score equation

U)o <0, ©

2.1. Full model and submodel estimators

~FM
The full model (FM) estimator, denoted by of B, is the maximum likelihood estimator (MLE),

which is obtained by solving the score equation in (3). Since, this score equation is the nonlinear
function in parameter f, we need to solve (3) by using the Newton-Raphson iterative method to obtain

~FM
the value of B . As the results of Santos and Neves (2008), we can state the following theorem.

Theorem 1 Under the usual regularity conditions of MLE, as n—> 0, ﬁFM —D>Np B.VP)™),

where V(B) = Z:exp(xiT B)x.x. is the Fisher information matrix.
i=1

~FM
~FM ~FM
The FM estimator B can be partitioned as f = EM . Consequently, the Fisher information

2

. . v, V, A\ -v'v, v,
matrix V(B) can be written as V(B):|:V11 V”}, and then V(p)" :[ 12 e

-V, V, V! v, |

21 22 22 721 112 22.1

where Vi =V, _V12V2;1V21 and Vi =V, _V21V1711V12~
Now, we consider the information B, = B3 and then add this information on model in (1). Hence,

we have the candidate submodel (SM), so that only B, is unknown vector. The SM estimator of f,,

A~SM
denoted by B, , can be obtained by solving (3), subject to p, —p3 =0 2"

2.2. Linear shrinkage estimator

~LS
The linear shrinkage (LS) estimator of the parameter vector B,, denoted by B, , is a linear
combination of the full model and the submodel estimator
~LS ~FM ~FM A~SM
ﬁ1 = ﬁ1 _7\'('}1 _ﬁl ), 4)
where A €[0,1] represents the degree of confidence in the given subspace information. Its value may

be set by using the researcher’s belief in the accuracy of the available subspace information or by
minimizing the mean squared error of this estimator.

2.3. Shrinkage pretest estimator
The shrinkage pretest (SP) estimator of the parameter vector B, is defined as

~SP ~FM
1 =

~FM ~LS
B, =B, —(B, —-B, (D, <d,,). )
Alternatively,
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~SP ~FM ~FM ~SM

B, =B -AB, -B, (D, <d,,), (6)
where /(.) is an indicator function, and d, , is the a-level critical value of the exact distribution of
a suitable test statistic D, for testing H,:B, —B3 =0 »,- This estimator determines the choice of the

full model or submodel. We note that this estimator is called as the preliminary test (PT) estimator
when A =1. In this study, we suggest the likelihood ratio statistic D, in (7) for testing H,

~FM ONT ~FM 0
D, =nB, —B,) Vn,(B, _B2)+0pz (1. (7
Under H,, as n—> o, the distribution of D, converges to a % distribution with p, degrees of

freedom.

2.4. Stein-type and positive-part Stein-type shrinkage estimators

The Stein-type shrinkage estimator (SE) and positive-part Stein-type shrinkage estimator (PSE)
for Poisson regression model are proposed and discussed by Hossain and Ahmed (2012). We now
briefly introduce these estimators. The SE and PSE of the parameter vector B, are respectively given

by

ASE  ASM I AFM ASM

B, =B, +(0-(p,—-2)D,)B, -B, ), p,23 (®)
and

AP

SE ~SM e ~FM ~SM
B, =B +d-(p,-2D,)" B, -B, ) p,23 )
where (1-(p,-2)D,")" :max{O,l—( p,—2)D, 1}. Alternatively, the PSE can be written in the

canonical form as
~PSE

B =B, —(-(p,-2DH®B, —B, M(D,<(p,-2) p,=3. (10)

2.5. Penalized likelihood estimator

The penalized likelihood estimation strategies are different from the previously mentioned
strategies in that they shrink all the coefficients toward zero equally. In this study, we consider the
widely recognized penalized likelihood procedures, which commonly produce more precise and
accurate estimates, including the least absolute shrinkage and selection operator estimator (LASSO)
and ridge estimator. Suppose that > 0 represents the tuning parameter and it controls the amount of
shrinkage. The LASSO estimator performs simultaneous variable selection and parameter estimation.
Ituses an L, penalty and is therefore given by

n

= arg;nin{—Z{y,-xf B—exp(x/B)~In(y, !)}+nﬁ|ﬁ,|} (11)

i=1

~LASSO

The ridge estimator of Hoerl and Kennard (1970) uses an L, penalty and is defined by

n

B = arg;nm{_z{ ylB ool )~ In(y, D} + 73 P } (12

Practically, the cross-validation method is a way of selecting an optimal tuning parameter m for
the penalized likelihood estimators.
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3. Asymptotic Properties
To study the asymptotic properties in terms of bias and risk of the proposed estimators, we now
define the sequence of local alternatives H ,, as follows

n n 6
H(n):B2=B(2)9 B(z)zﬁg +T- (13)

n

. . o
Here, 6 = (5,,9,,...,0 ” Y eR” isa p, x1 fixed vector. The quantity of — measures the extent to

Jn

which the local alternatives H,, differ from the subspace information B, = .
For simplicity, we use the notation y, (x;A) as to represent the cumulative distribution function

of a noncentral y° distribution with non-centrality parameter A and v degrees of freedom. Further,

E [x;” (A)J = jx’” dy,(x;A). In order to prove the asymptotic properties of the proposed estimators,
0

we first present important lemmas:

Lemma 1 Following Judge and Bock (1978), let z be a k -dimensional random vector that follows

multivariate normal distribution with mean p, and covariance matrix X,. Then, for any measurable

function @, we have
El2¢(z'2)] = u,E[9(1;., (D), (14)
Elzz" p(2'2)] = 2, E[p(ty.. (AD]+ p, 0, Elp(ti 4 (D)), 15)

where A is the non-centrality parameter.

Lemma 2 Under the sequence of local alternative H,,, and the usual regularity condition of MLE,

n)

as n— o, the fest statistic D, converges to a non-central y’ distribution with non-centrality

parameter A=3"V,, & and p, degrees of freedom.

Lemma 3 Under the sequence of local alternative H_  and the usual regularity condition of MLE,

(n)

as n—» o,
Wn D w 0/71 Vliz _V1711V12V2721.1
[Z J—>[ZJ~NPI+1)2 (|: 6 Il —viv. v v > (16)
n 22 Y21 V112 21
X, —>X -~ N, (Vi Vi3, Vi, = Vi 'V Voo Vo, VD, (17)
Y, — Y ~ N, (_V1711V126’V1711V12V2721A1V21V1711)’ (18)

SM

~FM ~FM ~SM ~FM A
where W, =n@,” ~B)), Z,=n®B, -B,), X, ="nB, ~B,), and Y, =VnB, B, )
Proof: See Appendix A.

Throughout this work, we assumed the normalized parameter estimators to be uniformly

integrable. We present the asymptotic distributional bias and the asymptotic distributional risk results
of the estimators in the following section.
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3.1. Asymptotic distributional bias
The asymptotic distributional bias (ADB) for any estimator [§] can be defined as
B, = lim E| (B, ~p,) | (19)
By virtue of Lemmas 1 to 3 and by using the definition of ADB in (19), we give the ADBs of the

proposed estimators in the following theorem.

Theorem 2 Under the sequence of local alternatives H,  and the usual regularity conditions of MLE,

(n)

as n—» 0,
~FM
BB, )=0, (20)
ASM 1
B(ﬁ1 )=V11 V]zaa (21)
ALS
B(B, ) =1V, ]'V,,8, (22)
ASP
BB, )=y, (1, s AV,'V,,8. (23)

Here, A=8"V,, 8.

Proof: See Appendix B.

Following Hossain and Ahmed (2012), we found that the ADBs of the SE and PSE are respectively,
as follows:

BB, )= (ps —2)EIX} o (A)IV,) Vi, (24)

and
~PSE
B®B, ) ={(p, D El1, s (MU, (D) > (0, =2) +y, (0~ 2 V'V8. (29)
A~SP ~PT
Further, when A =1, B(B, ) becomes the ADB of the PT estimator, denoted by B, , which is given

~PT
by BB, )=v, ., (Xiz,u;A)VfllVUS’ The ADB expressions for the estimators are not in scalar form.

To obtain a scalar quantity of B(B,), we take the recourse by converting them to the quadratic form.

This is called the asymptotic quadratic distributional bias (ADQB), and is defined as

OB(B,) =[BB)I"V,,.[BB, )] 26)

Using the definition in (26), we present the ADQBs of the estimators as follows:
~FM
OB, )=0,
~ASM .
OBB, )=A,
~LS .
OB(B, )=1"A,
ASP 2
OBB, ) =My, (X}, A A

0B(, ) ={(p, ~DEL; (W]} A
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~PSE 2,
OBMB, ) ={(P, =2 Elt, . (DU (), 12 (A) > (p, = 2D+, o (p ~ZA)} A
Here, A" =8"V, V'V, ,V,'V,,3.
The proofs of the above ADQB expressions can be easily obtained by using results of ADB in

Theorem 2. From the bias results, the ﬁf " is an unbiased estimator of B,, while other estimators are
biased and their biases depend on the quantity of A". The AQDBs of fiISM and |A31LS are the unbounded
functions of A". The AQDB of [Ailsp depends on both the degree of confidence in the subspace
information A and size of the test «. That of ﬁlsp increases to a maximum and then slowly decreases
to zero as A increases. Similarly, at A =0, the AQDBs of fiISE and [Ai:) > start from zero, increase to
a maximum point, and then decrease again towards zero, for the reason that E[XZ+2 (A)] is the

~PSE
decreasing log convex function of A. Moreover, the AQDB of B, is always smaller than or equal

ASE
to B, for all values of A.

3.2. Asymptotic distributional risk

A¥ ~SM ~LS ~SP ~SE
Let O be a known positive semi-definite matrix, and B, be any estimatorof B, , B, , B, . B,

~PSE

or B, . We consider the quadratic loss function L([Ai1 ;0) = n(ﬁ] -B)’ Q(ﬁ] —B,). Then, the
asymptotic distributional risk (ADR) of [Ail is defined as
R(B,;0Q) = tracel QMSE(P, )]. (27)

Here, MSE (ﬁl ) is the asymptotic mean squared error matrix (MSE) of the estimator ﬁl, which can
be defined as

MSEQ) = tim | NG, - )6, -B)" | (8)
Using the definitions in (27) and (28) and Lemmas 1 to 3, the ADRs of the proposed estimators

are contained in the following theorem.

Theorem 3 Expressions for the ADRs of the proposed estimators under the sequence of local
alternatives H , and the usual regularity conditions of MLE, as n — o,

~FM

R, ;Q)=traceQV;},], (29)
ASM

R, ;0)= trace[QVlfz]—trace[QVl’llVlez’zlllelVl’l1 1+ A, (30)

RB.":0) = tracel OV, 1~ M2~ Wtrace[QV,'V,,V

12 22.1V21V1711]+}\'2AR7 (31)
ASP
R(B, ;Q) =tracdQV,,]1- M2~ MW, (Xf; o Mytrace[QV,,'V,,V;,, V, Vi) ']
{20, 00, 0 = 2=, (X, L A,

Here, A, =8"V,,V;'QV,]'V,,d.

(32)
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Proof: See Appendix C.

Following Hossain and Ahmed (2012), we get

2E[x,.. ()]
~(p, = 2)Elx,, ,(A)]
(2 =2 {(p2 = DEL L (W]-2( Bt o (A)] - Bl (A)])] A,

~SE
R(B, ;0) = tmce[QVl_ﬂ2 1-(p, - 2){ }trace[QVl_llVleZ'; 1V21V1_11 ]

and
RB,:0) =R, :0)
_ E[{l ~(py =21 (A)}2 I02,.,(8) < p, —2)}tmce[QV;;VDV;;IVZIVI;I]
2E[ {1-(p, ~ 20,2 L (T, (M) < p, -) |
e[ 106 < 0,2

We see that if V,, =0, all ADR results reduce to a common value trace[@V,},] for all Q. Assuming

that V,, # 0, then
~FM

(i) R(B, ;0Q) remains a constant with trace[QV;/,].

. ASM ALS . . ASM

(il) The ADRs of B, and B, are unbound functions of A, €[0,0). Since A€[0,1], B,

~LS ~LS
outperforms B, when A, is equal to or close to zero. However, it has a higher risk than B, as
~FM ~LS ~SM
A, = . In summary, R(B, ;0)<R(B, ;0)<R(B, ;0) for A, >0.
~SP ~SP ~FM
(iii) R(B, ;0) is bounded in A. B, achieves its smallest risk and outperforms B, at A=0.
~FM
However, as A increases, its risk increases to a maximum value which is higher than R(B, ;0).
~SP ~FM

After passing through the maximum point, R(p, ;) monotonically approaches R(B, ;0).

~PSE ~SE ~FM
(iv) For all values of A with p, >3, we have R(B, ;0)<R(B, ;0)<R(B, ;0). However,

~SE ~PSE ~FM
when A issmall, p, and B, are less beneficial than the other estimators, except P,

4. Simulation Results

In this section, we report the results of Monte Carlo simulations conducted to investigate the
performance of the proposed estimators. The risk was estimated in term of the simulated mean squared
error (SMSE) in estimation, and the performance of the listed estimators was compared using the

AK ~FM
simulated relative efficiency (SRE). The SRE of the estimator B, with respectto B, was defined as

~AFM
~ SMSE, )

SRE(B, :B,)= 1 (33)
SMSE(B,)
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~SE ~PSE ~LASSO

M ALS  ASP A Ridge .
, B, > B, . B . B B or B, . An SRE is greater than

AF AS
Here, B, is any estimator of P,

A¥ ~FM
one indicates that B, is superior to B,

Our simulations were based on a Poisson regression model with sample size n=60. The
simulated Poisson response was generated from the following model: y, = exp(x/p), where
x,~N,0,2) for i =1,2,...,n. We considered two correlation structures of X', AR(1) and constant.
They were commonly used in many studies including Arashi et al. (2018), Yiizbasi et al. (2017b), and
and Yiizbasi et al. (2017a). For AR(1) structure, the (j,k)" elements of X were defined to be equal

to 2, =7 j=1,2,...,p; k=12,.... p. For constant structure, all off-diagonal elements of X

were defined to be equal to ». We set » =0.00 and 0.75 in order to distinguish between uncorrelated
and correlated predictors. The condition number (CN) was used to detect the existence of
multicollinearity. A rule of thumb is that if CN is greater than 30, there is a reason to be concerned
about multicollinearity problem.

Without loss of generality, we considered the hypothesis B, =3 =0 ,, In the simulation studies.
We partitioned B as p=(B/.p;)", where B, and B, are the p x1 and p,x1 subvectors,
respectively, so that p, + p, = p. We defined a parameter A" as A" = (B —p)" (B—B'”), where
B” =(B/.0,)", to represent how far the true value of parameter vector B deviated from the

parameter vector of the model under subspace information . In this study, we considered the two

following cases for the true value of B :
1. At A" =0, B, =(1.20,—0.80,0.15)", B, =0,.
2. At A™ >0, B, =(~1.20,0.80,0.25)", B, = (B,,0; )", sothat A" =,

4
Weset p, =3, p, =3,5,7,10,15, and A*™ €[0,2]. We also used the three common significance

levels a = 0.01, 0.05 and 0.10 and the different values A =0.25, 0.50 and 0.75 to study their impact
on the proposed estimators. The other values of » and other correlation structures, including
compound symmetric and unstructured, were studied. However, their results were similar. Hence, we
did not report them for space saving.

In this study, the tuning parameters 7 of two penalized likelihood estimators were estimated
using 10-fold cross-validation. N =1,000 iterations were run to obtain stable results for each

configuration. All computations and graphics were conducted using the R programming (R Core Team
2015).

4.1. Case 1 subspace information is correct

The SREs of listed estimators with respect to the FM estimator are reported in Tables 1 and 3.
According to these results, the SREs of all estimators increased as p, increased, and, with the
exception of [Aifidge, were superior to ﬁfM in the case of uncorrelated predictors. At A =0, as we

A~SM
would anticipate, B, produced the maximum risk reduction, especially when p, and r were large.

A SP

~LS
For fixed p,, the SRE of B, decreased sharply to 1 as A — 0, while the performance of P,
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~PSE ~SE
became poorer as a increased and A decreased. B, dominated B, in every case, and its SRE

increased rapidly as p, increased.

~LASSO ~SE A Ridge
B, outperformed P, only when p, was small and »=0.00. For »=0.00, B,

performed poorly, but improved when multicollinearity was a serious concern. Moreover, as p,

. A Ridge . . . .
increased, B,  became dominated by LASSO, as it does not perform variable selection.

Table 1 Simulated relative efficiency of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators with
respect to FM at A*™ =0 when the predictors are perfectly uncorrelated (+ = 0.00)

Number of insignificant predictors

Estimator 3 5 7 10 5
RE 2.460 4.573 6.557 12.882 20.871

LS
A=0.25 1.354 1.500 1.542 1.657 1.714
A=0.50 1.810 2.335 2.512 3.119 3.497
A=0.75 2.264 3.731 4.852 7.337 9.310

SP
A=025a=0.01 1.339 1.481 1.504 1.634 1.692
A=0.25a=0.05 1.278 1.388 1.446 1.535 1.621
A=0.25a=0.10 1.238 1.335 1.403 1.467 1.534
A=0.50,a =0.01 1.764 2.258 2.347 2.986 3.345
A=0.50,a =0.05 1.593 1.923 2.119 2.483 2914
A=0.50,a =0.10 1.491 1.755 1.969 2.203 2.478
A=0.75,a =0.01 2.175 3.316 4.601 6.467 8.085
A=0.75a=0.05 1.867 2.718 3.560 4.280 5.588
A=0.75a=0.10 1.697 2.325 2.806 3.232 3.934
SE 1.208 1.947 2.574 3.937 5.275
PSE 1.402 2.316 3.265 5.096 8.250
LASSO 1.209 1.511 2.203 3.255 4.636
Ridge 0.829 0.898 0.920 1.045 1.563
CN 3.133 3.920 4.505 5.137 13.965

4.2. Case 2 subspace information may be correct or incorrect
In this case, the penalized likelihood estimators were not included in the A*™ > 0 case because

these estimators do not take advantage of the subspace information f, =0 ,,- For the sake of brevity,

we report here only the results for p, =5, 10 and 15 with 4 =0.75 and » =0.00. The SREs of the

proposed estimators are reported in Table 4, and to ease comparison, shown as graphs in Figures 1 to
3.

. ASM
The maximum SRE of all estimators was observed at A™ =0. The submodel estimator P,

dominated all other estimators when the subspace information was either true or nearly true. As A®"

~LS
moved away from zero, its SRE decreased and converged to zero. The SRE of B, approached zero

. ~SM
as A™ moved away from zero, though more slowly than that of B, . However, it outperformed other

estimators in some space of A™™.
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Table 2 Simulated relative efficiency of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators with
respect to FM at A"™ =0 when the predictors are correlated (r = 0.75) with AR(1)

Number of insignificant predictors

Estimator 3 5 7 10 15
RE 3.242 5.617 6.542 11.292 27.955

LS
A=0.25 1.440 1.558 1.596 1.659 1.729
A=0.50 2.094 2.593 2.772 3.140 3.611
A=0.75 2.867 4328 4.928 6.800 10.404

SP
A=0.25a=0.01 1.417 1.530 1.581 1.329 1.706
A=0.25a=0.05 1.363 1.469 1.500 1.545 1.348
A=025a=0.10 1.283 1.400 1.428 1.470 1.552
A=0.50,a =0.01 2.014 2.464 2.695 2.962 3.438
A=0.50,a =0.05 1.835 2.212 2.327 2.533 3.066
A=0.50,=0.10 1.605 1.962 2.053 2.216 2.562
A=0.75a=0.01 2.686 3.897 4.633 5.846 8.811
A=0.75a=0.05 2.309 3.181 3.461 4.120 6.346
A=0.75,a=0.10 1.887 2.588 2.773 3.193 4.206
SE 1.329 1.983 2.644 3.540 6.538
PSE 1.509 2.525 3.278 4918 9.333
LASSO 1.127 1.566 2.114 2.974 4.937
Ridge 1.161 1.306 1.329 1.794 2.584

CN 44.160 50.347 60.671 100.850 150.459

Table 3 Simulated relative efficiency of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators with

respect to FM at A*™ =0 when the predictors are correlated (r = 0.75) with constant structure

Estimator Number of insignificant predictors

3 5 7 10 15
RE 2.749 4.550 6.935 12.135 24.443

LS
A=0.25 1.388 1.521 1.596 1.670 1.719
A=0.50 1.918 2.420 2.782 3.206 3.543
A=0.75 2.484 3.740 5.034 7.150 9.801

SP
A1=0.25a=0.01 1.361 1.498 1.566 1.651 1.678
A1=0.25a=0.05 1.301 1.426 1.506 1.582 1.594
A=0.25a=0.10 1.246 1.362 1.427 1.506 1.515
1=0.50,a =0.01 1.832 2.324 2.631 3.088 3.261
A1=0.50,a =0.05 1.656 2.058 2.370 2.710 2.773
A1=0.50,a =0.10 1.512 1.836 2.055 2.358 2401
A1=0.75,0 =0.01 2311 3.462 4.457 6.461 7.553
A=0.75,a =0.05 1.978 2.793 3.614 4.736 5.002
A=0.75,=0.10 1.732 2318 2.793 3.575 3.703
SE 1.256 1.890 2.565 3.792 5.733
PSE 1.425 2.328 3.290 5.444 8.041
LASSO 1.120 1.229 2.242 2.952 5.428
Ridge 0.844 1.395 1.530 1.837 3.780

CN 28.121 44.005 55.230 73.926 230.650
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Table 4 Simulated relative efficiency of SM, LS, SP, SE, and PSE with respect to the FM for
A=0.75and r=0.00

Estimator
)2 AS™ SM LS SP SE PSE
a=0.01 a=0.05 a=0.10

5 0.00 4.024 3.377 2.996 2.438 2.083 1.788 2.160
0.05 1.023 1.395 1.170 1.093 1.058 1.263 1.306

0.10 0.556 0.852 0.885 0.919 0.937 1.148 1.155

0.15 0.416 0.662 0.870 0.926 0.950 1.093 1.095

0.20 0.314 0.511 0.905 0.953 0.983 1.077 1.078

0.25 0.253 0.419 0.910 0.968 0.984 1.055 1.055

0.50 0.117 0.199 0.989 1.000 1.000 1.022 1.022

0.75 0.075 0.130 1.000 1.000 1.000 1.015 1.015

1.00 0.052 0.091 1.000 1.000 1.000 1.007 1.007

2.00 0.020 0.035 1.000 1.000 1.000 1.003 1.003

10 0.00 8.786 5.904 5.215 3.920 2.962 3.464 4.364
0.05 2.139 2.730 1.883 1.478 1.309 1.986 2.081

0.10 1.251 1.791 1.244 1.128 1.083 1.620 1.636

0.15 0.864 1.319 1.058 1.019 1.004 1.435 1.436

0.20 0.704 1.104 0.989 0.993 0.998 1.348 1.349

0.25 0.557 0.896 0.973 0.986 0.989 1.262 1.267

0.50 0.270 0.459 0.996 0.998 0.998 1.136 1.136

0.75 0.169 0.291 1.000 1.000 1.000 1.077 1.077

1.00 0.117 0.203 1.000 1.000 1.000 1.057 1.057

2.00 0.048 0.084 1.000 1.000 1.000 1.017 1.017

15 0.00 14.968 8.027 6.582 4.703 3.644 5.254 7.090
0.05 4.049 4.401 2.941 2.058 1.661 2.987 3.224

0.10 2.239 2911 1.565 1.321 1.223 2.179 2.207

0.15 1.655 2.323 1.279 1.108 1.065 1.898 1.904

0.20 1.220 1.796 1.117 1.048 1.030 1.656 1.665

0.25 0.969 1.503 1.029 1.006 1.003 1.543 1.543

0.50 0.503 0.827 0.997 0.998 0.998 1.260 1.260

0.75 0.333 0.562 1.000 1.000 1.000 1.172 1.172

1.00 0.227 0.390 1.000 1.000 1.000 1.116 1.116

2.00 0.099 0.174 1.000 1.000 1.000 1.043 1.043

ASP .
The shrinkage pretest estimator B, performed well at A™

=0, then became inferior to B,

~FM
as

. ~FM .
A™" increased, before equaling B, as A™ increased further. Both estimators based on the Stein-

~FM .
type strategy outperformed B, across the entire space of A™, and also outperformed all other

estimators in the wider space of A™. Further, their gain in risk reduction became more pronounced

ASM
as p, increased. Clearly, the departure from the subspace information is central to P,

ALS

and B, , but

had a smaller impact on the preliminary test and Stein-type strategies. These results were in agreement
with the asymptotic results presented in Section 3. Though none of all estimators uniformly
outperformed all others, the estimators based on the linear shrinkage, preliminary test, and Stein-type
strategies were robust when there was the subspace information with uncertainty of correctness.
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Figure 1 Simulated relative efficiency of FM, SM, LS, SP, SE, and PSE as a function of AS™
when p, =5 for a =0.01,0.05 and 0.10
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Figure 2 Simulated relative efficiency of FM, SM, LS, SP, SE, and PSE as a function of A™"
when p, =10 for o =0.01, 0.05 and 0.10
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Figure 3 Simulated relative efficiency of FM, SM, LS, SP, SE, and PSE as a function of A
when p, =15 for ¢ =0.01, 0.05 and 0.10

5. Real Data Example

A data set of 189 pregnant women (reported in Hosmer and Lemeshow, 2000) was used to test
the proposed estimators. The task was to make predictions about the number of physician visits during
the first trimester. Multiple predictors were used: age of mother (AGE), history of hypertension (HT),
where 1 = yes and 0 = no, weight of mother at last menstrual period (WEIGHT), smoking status during
pregnancy (SMOKE), where 1 = yes and 0 = no, history of premature labor (PL), presence of uterine
irritability (UI), where 1 = yes and 0 = no, birth weight (BW), and race (RACE), where 1 = white, 2 =
black, and 3 = other. We found that a multicollinearity problem existed in the data (CN > 30 ).

We first applied variable selection methods based on AIC and BIC to generate the subspace
information. AIC classified AGE, HT, and WEIGHT as significant predictors, whereas BIC assigned
only AGE as significant. Two possible candidate submodels were therefore considered. For assessing
the efficiency of the proposed estimators, m =100 bootstrap rows were drawn with replacement
N =1,000 times from the complete dataset. The estimation of regression coefficients for only

significant predictors selected by AIC and BIC are reported in Table 5.
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Table 5 Point estimates and standard errors (in the parenthesis) for only significant coefficients

selected by AIC and BIC
L Estimator
Criteria -

FM SM LS SP SE PSE LASSO  Ridge

AIC
Intercept  —1.559 —1.822 -1.691 -1.634 -1.668 -—1.167 -1.017 -0.933
(1.125)  (0.766)  (0.904)  (1.008) (0.957)  (0.954) (0.985)  (0.963)
AGE 0.045 0.046 0.045 0.045 0.046 0.045 0.023  0.020
(0.026)  (0.024)  (0.024)  (0.025) (0.024)  (0.024) (0.028)  (0.027)
HT —0.563 —0.599  —0.581 —0.573 —-0.579  —0.578 —0.127 —0.157
(0.726)  (0.672)  (0.691)  (0.709)  (0.696)  (0.695) (0.578)  (0.534)
WEIGHT 0.002 0.004 0.003 0.002 0.003 0.001 0.001  0.001
(0.007)  (0.005)  (0.006)  (0.006) (0.006)  (0.006) (0.004)  (0.004)

BIC
Intercept —1.514 —1.404 —1459 —1.533 —1.505 —1.504 —1.008 —0.945
(1.132)  (0.698) (0.807)  (1.029) (0.884)  (0.883) (1.057)  (1.017)
AGE 0.043 0.048 0.046 0.044 0.045 0.045 0.022 0.020

0.027)  (0.026)  (0.025)  (0.027)  (0.026)  (0.026) (0.030)  (0.029)

In fact, the true parameter values in the real data are unknown, making the exact value of AS™ to
be unknown. Note that if a candidate submodel yields a most accurate prediction of response, it is
indicated that A™ =0. In contrast, when such submodel performs poorly in predicting, A™™ >0.
Hence, the performance of each of the proposed estimators was evaluated using the simulated relative
prediction error (SRPE), derived as

m ~ 2
o Simulatedz{y,.—exp(lesfM)}
SRPEB, :B,)= o~ , i=1,2,..,m, (34)

m A% )2
Simulatedz { ¥, —exp(x; B, )}

i=1

where B, is any proposed estimator. Here, the degree to which SRPE exceeds one reflects the degree
~k A~FM
of superiority of B, over B, . Since the accuracy of the subspace information were unknown, we

conservatively selected 4 =0.50 and a=0.05, while the tuning parameters of the LASSO and ridge
estimators were computed using 10-fold cross-validation. Table 6 shows the results.

Table 6 Simulated relative prediction error of SM, LS, SP, SE, PSE, LASSO, and Ridge estimators
with respect to the FM estimator

Estimator
Model :
SM LS SP SE PSE LASSO Ridge
AIC 2.008 1.774 1.315 1.569 1.578 1.746 1.724
BIC 3.934 3.189 2.712 2.490 2.496 2.142 2.131

As can be seen, all estimators outperformed the full model estimator. The prediction accuracy of
both candidate submodel estimators was superior to that of all other estimators, suggesting that the
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sparse models based on the AIC-based and BIC-based subspace information were suitable for this
data, especially BIC-based. Based on the more suitable BIC-based model, it can be concluded that
only the age of mother was a highly significant effect on the number of physician visits during the first
trimester.

The performance of the linear shrinkage and shrinkage pretest estimators depended on the validity
of the subspace information, whereas that of Stein-type estimators improved as the number of
insignificant predictors increased. The LASSO and ridge estimator were dominated by the Stein-type
estimators when p, was large. The ridge estimator had a high degree of precision, but was less

efficient than the LASSO estimator because the sparsity pattern was satisfied. These results were
consistent with the simulation results, in which case the obtained subspace information was correct

(A"™ =0) and p, increased.

6. Conclusions

In this study, we considered estimators based on the preliminary test, Stein-type, and penalized
likelihood strategies for the parameter estimation of a Poisson regression model under restricted
subspace information. Their asymptotic distributional bias and risk were derived and discussed. A
Monte Carlo simulation was implemented to support the theoretical analysis. Further, the predictive
performance of the proposed estimators was studied using a real application.

From these theoretical and numerical findings, the full model estimation suffered from an
overfitting, as too many confounding predictors are retained in the model. However, the unreliable
subspace information consequently resulted in submodel estimator becoming inefficient. The
proposed estimators showed higher performance than the submodel estimators when the information
was unreliable. The performance of the linear shrinkage and shrinkage pretest estimators depended on
either the degree of confidence in the subspace information or the significance level, outperforming
the submodel estimator when the information was unreliable. They were also shown to work better
than the estimators based on Stein-type shrinkage strategy when the information was either true or
nearly true.

Regardless of whether the subspace information was trustworthy or not, the Stein-type shrinkage-
based estimator proved superior to the full model estimator, especially in its truncated version. They
outperformed the other estimators in some part of the parameter space. The LASSO estimator was
superior to the Stein-type shrinkage-based estimators only when the number of insignificant predictors
was small. The ridge estimator performed poorly with sparse models and uncorrelated predictors,
however, it performed well when the predictors were highly correlated.

When the accuracy of the subspace information is unknown, it is safe to use the preliminary test
and Stein-type estimation strategies, given their superior performance. It would be interesting to
extend our approach to high-dimensional data (7 <« p), though we leave this for further study.
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Appendices
Appendix A. Proof of Lemma 3

~FM
Under the sequence of local alternative H ,,, the asymptotic distribution of W, = Jn B, -B)

(n)>

~FM
and Z, = Jn (B, —B,) are obtained by using Theorem 1 and we have the covariance between W

and Z is given by Cov(W,Z")=-V,'V,,V,, .
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. ~SM AFM ) ~FM 4 . .

Consider X, =vn(, ~B)=n®, +V;'V,@, ~B,)-B)=W,+V;'V,,.Z,, which is a
linear combination of W, and Z,. Therefore, by Slutsky’s theorem, as n — oo,

X, — X ~ Np, (V1711V1289V171%2 _V1711\712V2721.1V21\]1711)'
Similarly, ¥, can be written as follows:
~FM ASM ~FM ASM _
Y, =\n@, ~B )=n®, -B+B-B )=-V,VnZ,.

which is a linear function of Z . Again, by Slutsky’s theorem, as n-—>o, we get
Y, ——>Y ~ N, (-V;'V;,8,V;'V,,V;),V,, V"), The covariance between W and ¥ is derived by
Cov(W,Y") = Cov(W,Z" (-V,'V;;,)" ) = Cov(W ,Z")(-V,|'V;;,) = V'V, V) V, V][

Appendix B. Proof of Theorem 2

Using Lemmas 1 to 3, under the sequence of local alternative H ), we get

BE)) = tim £, - p,) | tim £, 1= EDV1 0,

BE!) = tim £V - )| = lim £LX, 1= LX) =V V.o,

BEL) = tim £V, ) | = tim E[ -2 -5 -0 |
= lim E[W, - 1Y, | = E[W ]~ LE[Y]

n—m
>

=AV,'V,,8,
~SP . ~SP . ~FM ~FM  ASM
BE)) = lim E[ (B, ) |=tim £ V2" 810, 2,0y |
= lim E[W, ~AY,1(D, <d, )] = EIW - AELYI((, (M) <%}, )]
= ME[1(x;,(A) <75, )IV,'V,,8
= 7\‘sz+2 (X;,u 5 A)‘71711\]126 °

Appendix C. Proof of Theorem 3
To verify ADR expressions, we first derive the asymptotic mean squared error matrix of the

proposed estimators. Using Lemmas 1 to 3, under the sequence of local alternative H,_  , we have

(n)?
~FM . ~FM ~FM T . T T -1
MSEG™) = tim E| V(B BB, BT | = lim EDY W 1= VW 1= Var V1= Vi
~ASM . ASM ~SM T . T T
MSE™) = tim £ VBB )" |~ lim LY, X!1 = EDOX]
—Var[X]+ E[X]E[X"]
=Vis = Vi Vi Voo Vo Vi + (Vi V8)(V'Vi09)
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MSEG)) = lim £ N, -6 -]
= lim E[(W, 1Y, )W, =)¥,)"]
= E[(W -AY)(W -LY)"]
= EIWW 1= 20E[WY "]+ 2 E[YY "]
=V, =20 {Cov(W . ¥") + EW1E[Y" 1} + 1 {Var{¥ ]+ E[Y]E[Y" ]|
=V, =20V VLV VL V2V VLV Y, V4 (VV,8)(V'V,8)
=V, —A2-MV,'V,V,) V, V] + 17 (V' V,8)(V,'V,,8)",
wsE@ ) = lim E[ VB )6 ' |
= lim E[(W, =1.Y,[(D, <d, )W, -AY,I(D, <d,,))" |
= E[ (W =YI(, (A <70, WV =AY, (A <72, ) |

= E[WW =20 EWY " 1(x, (A) <y, JI+A E[YY'I(x, (A) <y, )]
(4) (B)

By using the rule of conditional expectation and Lemma 1, we have
(A) = EWY' I, (M) <% )]
= E[EWY"1(¢, (A) <15, Y |
=E[EW YV I(x), (N <%, ) ]
= E[{¥ +(V'V, )X (2, (M) <), ) ]
=E[ YY" I(), (M) <%0, |- (VI VD E[ Y I, (A) <72, ) ]
=(B)-y,, ., (1), .;ANV; Vi,0)(V,'V,,8)",
and
(B)=E[¥YY'I(x (M) <7, )]
=VarlY1E[I(x;, (A <%}, )1+ EIVIEYIE[ (2], (M) <%, )]
=210, 3DV Vi Vo Vo Vi, (0, 3 ANV VBV, V,08)
Substituting (B) into (A), we obtain
(A) =, (0 AV ViV Vo Vi, 00, D) =, (0, 2DV VBV V)
Thus,
MSE@, )= V;,,
Vs, 03 )

RN A)}(V111V126)(V111V126)T}

-2\ Y, +2 (Xf;z,a > A)‘71711VlezizlJVlelil1 + {

+27 {‘//pz+z (Xiz o MV, VoV5 Vo, V! L (Xiz T A)(Vl]lVlzﬁ)(VfllVlzﬁ)T}
= Vlil%z -M2- 7\')‘/’,;z+2 (Xiz,q ; A)\71711\712\72721.1‘721\71711
+A {21//p2+2 (Xiz A)-2- }\‘)sz +4 (szz,u 5 A)} (V1711V126)(V1711V126)T~
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Consequently, it is easy to verify Theorem 3 by using (27) and the above asymptotic mean squared
error matrix expressions.



