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Abstract 

In this paper, a new truncated distribution related to Lomax distribution is introduced. The 

proposed distribution is referred to as upper-truncated Lomax distribution. Our purpose in this 

study includes introducing a new family of probability distributions based on the new [0,1] 

truncated Lomax distribution.  Statistical properties of the [0,1] truncated Lomax-G family like; 

moments, moment generating function, probability weighted moments, quantile function, order 

statistics and Rényi entropy are derived. Some sub-models of the family like; truncated Lomax-

uniform, truncated Lomax-linear failure rate, truncated Lomax-Frѐchet and truncated Lomax-

power function distributions are discussed. We discuss the estimation of the model parameters 

via maximum likelihood method in case of complete and censored samples. Furthermore, a 

simulation study is provided to evaluate the validity of maximum likelihood estimates for one 

sub-model. Finally, analysis of real data set, representing the breaking stress of carbon fibers, is 

conducted to demonstrate the usefulness of truncated Lomax-Frѐchet distribution compared with 

some competitor distributions.  

______________________________ 
Keywords: Truncated distributions, Lomax distribution, orders statistics, maximum likelihood method, 

censored samples. 

 

1. Introduction 

Recently, generated families of distributions have attracted the attention of several authors. 

Some of the generators are the beta-G (Eugene et al. 2002), Kumaraswamy-G (Cordeiro and de 

Castro 2011), exponentiated generalized-G (Cordeiro et al. 2013), transformed–transformer 

(Alzaatreh et al. 2013), Weibull-G (Bourguignon et al. 2014), exponentiated half-logistic-G 

(Cordeiro et al. 2014a), Lomax-G (Cordeiro et al. 2014b), the beta odd log-logistic generalized-

G (Cordeiro et al. 2016), exponentiated Weibull-G (Hassan and Elgarhy 2016a), Kumaraswamy 

Weibull-G (Hassan and Elgarhy 2016b), additive Weibull-G (Hassan and Hemeda 2016), 

exponentiated extended-G (Elgarhy et al. 2017), Type II half logistic-G (Hassan et al. 2017a), 

generalized additive Weibull-G (Hassan et al. 2017b), [0,1] truncated Fréchet-G (Abid and 
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Abdulrazak 2017), Lomax-R{Y} (Mansoor et al. 2017), odd Frѐchet-G (Haq and Elgarhy 2018), 

inverse Weibull-G (Hassan and Nassr 2018), and power Lindley-G (Hassan and Nassr 2019) 

among others.  

The truncated distributions have been extensively applied, essentially in life-testing and 

reliability studies. Truncated form of a distribution is results from applying bound on the range 

of the distribution so that it is defined properly on a subset of the original range. Hence, truncated 

distributions are utilized in ways where occurrences are limited to values which lie above or 

below a given threshold or within a specified range. The lower (left) truncated distribution is 

obtained if occurrences are limited to values which lie below a given threshold. On the other 

hand, the upper (right) truncated distribution arises if the occurrences are limited to values which 

lie above a given threshold. 

The Lomax distribution has been widely applied in some areas, such as, analysis of income 

and wealth data, modeling business failure data, biological sciences, model firm size and queuing 

problems (see for example Harris 1968, Atkinson and Harrison 1978, and Hassan and Al-Ghamdi 

2009). The cumulative distribution function (cdf) and probability density function (pdf) of the 

Lomax distribution are given, respectively, by 

( ; , ) 1 ( ) , , , 0,LF t t t           

and 
( 1)( ; , ) ( ) ,Lf t t         

where   and   are the shape and scale parameters respectively. Let 1   then, we can write 

the pdf and cdf of the Lomax distribution with one parameter   as follows: 

( ; ) 1 (1 ) , , 0,LG t t t      

and 
 1( ; ) (1 ) .Lg t t       

Three motivations are considered here. Firstly, a new upper ([0,1]) truncated Lomax 

distribution is introduced. Secondly, we propose a new upper ([0,1]) truncated family of 

probability distribution based on ([0,1]) truncated Lomax distribution. Thirdly, we derive some 

of its statistical properties besides estimating the model parameters based on complete and 

censored samples. This paper is organized as follows: in Section 2, [0,1] truncated Lomax 

distribution is introduced. Sections 3 and 4 define [0,1] Lomax-G and investigate some of its 

general statistical properties respectively. In Section 5, some new sub- models of proposed family 

are considered. In Sections 6 and 7 the maximum likelihood (ML) estimators and simulation 

issues of the truncated Lomax Fréchet parameters via complete and censored samples are 

discussed, respectively. Real data example is presented in Section 8 and article ends with 

concluding remarks. 

 

2. Truncated Lomax Distribution   

In this section, we introduce the [0,1] truncated Lomax (TL) random variable.  

 

Definition  A random variable T has the [0,1] TL distribution with parameter ,  say ( ),TL   if 

its pdf has the following form 
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 1( ; ) (1 )
( ; ) , 0 1, 0,

(1; ) (0; ) 1 2
L

TL

L L

g t t
r t t

G G





 
 

 

 




    

 
                  (1) 

where ( ; )Lg t   and ( ; )LG t   are, respectively, the pdf and the cdf of the Lomax random variable 

T  with parameter .  

 

    The cdf corresponding to (1) is as follows 

 0
( ; ) ( ; ) (0; ) 1 (1 )

( ; ) .
(1; ) (0; ) (1; ) (0; ) 1 2

t

L L L
TL

L L L L

g t dt G t G t
R t

G G G G





  


   





  
  

  


     (2) 

  The survival function and hazard rate function (hrf) of the [0,1] TL are, respectively, given by,  

(1 ) 2
( ; ) ,

1 2
TL

t
R t

 




 



 



  

and 
 1(1 )

( ; ) .
(1 ) 2

TL

t
h t

t



 




 

 




 
 

A variety of possible shapes of the pdf and the hrf of the [0,1] TL distribution for some 

choices of values of parameters are represented in Figure 1.  

 

  

(a) (b) 

Figure 1 Plots of: (a) ( ; )TLr t   and (b) ( ; )TLh t   of the [0,1] TL distribution  

 

It can be detected from Figure 1 that the pdf shape can be uni-model, reversed J-shaped and 

right skewed. Also, the shape of the hrf of the [0,1] TL distribution could be increasing, and J-

shaped. Furthermore; reversed hrf and cumulative hrf are, respectively, given by 
( 1)(1 )

( ; ) ,
1 (1 )

TL

t
t

t






 

 






 
 

and                                                

(1 ) 2
( ; ) ln .

1 2
TL

t
H t

 




 



  
   

 
 



Amal S. Hassan et al. 199 

 

 

3. [0,1] Lomax-G Family 

In this section, a new truncated family of distribution is introduced based on [0,1] TL 

distribution. Expansions of its pdf and cdf are obtained. Also, the quantile function is derived.  

The cdf of the truncated Lomax-G (TL-G) family is defined as 

 
 

  
; ( 1)

0

(1 )
( ; , ) 1 1 ( ; ) ,

1 2

G x

TL G

t
F x dt A G x

 





  

 


 


   

                        (3) 

where 
1

0, ,
1 2

A


 


 


 is the parameter vector and ( ; )G x   is the cdf of any distribution.  

A random variable X  that has cdf (3) will be denoted by ~ .X TL G  The pdf 

corresponding to (3) is as 

  
1

( ; , ) ( ; ) 1 ( ; ) ,TL Gf x Ag x G x


    
 

          (4) 

where ( ; )g x   is pdf corresponding to cdf ( ; )G x   The survival function; say  ( ; , )TL GF x    

and hrf, say ( ; , ),TL Gh x    are respectively, given by 

  ( ; , ) 1 1 1 ( ; ) ,TL GF x A G x


  


      

and 

 

  

1
( ; ) 1 ( ; )

( ; , ) ,
1 1 1 ( ; )

TL G

Ag x G x
h x

A G x





  
 



 

 




  
 

respectively. Expansion of the pdf (4) is obtained by using the following generalized binomial 

series  

 
0

1
(1 ) ( 1) , 0i i

i

i
Z Z

i
 








  
    

 
  and 1.Z        (5) 

Employing (5) in (4), the pdf of TL-G distribution, where   is real, becomes 

  
0

; , ( ; ) ( ; ) ,i
TL G i

i

f x g x G x    





        (6) 

where 
1

( 1) .i
i A

i


 

 
   

 
 Also, an expansion for  ( ; , )

h

TL GF x    is obtained, when h  is an 

integer as follows 

  
0

( ; , ) ( ; ) ,
h k

TL G k
k

F x S G x  





        (7) 

where 

 
0

1
1 .

h
j kh

k
j

h j k
S A

j k





   
    

  
  

The quantile function, say  u
Q  of X  is obtained by inverting (3), as follows 

 

1
1 1 (1 2 ) 1 ,

u
Q G u 


  

      
 

  

where u  is a uniform random variable on the interval (0,1) and 1( ; )G x   is the inverse cdf of
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( ; ).G x    

 

4. Main Properties of the TL-G Family 

This section provides some statistical properties of the TL-G family of distributions. 

 

4.1. Probability weighted moments 

The class of probability weighted moments (PWM) is primarily used in estimating the 

parameters of a distribution whose inverse cannot be expressed explicitly. For a random variable 

X its PWM, denoted by ,r h  is defined as 

             

    , ( ; , ) ( ; , ) ( ; , ) .
h hr r

r h TL G TL G TL GE X F x x f x F x dx      


  



                     (8) 

    The PWM of the TL-G is obtained by inserting (6) and (7) in (8), as follows 

,
, 0

( ; ) ( ; ) .r i k
r h i k

i k

S x g x G x dx   




 

     

Then, 

, ,
, 0

,r h i k r i k
i k

S  





    

where 

, ( ; ) ( ; ) .r i k
r i k x g x G x dx  








    

 

4.2. Moments and moment generating function 

The thr  moment of a random variable X  having TL-G distribution is obtained as follows  

0

( ) ( ; , ) ( ; ) ( ; ) .r r r i
r TL G i

i

E X x f x dx x g x G x dx     
 


 

        

Then, 

,
0

.r i r i
i

 




     

For a random variable X  it is known that, the moment generating function (MGF) is defined 

by 

0

( ) .
r

X r
r

t
M t

r









   

So, the MGF of the TL-G distributions is as follows 

.
, 0

( ) .
r

X i r i
i r

t
M t

r









  

 

4.3. Order statistics 

Let 1 2, , , nX X X  be independent and identically distributed random variables with 

continuous distribution function ( ).F x  Let (1) (2) ( )nX X X    be the corresponding ordered 
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random sample from a population of size .n  The pdf of the thr  order statistic is defined as  

 
( )

1

0

( ; , )
( ; , ) ( 1) ( ; , ) ,

( , 1)r

n r
m m rTL G

x TL G
m

n rf x
f x F x

mB r n r

 
   


 




 
   

   
       (9) 

where  .,.B  is the beta function. The pdf of the thr  order statistic of TL-G family is derived by 

substituting (6) and (7) in (9), replacing h  with 1m r    

 
 

*

0 , 0

( ; )
( ; , ) ( ; ) ,

( , 1)r

n r
i k

x
m i k

g x
f x C G x

B r n r


  

 


 


 

      (10) 

where * ( 1) , ( ; ),m
i k

n r
C S g x

m
 

 
   

 
 and ( ; )G x   are the pdf and cdf of any baseline 

distribution. 

Further, the thm  moment of the thr  order statistic for the TL-G distribution is defined by 

    ( ) ( ; , ) .m m

r x r
E X x f x dx 





       (11) 

By substituting (10) in (11), then 

 
*

0 , 0

1
( ) ( ; ) ( ; ) .

( , 1)

n r
m m i k

r
j i k

E X C x g x G x dx
B r m r

 
 



  


 

     

Then, 

 
*

,
0 , , , 0

1
( ) .

( , 1)

n r
m

m i kr
j i t k l

E X C
B r m r


 


 


 

    

 

4.4. Rényi entropy 

An entropy is a measure of variation or uncertainty of a random variable .X  The Rényi 

entropy of X  with pdf (4) is defined by  

 
1

( ) log ( ; , ) ,
1

TL GI X f x dx


  









    0    and  1.   

Now, we are considering the generalized binomial theory in the pdf (4), then the pdf  

( ; , )TL Gf x    can be expressed as follows: 

0

( ; , ) ( ; ) ( ; ) ,i
TL G i

i

f x C g x G x    





   

where 
( 1) 1

( 1) ( ) .i
i

i
C A

i
  


   

   
 

  Therefore, the Rényi entropy of the TL-G family of 

distributions is given by 

0

1
( ) log ( ; ) ( ; ) .

1
i

i
i

I X C g x G x dx
  





 




    

 

5. Sub-Models 

In this section, we define and describe four sub-models of the TL-G namely, TL-uniform, 

TL-linear failure rate, TL-Frѐchet, and TL-power function distributions. 
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5.1. TL-uniform distribution 

For 
1

( ; ) ,0 ,g x x 


    and ( ; )
x

G x 


  the pdf of the TL-uniform (TLU) is derived 

from (4) as follows  
1

TLU ( ; , ) 1 , 0 .
A x

f x x



  

 

 
 

    
 

  

    The corresponding cdf takes the following form 

TLU ( ; , ) 1 1 .
x

F x A


 


  
       

 

   The hrf of the TLU is given by 

 

1
1

TLU ( ; , ) 1 1 1 1 .
A x x

h x A
 


 

  


       

                
  

  Plots of the pdf and hrf for the TLU are displayed in Figure 2. 

 

   
(a)                                                               (b) 

Figure 2 Plots of (a) TLU ( ; , )f x    and (b) hrf TLU ( ; , )h x    of the TLU distribution 

 

5.2. TL-linear failure rate distribution 

Let us consider the linear failure rate distribution with pdf; 
2

2( ; , ) ( ) ,
b

ax x

g x a b a bx e
 

   

, , 0x a b   and cdf; 
2

2( ; , ) 1 ,
b

ax x

G x a b e
 

   hence we obtain the TL-linear failure rate (TLLFR) 

density function as 

2 2
1

2 2
TLLFR ( ; , , ) ( ) 2 , , , 0.

b b
ax x ax x

f x a b A a bx e e x a b



 

 
    

    
 

  

The cdf and hrf of the TLLFR distribution are given, respectively, by  



Amal S. Hassan et al. 203 

 

 

2

2
TLLFR ( ; , , ) 1 2 ,

b
ax x

F x a b A e






   

    
   

  

and 

 
2 2 2

1
1

2 2 2
TLLFR ; , , ( ) 2 1 1 2 .

b b b
ax x ax x ax x

h x a b A a bx e e A e

 

 


  

     
                

       

 

Plots of the pdf and hrf for the TLLFR are displayed in Figure 3. 

 

     
(a)                                                                          (b) 

Figure 3 Plots of  (a) TLLFR ( ; , , )f x a b  and (b) TLLFR ( ; , , )h x a b  of the TLLFR distribution 

 

5.3. TL-Frѐchet distribution 

We consider the Frѐchet distribution with pdf; 1( ; , ) , , , 0xg x x e x




     
 

       and 

cdf ( ; , ) ,xG x e




 
 

 
   hence the TL-Frѐchet (TLFr) density function is as 

1

1
TLFr ( ; , , ) 1 , , , 0.x xf x A x e e x

  
 

      

 
   

         
 
   
 
 

  

The cdf and hrf of the TLFr distribution are given, respectively, by  

 TLFr ; , , 1 1 ,xF x A e

 


  


 

 
 

  
    
  

   

  

and 
1

1

1
TLFr ( ; , , ) 1 1 1 1 .x x xh x A x e e A e

   
  

    


  

     
              

                          

 

Plots of pdf and hrf for the TLFr are displayed in Figure 4. 
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(a)                                                                           (b) 

Figure 4 Plots of (a) TLFr ( ; , , )f x     and (b) ( ; , , )TLFrh x     of the TLFr distribution 

 

5.4. TL-power function distribution 

For  
1

; , ,0 , , 0
x

g x x




    
 


 

    
 

 and  ; , ,
x

G x



 


 
  
 

 we obtain the TL-

power function (TLPF) density function as 
11

TLPF ( ; , , ) 1 ,0 .
A x x

f x x

 


   
  

      
            

  

The cdf and hrf of the TLPF distribution are given, respectively, by   

TLPF ( ; , , ) 1 1 ,
x

F x A



  


              

 

and 
1

11

TLPF ( ; , , ) 1 1 1 1 .
A x x x

h x A

   

   
   


                                           

 

Plots of the pdf and hrf for the TLPF are displayed in Figure 5. 

 

6. Parameter Estimation Based on Complete Samples  

In this section, we obtain the maximum likelihood (ML) estimators of the TL-G family in 

case of complete samples and simulation study is implemented to examine the performance of 

the ML estimates. 
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(a)                                                                    (b) 

Figure 5 (a) TLPF( ; , , )f x     and (b) TLPF( ; , , )h x     of the TLPF distribution 

 

6.1. Maximum likelihood estimators 

Let 1 2, , , nX X X  be the observed values from the TL-G family with set of parameter

( , ) .T    The log-likelihood function for parameter vector ( , )T    is obtained as follows 

 
1 1

ln( , ) ln ln(1 2 ) ln ( ; ) ( 1) ln 1 ( ; ) .
n n

i i
i i

L n n g x G x   

 

          

     The partial derivatives of the log-likelihood function with respect to   and  components of 

the score vector ( , )
k

T
LU U U   can be obtained as follows: 

 
1

2 ln 2
ln 1 ( ; ) ,

1 2

n

i
i

n n
U G x



 









   


   

and 

1 1

( ; ) ( ; )
( 1) .

( ; ) 1 ( ; )k

n n
k i k i

i ii i

g x G x
U

g x G x


 


  

 
  


   

where ( ; ) ( ; ) /k i i kg x g x       and ( ; ) ( ; ) / .k i i kG x G x       Setting U  and 
k

U  equal to 

zeros and solving these equations simultaneously yield the ML estimators ˆˆ ˆ( , )T    of 

( , ) .T    Unfortunately these equations cannot be solved analytically and numerical iterative 

methods can be employed to solve them. 

 

6.2. Simulation study 

The performance of the ML estimates is assessed in terms of the sample size .n  A numerical 

evaluation is carried out to examine the performance of the ML estimates for TLFr model. The 

ML estimates are evaluated based on biases and mean square errors (MSEs). The simulation 

procedure is achieved via the MATHEMATICA package (Wolfram Research 2014). The 

simulation algorithm for generating random samples from TLFr distribution and ML estimates 

from those samples are shown as below: 
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 A random sample 1 2, , , nX X X  of sizes; 20,30,50n   and 100 are considered, these 

random samples are generated from the TLFr distribution by using inversion method.  

 The values of parameters are considered as ( 0.7, 0.3, 1.5)     and ( 1.2, 

0.5, 1.2).    The ML estimate of the TLFr model is evaluated based on parameters 

value and sample sizes.  

 The process is repeated 10,000 times and then we obtain the means, biases and MSEs 

of the ML estimates for values of model parameters. Empirical results are reported in 

Table 1.  

 

Table 1 ML estimates, Bias and MSE of the TLFr model parameters  

n  Parameter 
0.7, 0.3, 1.5     1.2, 0.5, 1.2    

ML 

estimates 

Bias MSE ML

estimates

Bias MSE

20 

  0.7004 0.0004 0.0004 1.2028 0.0028 0.0041

  0.3232 0.0232 0.0091 0.5423 0.0423 0.0295

  1.6792 0.1792 0.4033 1.3520 0.1520 0.2758

30 

  0.7008 0.0008 0.0003 1.2019 0.0019 0.0026

  0.3122 0.0122 0.0052 0.5264 0.0264 0.0160

  1.6034 0.1034 0.2209 1.3008 0.1008 0.1638

50 

  0.7002 0.0002 0.0001 1.2012 0.0012 0.0015

  0.3068 0.0068 0.0025 0.5142 0.0142 0.0083

  1.5577 0.0577 0.1141 1.2560 0.0560 0.0824

100 

  0.7001 0.0001 0.0001 1.2002 0.0001 0.0008

  0.3047 0.0047 0.0012 0.5083 0.0083 0.0041

  1.5419 0.0419 0.0560 1.2288 0.0288 0.0386

 

We can detect from Table 1 that the estimates are quite stable and are close to the true value 

of the parameters as the sample sizes increase. 

 

7. Parameter Estimation Based on Censoring Samples 

In reliability or lifetime testing experiments, most of the encountered data are censored due 

to various reasons such as time limitation, cost or other resources. Here, we discuss estimation 

of population parameters of the TL-G distributions based on two censoring schemes; namely, 

Type I and Type II. In Type-I censoring (TIC), we have a fixed time say; ,  but the number of 

items fail during the experiment is random. Whereas, in Type-II censoring (TIIC) scheme, the 

experiment is continued (i.e., time varies) until the specified number of failures c  occurs. 

 

7.1. ML estimators in case of TIC 

Suppose that n  items, whose lifetime’s follow TL-G are placed on a life test, and the test is 

terminated at specified time   before all n  items have failed. The number of failures c  and all 
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failure times are random variables. The log-likelihood function, based on TIC, is given by 
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Then, the first partial derivatives of the log-likelihood are given by  
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  
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and equating these partial derivatives to zeros and solving simultaneously yield the ML 

estimators of   and   based on TIC. 

 

7.2. ML estimators in case of TIIC  

Consider (1) (2) ( )cX X X    be a TIIC sample of size n  observed from lifetime testing 

experiment whose lifetime have the pdf (4). The log-likelihood based on TIIC, is given by 

    2ln( , ) ln ( ) ln 1 ( ; ) 2 ( ) ln 1 2 ln
( ) c
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L n c G x n c c
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The first partial derivatives of 2ln( , )L   are given by 
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By solving 0U   and 0
K

U   numerically, the ML estimators of   and   are obtained. 

 

7.3. Numerical studies 
In this subsection, we provide numerical study to evaluate the performance of the ML 

estimates of the TLFr as sub model of the TL-G family based on TIC and TIIC schemes. The 

algorithm used here is outlined as follows: 

 A random sample of sizes 20,30,50,n   and 100  are generated from the TLFr 

distribution under TIC and TIIC. 
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 Select initial values for parameters as; ( 0.7, 0.3, 1.5)      and

( 1.2, 0.5, 1.2).      

 Two termination times are selected as 1.2   and 1.5.   The number of failure 

items; c, based on TIIC are selected as 60% and 80%.  

 This process is repeated 10,000 times and then obtains the means, biases and MSEs of 

the ML estimates. Empirical results are reported in Tables 2 and 3.  

 

Table 2 ML estimates, Biases and MSEs of TLFr distribution under TIC  

n  Parameter   
0.7, 0.3, 1.5     1.2, 0.5, 1.2      

ML

estimates

Bias MSE ML

estimates

Bias MSE

20 

  
1.2 0.7001 0.0001 0.0005 1.2006 0.0006 0.0058

1.5 0.7008 0.0008 0.0005 1.1993 −0.0006 0.0052

  1.2 0.3291 0.0291 0.0141 0.5390 0.0390 2.1941

1.5 0.3249 0.0249 0.0116 0.5731 0.0731 0.10251

  
1.2 1.6659 0.1659 0.3756 1.3884 0.1884 0.3776

1.5 1.6952 0.1952 0.4774 1.3552 0.1552 0.3269

30 

  
1.2 0.6993 −0.0006 0.0003 1.1979 −0.0020 0.0037

1.5 0.6989 −0.0010 0.0003 1.1983 −0.0016 0.0032

  1.2 0.3207 0.0207 0.0081 0.5547 0.0547 0.1311

1.5 0.3221 0.0221 0.0072 0.5425 0.0425 0.0274

  
1.2 1.6020 0.1020 0.2618 1.3168 0.1168 0.2001

1.5 1.6175 0.1175 0.2266 1.3097 0.1097 0.1876

50 

  
1.2 0.7001 0.0001 0.0001 1.2001 0.0001 0.0023

1.5 0.6991 −0.0008 0.0002 1.2008 0.0008 0.0022

  1.2 0.3084 0.0084 0.0032 0.5238 0.0238 0.0159

1.5 0.3124 0.0124 0.0034 0.5259 0.0259 0.0162

  
1.2 1.5607 0.0607 0.1320 1.2613 0.0613 0.1072

1.5 1.5614 0.0614 0.1242 1.2762 0.0762 0.1067

100 

  
1.2 0.7003 0.0003 0.0001 1.2009 0.0009 0.0011

1.5 0.7003 0.0003 0.0001 1.2000 0.0001 0.0010

  1.2 0.3039 0.0039 0.0016 0.5095 0.0095 0.0062

1.5 0.3039 0.0039 0.0015 0.5103 0.0103 0.0055

  
1.2 1.5273 0.0273 0.0592 1.2323 0.0323 0.0522

1.5 1.5347 0.0347 0.0581 1.2309 0.0309 0.0497

 

From Table 2 we conclude that as the sample size n  increases the MSE of ML estimates 

decrease. Also, as the termination time   increases, the MSE of estimates decreases. Based on 

Table 3, we can see that as the sample size n  increases the MSE of ML estimates decreases. 

Also, as the censoring level time ( )cX  increases, the MSE of ML estimates decreases. 
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Table 3 ML estimates, Biases and MSEs of TLFr distribution under TIIC  

n  Parameter ( )cX  
0.7, 0.3, 1.5     1.2, 0.5, 1.2    

ML

estimates

Bias MSE ML

estimates

Bias MSE

20 

  
%60  0.7003 0.0003 0.0012 1.2106 0.0106 0.0102

%80  0.7008 0.0008 0.0007 1.2099 0.0099 0.0065

  %60  0.3747 0.0747 0.6608 0.5435 0.0436 3.0435

%80  0.3448 0.0448 0.0570 0.5615 0.0615 0.0695

  
%60  1.9949 0.4949 3.1561 1.5920 0.3920 1.4584

%80  1.7739 0.2739 0.7319 1.4385 0.2385 0.5921

30 

  
%60  0.7011 0.0011 0.0007 1.2046 0.0046 0.0066

%80  0.7029 0.0029 0.0004 1.2045 0.0045 0.0041

  %60  0.3522 0.0522 0.0429 0.6031 0.1031 0.1397

%80  0.3167 0.0167 0.0084 0.5466 0.0466 0.0381

  
%60  1.8040 0.3040 0.8836 1.5184 0.3183 1.8815

%80  1.7030 0.2030 0.4078 1.3574 0.1574 0.2922

50 

  
%60  0.7009 0.0009 0.0005 1.2031 0.0031 0.0041

%80  0.7009 0.0009 0.0002 1.2029 0.0029 0.0025

  %60  0.3261 0.0261 0.0128 0.5438 0.0439 0.0345

%80  0.3104 0.0104 0.0047 0.5269 0.0269 0.0168

  
%60  1.6538 0.1538 0.3402 1.3363 0.1363 0.3108

%80  1.5901 0.0901 0.1932 1.3002 0.1002 0.1546

100 

  
%60  0.7016 0.0016 0.0002 1.1994 −0.0005 0.0019

%80  0.6998 −0.0001 0.0001 1.2017 0.0017 0.0013

  %60  0.3076 0.0076 0.0037 0.5280 0.0280 0.0152

%80  0.3075 0.0075 0.0021 0.5092 0.0092 0.0065

  
%60  1.5797 0.0797 0.1389 1.2742 0.0741 0.1006

%80  1.5460 0.0460 0.0744 1.2322 0.0322 0.0519

 

8. Data Analysis 

In this section, real data set is analyzed using MATHCAD package (Mathsoft 2010) to 

illustrate the merit of TLFr distribution compared to some models; namely, Frѐchet (Fr), 

exponentiated Frѐchet (EFr) (Nadarajah and Kotz 2003), Marshall-Olkin Frѐchet (MOFr) 

(Krishna et al. 2013), transmuted Frѐchet (TFr) (Mahmoud and Mandouh 2013), Kumaraswamy 

Frѐchet (KFr) (Mead and Abd-Eltawab 2014), transmuted Marshall-Olkin Frѐchet (TMOFr) 

(Afify et al. 2015) and the Weibull Frѐchet (WFr) (Afify et al. 2016). Their density functions for 

( 0)x  are given in Table 4. 

We obtain the ML estimates, and standard errors (SEs) of the model parameters. To compare 

the distribution models, we consider criteria like; minus two of log-likelihood function (-2lnL), 

Akaike information criterion (AIC), the corrected Akaike information criterion (AICc), the 

Bayesian information criterion (BIC), the Hannan-Quinn information criterion (HQIC). 

However, the better distribution corresponds to the smaller values of −2lnL, AIC, AICc, BIC and 

HQIC.  
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Table 4 The pdfs for some lifetime distributions  

Model The probability density function 
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The data set consists of 100 observations of breaking stress of carbon fibers (in Gba) given 

by Nichols and Padgett (2006) are stated below: 

0.39, 0.81, 0.85, 0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59, 

1.61, 1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12, 

2.17, 2.17, 2.17, 2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 

2.74, 2.76, 2.77, 2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09, 

3.11, 3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56, 

3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56. 

Table 5 gives the ML estimates of the eight models and their SEs. Values of, −2lnL, AIC, 

BIC, HQIC and AICc are recorded in Table 6. 
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Table 5 The ML estimates and SEs of the model parameters for the data set 

Model 
ML estimates  and SEs 

    a  b      

TLFr 
62.7080  

(43.6460) 
   

146.9610 

(103.9010) 

0.5180  

(0.0730) 

Fr 
1.8705 

(0.1120) 

1.7766 

(0.1130) 
    

EFr 
69.1489 

(57.3490) 

0.5019 

(0.0800) 

145.3275 

(122.9240) 
   

MOFr 
2.3066 

(0.4980) 

1.5796 

(0.1600) 

0.5988 

(0.3091) 
   

TFr 
1.9315 

(0.0970) 

1.7435 

(0.0760) 
 

0.0819 

(0.1980) 
  

KFr 
2.0556 

(0.0710) 

0.4654 

(0.0070) 

6.2815 

(0.0630) 

224.1800 

(0.1640) 
  

TMOFr 
0.6496 

(0.0680) 

3.3313 

(0.2060) 

101.923 

(47.625) 

0.2936 

(0.2700) 
  

WFr 
0.6942 

(0.3630) 

0.6178 

(0.2840) 

0.0947 

(0.4560) 

3.5178 

(2.9420) 
  

 

Table 6 The values of −2lnL, AIC, BIC, HQIC and AICc for the data set 

Model 
Goodness of fit criteria 

−2lnL AIC BIC HQIC AICc 

TLFr 286.246 292.246 292.246 295.409 292.496 

Fr 344.300 348.300 353.500 350.400 348.400 

EFr 289.700 295.700 303.500 298.900 296.000 

MOFr 345.300 351.300 359.100 354.500 351.600 

TFr 344.500 350.500 358.300 353.600 350.700 

KFr 289.100 297.100 307.500 301.300 297.500 

TMOFr 302.000 310.000 320.400 314.200 310.400 

WFr 286.600 294.600 305.000 298.800 295.000 

 

We find that the TLFr distribution with three parameters provides a better fit than the 

proposed seven models. It has the smallest AIC, BIC, HQIC and AICc values among those 

considered here. 

Moreover, the plots of empirical cdf of the data set and probability-probability (PP) plots of 

TLFr, WFr, EFr, KFr, TMOFr, Fr, TFr and MOFr models are displayed in Figures 6 and 7, 

respectively. 
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Figure 6 Estimated pdf and cdf for the data set of models for the data set 

 

   

   

  

Figure 7 PP plots of the fitted models for the data set 
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Also from Figures 6 and 7, we can see the TLFr distribution provides a better fit than the 

competitive models. 

 

9. Summary and Conclusions 

In this paper, a new [0,1] truncated Lomax distribution is introduced. Based on the new 

truncated Lomax distribution, we propose a new truncated class of probability distributions called 

truncated Lomax-G family. Four special sub-models are presented. We investigate several 

structural properties of the family, such as, linear representations for the density function and 

cumulative distribution function, expressions for the ordinary moments, generating function and 

order statistics. The model parameters are estimated by the maximum likelihood method in case 

of complete and censored samples. A simulation study reveals that the estimates of one sub-

model have desirable properties such as, (i) the maximum likelihood estimates are not too far 

from the true parameter values; (ii) the biases and mean square errors of estimates in case of 

complete sample are smaller than the corresponding in censored samples; and (iii) the biases and 

the mean square error values decreases as the sample size increases. An application to a real life 

data shows that the truncated Lomax Frѐchet distribution is a strong and better competitor for the 

Frѐchet distribution, exponentiated Frѐchet distribution, Marshall-Olkin Frѐchet distribution, 

transmuted Frѐchet distribution, Kumaraswamy Frѐchet distribution, transmuted Marshall-Olkin 

Frѐchet distribution and the Weibull Frѐchet distribution. 
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