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Abstract

In this paper, a new truncated distribution related to Lomax distribution is introduced. The
proposed distribution is referred to as upper-truncated Lomax distribution. Our purpose in this
study includes introducing a new family of probability distributions based on the new [0,1]
truncated Lomax distribution. Statistical properties of the [0,1] truncated Lomax-G family like;
moments, moment generating function, probability weighted moments, quantile function, order
statistics and Rényi entropy are derived. Some sub-models of the family like; truncated Lomax-
uniform, truncated Lomax-linear failure rate, truncated Lomax-Fréchet and truncated Lomax-
power function distributions are discussed. We discuss the estimation of the model parameters
via maximum likelihood method in case of complete and censored samples. Furthermore, a
simulation study is provided to evaluate the validity of maximum likelihood estimates for one
sub-model. Finally, analysis of real data set, representing the breaking stress of carbon fibers, is
conducted to demonstrate the usefulness of truncated Lomax-Fréchet distribution compared with
some competitor distributions.

Keywords: Truncated distributions, Lomax distribution, orders statistics, maximum likelihood method,
censored samples.

1. Introduction

Recently, generated families of distributions have attracted the attention of several authors.
Some of the generators are the beta-G (Eugene et al. 2002), Kumaraswamy-G (Cordeiro and de
Castro 2011), exponentiated generalized-G (Cordeiro et al. 2013), transformed—transformer
(Alzaatreh et al. 2013), Weibull-G (Bourguignon et al. 2014), exponentiated half-logistic-G
(Cordeiro et al. 2014a), Lomax-G (Cordeiro et al. 2014b), the beta odd log-logistic generalized-
G (Cordeiro et al. 2016), exponentiated Weibull-G (Hassan and Elgarhy 2016a), Kumaraswamy
Weibull-G (Hassan and Elgarhy 2016b), additive Weibull-G (Hassan and Hemeda 2016),
exponentiated extended-G (Elgarhy et al. 2017), Type II half logistic-G (Hassan et al. 2017a),
generalized additive Weibull-G (Hassan et al. 2017b), [0,1] truncated Fréchet-G (Abid and
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Abdulrazak 2017), Lomax-R{Y} (Mansoor et al. 2017), odd Frechet-G (Haq and Elgarhy 2018),
inverse Weibull-G (Hassan and Nassr 2018), and power Lindley-G (Hassan and Nassr 2019)
among others.

The truncated distributions have been extensively applied, essentially in life-testing and
reliability studies. Truncated form of a distribution is results from applying bound on the range
of the distribution so that it is defined properly on a subset of the original range. Hence, truncated
distributions are utilized in ways where occurrences are limited to values which lie above or
below a given threshold or within a specified range. The lower (left) truncated distribution is
obtained if occurrences are limited to values which lie below a given threshold. On the other
hand, the upper (right) truncated distribution arises if the occurrences are limited to values which
lie above a given threshold.

The Lomax distribution has been widely applied in some areas, such as, analysis of income
and wealth data, modeling business failure data, biological sciences, model firm size and queuing
problems (see for example Harris 1968, Atkinson and Harrison 1978, and Hassan and Al-Ghamdi
2009). The cumulative distribution function (cdf) and probability density function (pdf) of the
Lomax distribution are given, respectively, by

F,(t;a,A)=1-A"(A+1)", t,a,A>0,
and
f,(ta, ) =ad* (A+1)"“,
where o and A are the shape and scale parameters respectively. Let 4 =1 then, we can write
the pdf and cdf of the Lomax distribution with one parameter ¢ as follows:

G, (ta)y=1-(1+1)"", t,a>0,

and

a+1)

g (o) =a(l+n)!
Three motivations are considered here. Firstly, a new upper ([0,1]) truncated Lomax
distribution is introduced. Secondly, we propose a new upper ([0,1]) truncated family of
probability distribution based on ([0,1]) truncated Lomax distribution. Thirdly, we derive some
of its statistical properties besides estimating the model parameters based on complete and
censored samples. This paper is organized as follows: in Section 2, [0,1] truncated Lomax
distribution is introduced. Sections 3 and 4 define [0,1] Lomax-G and investigate some of its
general statistical properties respectively. In Section 5, some new sub- models of proposed family
are considered. In Sections 6 and 7 the maximum likelihood (ML) estimators and simulation
issues of the truncated Lomax Fréchet parameters via complete and censored samples are
discussed, respectively. Real data example is presented in Section 8 and article ends with
concluding remarks.

2. Truncated Lomax Distribution
In this section, we introduce the [0,1] truncated Lomax (TL) random variable.

Definition A4 random variable T has the [0,1] TL distribution with parameter o, say TL(@), if
its pdf has the following form
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g o+
G,La)-G,(0;a) 1-27¢

FTL(Z‘;OK) , O<t<la>0, (1)

where g, (t;a) and G, (t;&x) are, respectively, the pdf and the cdf of the Lomax random variable

T with parameter a.

The cdf corresponding to (1) is as follows
t
[ e aar _G,(:0)-G, (%) _1-(1+1)"
G, La)-G,(0,) G,(La)-G,(0;) -2
The survival function and hazard rate function (hrf) of the [0,1] TL are, respectively, given by,

R, (t;a)= 2)

— A+ “=27¢
R, (t;,a)=——F——,
() =0
and
a(l+1) "
hTL(t;a):%'
(A+1)“ -2

A variety of possible shapes of the pdf and the hrf of the [0,1] TL distribution for some
choices of values of parameters are represented in Figure 1.
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Figure 1 Plots of: (a) 7, (#;a) and (b) A, (t;c) of the [0,1] TL distribution

It can be detected from Figure 1 that the pdf shape can be uni-model, reversed J-shaped and
right skewed. Also, the shape of the hrf of the [0,1] TL distribution could be increasing, and J-
shaped. Furthermore; reversed hrf and cumulative hrf are, respectively, given by

a(l+1) @
7 () Z(—),aa
1-(1+7¢)
and
A+ =27
HTL(t;a):_ln[T .
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3. [0,1] Lomax-G Family

In this section, a new truncated family of distribution is introduced based on [0,1] TL
distribution. Expansions of its pdf and cdf are obtained. Also, the quantile function is derived.
The cdf of the truncated Lomax-G (TL G) family is defined as

(a+1)
Fu o) = j % = A1-(1+6:0) ). ©)

where o >0, 4= %,5 is the parameter vector and G(x;¢) is the cdf of any distribution.

A random variable X that has cdf (3) will be denoted by X ~TL—-G. The pdf
corresponding to (3) is as
fro(®a,) = adg(xd)(1+Gx&)) @)
where g(x;&) is pdf corresponding to cdf G(x;&) The survival function; say Fr-c (xa,8)
and hrf, say 4, _;(x;a,¢&), are respectively, given by

Froo(xa,)=1-4(1-(1+G(x:9) "),
and
adg(x9)(1+G(x8)
= A(1-(1+G(s6) )

respectively. Expansion of the pdf (4) is obtained by using the following generalized binomial
series

hnﬁc (X; a, 5) =

i=0

2 (fa+i-1)_.
1+2)y“ =Y (-1 [a ! ]Z’, a>0 and |Z|<1. (5)
i
Employing (5) in (4), the pdf of TL-G distribution, where « is real, becomes
fre(x0.8) Zﬂ,g(x HG(x;E), (6)

(a+l
where 7, = Aa(-1)'| .
i

] Also, an expansion for [ i G(x;a,(f)]h is obtained, when /% is an

integer as follows

[ n-c(xa, ‘f) ZS G(x;6), (7

b ()i
S, = A" (-1) ’[ .][0” ]
=0 J k

The quantile function, say Qu) of X is obtained by inverting (3), as follows

0., =G {[1 -2 )u] —1}

where u is a uniform random variable on the interval (0,1) and G'(x;&) is the inverse cdf of

where
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G(x;).

4. Main Properties of the TL-G Family
This section provides some statistical properties of the TL-G family of distributions.

4.1. Probability weighted moments

The class of probability weighted moments (PWM) is primarily used in estimating the
parameters of a distribution whose inverse cannot be expressed explicitly. For a random variable
Xits PWM, denoted by 7, , is defined as

©

t = E(X [Fys (O] )= [ ¥ oo @.O)[ Fy o (a8 d. @®)

—o0

The PWM of the TL-G is obtained by inserting (6) and (7) in (8), as follows
= S [ ex 60
Then, | h
T = Z ST ik

where

©

7ok = | X E(r G .

—00

4.2. Moments and moment generating function
The " moment of a random variable X having TL-G distribution is obtained as follows

= EX) = [ ¥ fr o dde =3, [ ¥ g6 )66 d.

—0 —0

Then,

o0
! p—
H. = Z’]{Tr,i’
i=0

For arandom variable X it is known that, the moment generating function (MGF) is defined
by

o0 t}" ,
M, (t)= Z—',u,,.
r=0 1"

So, the MGF of the TL-G distributions is as follows

0 r

t
MX(t) = z ;niz-r.i'

i,r=0

4.3. Order statistics
Let X,,X,,....,X, be independent and identically distributed random variables with

continuous distribution function F(x). Let X, < X, <...< X, be the corresponding ordered
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random sample from a population of size n. The pdf of the " order statistic is defined as

S (,(x a,8) R m| BT . mar—1
S, (sad) =g +l)Z( )( JFTL_Gu,a,é) , ©)

where B (,) is the beta function. The pdf of the " order statistic of TL-G family is derived by
substituting (6) and (7) in (9), replacing & with m+r—1

G f) = EE S Gy, (10)

B(r n— r+1)m 0i,k=
where C :(—1)”’[n_r]77[Sk,g(x;§), and G(x;&) are the pdf and cdf of any baseline
m

distribution.
Further, the m™ moment of the ™ order statistic for the TL-G distribution is defined by

©

E(X()= jxm (i, E)dx. (11)
By substituting (10) in (11), then
EX" ——H 3 C*wx'” X E)G(x; E) dx.
X = prm D & Z j 258G (%)
Then,

1 n-r 0

E(X(’,))Zmz z CTm’Hk.

J=0i,tk,1=0

4.4. Rényi entropy
An entropy is a measure of variation or uncertainty of a random variable X. The Rényi
entropy of X with pdf (4) is defined by

1,(X)= %log [, dx, 6>0 and 5#1.

Now, we are considering the generalized binomial theory in the pdf (4), then the pdf
S (x;a,&)° can be expressed as follows:

o (ua.&) = ng<x; £’ Gx8) .

S+ +i-1

where C, = (—l)i(Aa)J[
i

]. Therefore, the Rényi entropy of the TL-G family of
distributions is given by

1;(X) = 1og2c j g8’ Glx:éY dx.

5. Sub-Models
In this section, we define and describe four sub-models of the TL-G namely, TL-uniform,
TL-linear failure rate, TL-Fréchet, and TL-power function distributions.
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5.1. TL-uniform distribution
For g(x;0) = é,O <x<6, and G(x;0) :% the pdf of the TL-uniform (TLU) is derived
from (4) as follows
fiu(a,0) —ﬂ(nfjm 0<x<6
TLU Ehd) 6 6 ) .

The corresponding cdf takes the following form

ol (XY
FTLU(x,a,H)—A[l (1+0J ]

The hrf of the TLU is given by

miseo- 3 |3 )]

Plots of the pdf and hrf for the TLU are displayed in Figure 2.
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Figure 2 Plots of (a) f;,,(x;a,0) and (b) hrf 7, (x;,0) of the TLU distribution

5.2. TL-linear failure rate distribution
b s

Let us consider the linear failure rate distribution with pdf, g(x;a,b) = (a+bx)eim2x .

VL
x,a,b>0 and cdf;, G(x;a,b)=1—e % , hence we obtain the TL-linear failure rate (TLLFR)

density function as
7axféxz 7axféxz o
S (s a,a,b) = Aa(a+bx)e 2 [Z—e 2 ] ,x,a,b>0.

The cdf and hrf of the TLLFR distribution are given, respectively, by
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*HX*EXZ “
FTLLFR(x;a,a,b)ZA[l—[z_e 2 ] ]’
and

be —ax-be o —ax-be -
x;a,a,b) = Aa(a+bx)e 2 |2—e 2 1-A4|1-|2—-¢ 2
LLFR

Plots of the pdf and hrf for the TLLFR are displayed in Figure 3.
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Figure 3 Plots of (a) fi; m (X;,a,b) and (b) Ay, (X;,a,b) of the TLLFR distribution

5.3. TL-Freéchet distribution

(uY
We consider the Fréchet distribution with pdf: g(x;1,8) = u’x e [X] ,X, 1,0 >0 and

(Y
cdf G(x;p,0)=e (Xj , hence the TL-Fréchet (TLFr) density function is as

—a-1

Jrp(Ga, 1,0) = Aa(gﬂﬁxi&lei(fj 1+ e*(f) ,X, 1,0 > 0.

The cdf and hrf of the TLFr distribution are given, respectively, by

5\~

Fp (0, 1,6) = 4| 1- 1+e7[§] ,

TLFr

and
J s\—a-1 N
hmr()‘;“’ﬂﬁ)=Aa5ﬂ"‘x*"”e{§] (I‘Fe(ij ] 1-4 1—[1+e@ J

Plots of pdf and hrf for the TLFr are displayed in Figure 4.
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Figure 4 Plots of (a) f. ;. (x;a,4,0) and (b) Ay, (x;a,1,0) of the TLFr distribution

5.4. TL-power function distribution

-1 y;
For g(x;ﬂ,y)zg(fj ,0<x<y, B,y>0 and G(x;ﬂ,y)z[%j , we obtain the TL-

power function (TLPF) density function as

-1 AN
fTLPF(x;aﬁﬂﬁ}/):L“ﬂ(ij {1+(£j ] ,0<x<y.
vy o\r Ve

The cdf and hrf of the TLPF distribution are given, respectively, by

AN
X
Fipe(xa,B,y)=A4 l—{l-;-(;j \J )

ot ) A
I (X0, B,y) =—aff| — I+ — 1-A4|1-|1+| —
e e e e

Plots of the pdf and hrf for the TLPF are displayed in Figure 5.

and

6. Parameter Estimation Based on Complete Samples

In this section, we obtain the maximum likelihood (ML) estimators of the TL-G family in
case of complete samples and simulation study is implemented to examine the performance of
the ML estimates.
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Figure 5 (a) fr (5 x, B,7) and (b) Ay (x50, B,7) of the TLPF distribution

6.1. Maximum likelihood estimators
Let X, X,,...,X, be the observed values from the TL-G family with set of parameter

® = (a,&)". The log-likelihood function for parameter vector @ = (a,&)" is obtained as follows

In(L,®)=nlna —nln(1—2"’)+zn:lng(xi;§) —(a+1)zn:ln[1+G(x,.;§)].

i=1

The partial derivatives of the log-likelihood function with respect to & and & components of

the score vector U, =(U,,U,, )" can be obtained as follows:

1 n
U, =2 B2 Y 1+ G )
and
RyACHIN G/ (x;¢&)
S g(x;é) )zl +G(x;E)

where g, (x;;8) =0g(x;;$)/ 0&, and G| (x,;6) =0G(x;;¢)/0&,. Setting U, and U, equal to

zeros and solving these equations simultaneously yield the ML estimators cf):(o},f)f of
® = (a,&)". Unfortunately these equations cannot be solved analytically and numerical iterative

methods can be employed to solve them.

6.2. Simulation study

The performance of the ML estimates is assessed in terms of the sample size n. A numerical
evaluation is carried out to examine the performance of the ML estimates for TLFr model. The
ML estimates are evaluated based on biases and mean square errors (MSEs). The simulation
procedure is achieved via the MATHEMATICA package (Wolfram Research 2014). The
simulation algorithm for generating random samples from TLFr distribution and ML estimates
from those samples are shown as below:
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= Arandom sample X,,X,,...,X, ofsizes; n=20,30,50 and 100 are considered, these
random samples are generated from the TLFr distribution by using inversion method.

= The values of parameters are considered as(a¢=0.7,£=0.3,0=1.5)and (a=1.2,
#=0.5,0=1.2). The ML estimate of the TLFr model is evaluated based on parameters

value and sample sizes.

= The process is repeated 10,000 times and then we obtain the means, biases and MSEs
of the ML estimates for values of model parameters. Empirical results are reported in
Table 1.

Table 1 ML estimates, Bias and MSE of the TLFr model parameters

n Parameter a=0.7,u=03,6=1.5 a=12,u=05,6=12

ML Bias MSE ML Bias MSE

a 0.7004 0.0004 0.0004 1.2028 0.0028 0.0041

20 H 0.3232 0.0232 0.0091 0.5423 0.0423 0.0295
1) 1.6792 0.1792 0.4033 1.3520 0.1520 0.2758

a 0.7008 0.0008 0.0003 1.2019 0.0019 0.0026

30 H 0.3122 0.0122 0.0052 0.5264 0.0264 0.0160
S 1.6034 0.1034 0.2209 1.3008 0.1008 0.1638

a 0.7002 0.0002 0.0001 1.2012 0.0012 0.0015

50 H 0.3068 0.0068 0.0025 0.5142 0.0142 0.0083
1) 1.5577 0.0577 0.1141 1.2560 0.0560 0.0824

a 0.7001 0.0001 0.0001 1.2002 0.0001 0.0008

100 H 0.3047 0.0047 0.0012 0.5083 0.0083 0.0041
o 1.5419 0.0419 0.0560 1.2288 0.0288 0.0386

We can detect from Table 1 that the estimates are quite stable and are close to the true value
of the parameters as the sample sizes increase.

7. Parameter Estimation Based on Censoring Samples

In reliability or lifetime testing experiments, most of the encountered data are censored due
to various reasons such as time limitation, cost or other resources. Here, we discuss estimation
of population parameters of the TL-G distributions based on two censoring schemes; namely,
Type I and Type II. In Type-I censoring (TIC), we have a fixed time say; @, but the number of
items fail during the experiment is random. Whereas, in Type-II censoring (TIIC) scheme, the
experiment is continued (i.e., time varies) until the specified number of failures ¢ occurs.

7.1. ML estimators in case of TIC
Suppose that n items, whose lifetime’s follow TL-G are placed on a life test, and the test is
terminated at specified time @ before all n items have failed. The number of failures ¢ and all
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failure times are random variables. The log-likelihood function, based on TIC, is given by

In(L,,®)=1In

( " )'+(n—c)1n((1+G(w;§))‘“—2-“)—(n—c)ln(l—z-“)+c1na
n—c)!

Celn(1-2)+ iln 2(x,: )~ (a+ 1)2111[1 Gl ) |

Then, the first partial derivatives of the log-likelihood are given by

c -)(1+G(@;8)) “ In(1+G(w;6) -2 In2
U= E I S ] 0006 ) {1 G2 n2)
a 1-2 P (1+G(w;&)) " =27

and
ACHS (=0 (1+G(@;8) " Gy (w;8)
) Ledws) S
5 g(x, §) 1+G(x §) (1+G(a;6)) " -2
and equating these part1a1 derivatives to zeros and solving simultaneously yield the ML
estimators of ¢ and & based on TIC.

7.2. ML estimators in case of TIIC
Consider X, <X, <...<X, beaTIIC sample of size n observed from lifetime testing

experiment whose lifetime have the pdf (4). The log-likelihood based on TIIC, is given by

( n! )'+(n—c)1n((1+G(x(c);§))_a _2‘“)_(;1—c)ln(l—z_“)+cln0!
n—c)!

~eln(1-2)+ Y in g1 (@ +1) Y n[14.G(x 6]

In(L,,®)=1n

The first partial derivatives of In(L,, D) are given by
(n— c)(l + G(x(c);f))i 1n(1 +G(x,:6)-2"In 2)

U, =<2 S 14 Gl 6) ,
(24 1-27 ¢ ; |: :| (1+G(x(£);§))7a _2—(1
and
g (%, Gl &) (n-0a(1+G ;8 GuT:é)
UQ:Z )Zl G( ( = 2 - .
8(x, f) +G(x, f) (1+G(x(c);‘§)) _p

By solving U, =0 and U, =0 numerically, the ML estimators of & and & are obtained.

7.3. Numerical studies
In this subsection, we provide numerical study to evaluate the performance of the ML

estimates of the TLFr as sub model of the TL-G family based on TIC and TIIC schemes. The

algorithm used here is outlined as follows:
= A random sample of sizes n=20,30,50, and 100 are generated from the TLFr

distribution under TIC and TIIC.
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Select initial values for parameters as; (¢=0.7,4=03,0=15) and
(=12,14=0.5,0=1.2).

Two termination times are selected as w=1.2 and @ =1.5. The number of failure
items; ¢, based on TIIC are selected as 60% and 80%.

This process is repeated 10,000 times and then obtains the means, biases and MSEs of
the ML estimates. Empirical results are reported in Tables 2 and 3.

Table 2 ML estimates, Biases and MSEs of TLFr distribution under TIC

a=0.7,u=03,0=15 a=12,u=05,06=12
n  Parameter @ : :
ML Bias MSE ML Bias MSE
o 1.2 0.7001 0.0001 0.0005 1.2006 0.0006 0.0058
1.5 0.7008 0.0008 0.0005 1.1993  —0.0006 0.0052
20 u 1.2 0.3291 0.0291 0.0141 0.5390 0.0390 2.1941
1.5 0.3249 0.0249 0.0116 0.5731 0.0731  0.10251
S 1.2 1.6659 0.1659 0.3756 1.3884 0.1884 0.3776
1.5 1.6952 0.1952 0.4774 1.3552 0.1552 0.3269
o 1.2 0.6993  —0.0006 0.0003 1.1979  —0.0020 0.0037
1.5 0.6989  —0.0010 0.0003 1.1983  —0.0016 0.0032
30 u 1.2 0.3207 0.0207 0.0081 0.5547 0.0547 0.1311
1.5 0.3221 0.0221 0.0072 0.5425 0.0425 0.0274
S 1.2 1.6020 0.1020 0.2618 1.3168 0.1168 0.2001
1.5 1.6175 0.1175 0.2266 1.3097 0.1097 0.1876
o 1.2 0.7001 0.0001 0.0001 1.2001 0.0001 0.0023
1.5 0.6991  —0.0008 0.0002 1.2008 0.0008 0.0022
50 P 1.2 0.3084 0.0084 0.0032 0.5238 0.0238 0.0159
1.5 0.3124 0.0124 0.0034 0.5259 0.0259 0.0162
S 1.2 1.5607 0.0607 0.1320 1.2613 0.0613 0.1072
1.5 1.5614 0.0614 0.1242 1.2762 0.0762 0.1067
o 1.2 0.7003 0.0003 0.0001 1.2009 0.0009 0.0011
1.5 0.7003 0.0003 0.0001 1.2000 0.0001 0.0010
100 u 1.2 0.3039 0.0039 0.0016 0.5095 0.0095 0.0062
1.5 0.3039 0.0039 0.0015 0.5103 0.0103 0.0055
S 1.2 1.5273 0.0273 0.0592 1.2323 0.0323 0.0522
1.5 1.5347 0.0347 0.0581 1.2309 0.0309 0.0497

From Table 2 we conclude that as the sample size n increases the MSE of ML estimates

decrease. Also, as the termination time @ increases, the MSE of estimates decreases. Based on

Table 3, we can see that as the sample size n increases the MSE of ML estimates decreases.

Also, as the censoring level time X, increases, the MSE of ML estimates decreases.
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Table 3 ML estimates, Biases and MSEs of TLFr distribution under TIIC

a=0.7,u=03,6=1.5 a=12,u4=0506=12
n  Parameter X, - -
ML Bias MSE ML Bias MSE
« 60% 0.7003 0.0003 0.0012 1.2106 0.0106 0.0102
80% 0.7008 0.0008 0.0007 1.2099 0.0099 0.0065
20 U 60% 0.3747 0.0747 0.6608 0.5435 0.0436 3.0435
80% 0.3448 0.0448 0.0570 0.5615 0.0615 0.0695
s 60% 1.9949 0.4949 3.1561 1.5920 0.3920 1.4584
80% 1.7739 0.2739 0.7319 1.4385 0.2385 0.5921
« 60% 0.7011 0.0011 0.0007 1.2046 0.0046 0.0066
80% 0.7029 0.0029 0.0004 1.2045 0.0045 0.0041
30 U 60% 0.3522 0.0522 0.0429 0.6031 0.1031 0.1397
80% 0.3167 0.0167 0.0084 0.5466 0.0466 0.0381
S 60% 1.8040 0.3040 0.8836 1.5184 0.3183 1.8815
80% 1.7030 0.2030 0.4078 1.3574 0.1574 0.2922
a 60% 0.7009 0.0009 0.0005 1.2031 0.0031 0.0041
80% 0.7009 0.0009 0.0002 1.2029 0.0029 0.0025
50 U 60% 0.3261 0.0261 0.0128 0.5438 0.0439 0.0345
80% 0.3104 0.0104 0.0047 0.5269 0.0269 0.0168
S 60% 1.6538 0.1538 0.3402 1.3363 0.1363 0.3108
80% 1.5901 0.0901 0.1932 1.3002 0.1002 0.1546
« 60% 0.7016 0.0016 0.0002 1.1994  —0.0005 0.0019
80% 0.6998  —0.0001 0.0001 1.2017 0.0017 0.0013
100 u 60% 0.3076 0.0076 0.0037 0.5280 0.0280 0.0152
80% 0.3075 0.0075 0.0021 0.5092 0.0092 0.0065
S 60% 1.5797 0.0797 0.1389 1.2742 0.0741 0.1006

80% 1.5460 0.0460 0.0744 1.2322 0.0322 0.0519

8. Data Analysis

In this section, real data set is analyzed using MATHCAD package (Mathsoft 2010) to
illustrate the merit of TLFr distribution compared to some models; namely, Fréchet (Fr),
exponentiated Fréchet (EFr) (Nadarajah and Kotz 2003), Marshall-Olkin Fréchet (MOFr)
(Krishna et al. 2013), transmuted Fréchet (TFr) (Mahmoud and Mandouh 2013), Kumaraswamy
Fréchet (KFr) (Mead and Abd-Eltawab 2014), transmuted Marshall-Olkin Fréchet (TMOFr)
(Afify et al. 2015) and the Weibull Fréchet (WFr) (Afify et al. 2016). Their density functions for
(x> 0) are given in Table 4.

We obtain the ML estimates, and standard errors (SEs) of the model parameters. To compare
the distribution models, we consider criteria like; minus two of log-likelihood function (-2InL),
Akaike information criterion (AIC), the corrected Akaike information criterion (AICc), the
Bayesian information criterion (BIC), the Hannan-Quinn information criterion (HQIC).
However, the better distribution corresponds to the smaller values of —2InL, AIC, AICc, BIC and
HQIC.
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Table 4 The pdfs for some lifetime distributions
Model The probability density function

a

B
Fr So (v, )= ,B’Otf’x’('g“)ei(;j ; x,a,8>0.

a ’ a-l a g
EFr  fu.(xa,B.a)=apa’ [1 —e_[;) ] x_(”ﬂ)e_[;j ix,a, f,a>0.

a s a s -
MOFr fMOFr(x;a,,B,a):aﬂaﬂx’ﬂ’lei(;) {a+(l—a)e(")} ; x,a, f,a>0.

) )
TFr [ (6@, B,0) = fa’x " e’ ) {1+b—2be ) };x,a,ﬂ,b>0.

b-1
KFr . (x;a,ﬂ,a,b) — abﬂaﬂx*ﬂfle—a(a/x)ﬁ [1 _ efa(a/x)/f :| v foab > 0.

fTMOFr (x;a>ﬁ5a5b) = aﬂaﬁx_ﬁ_l {a +(1 —a)e_(”

TMOFr T
a+(l-a)e
;x,a, B,a,b>0.
—b-1 -b

fom (X300, B,a,b) = abﬂaﬂx’ﬂ’le_b(m)ﬁ |—e (@ exp| —alel —1

WF WFr p

r

;x,a, B,a,b>0.

The data set consists of 100 observations of breaking stress of carbon fibers (in Gba) given
by Nichols and Padgett (2006) are stated below:
0.39, 0.81, 0.85,0.98, 1.08, 1.12, 1.17, 1.18, 1.22, 1.25, 1.36, 1.41, 1.47, 1.57, 1.57, 1.59, 1.59,
1.61,1.61, 1.69, 1.69, 1.71, 1.73, 1.80, 1.84, 1.84, 1.87, 1.89, 1.92, 2.00, 2.03, 2.03, 2.05, 2.12,
2.17,2.17,2.17,2.35, 2.38, 2.41, 2.43, 2.48, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73,
2.74,2.76,2.77,2.79, 2.81, 2.81, 2.82, 2.83, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 2.97, 3.09,
3.11,3.11, 3.15, 3.15, 3.19, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.51, 3.56,
3.60, 3.65, 3.68, 3.68, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90, 4.91, 5.08, 5.56.

Table 5 gives the ML estimates of the eight models and their SEs. Values of, —2InL, AIC,
BIC, HQIC and AICc are recorded in Table 6.
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Table 5 The ML estimates and SEs of the model parameters for the data set
ML estimates and SEs

Model o B P b 7 5
TLFr 62.7080 146.9610  0.5180
(43.6460) (103.9010) (0.0730)
Fr 1.8705 1.7766
(0.1120)  (0.1130)
EFr 69.1489 0.5019 145.3275
(57.3490) (0.0800) (122.9240)
2.3066 1.5796 0.5988
MOFr (0.4980) (0.1600) (0.3091)
TFr 1.9315 1.7435 0.0819
(0.0970)  (0.0760) (0.1980)
KFr 2.0556 0.4654 6.2815 224.1800
(0.0710)  (0.0070) (0.0630)  (0.1640)
0.6496 3.3313 101.923 0.2936
TMOFT (0.0680)  (0.2060) (47.625)  (0.2700)
WFr 0.6942 0.6178 0.0947 3.5178

(0.3630)  (0.2840)  (0.4560)  (2.9420)

Table 6 The values of —2InL, AIC, BIC, HQIC and AICc for the data set

Goodness of fit criteria

Model
—2InL AIC BIC HQIC AlCc
TLFr 286.246 292.246 292.246 295.409 292.496
Fr 344.300 348.300 353.500 350.400 348.400
EFr 289.700 295.700 303.500 298.900 296.000
MOFr 345.300 351.300 359.100 354.500 351.600
TFr 344.500 350.500 358.300 353.600 350.700
KFr 289.100 297.100 307.500 301.300 297.500
TMOFr 302.000 310.000 320.400 314.200 310.400
WFr 286.600 294.600 305.000 298.800 295.000

We find that the TLFr distribution with three parameters provides a better fit than the
proposed seven models. It has the smallest AIC, BIC, HQIC and AICc values among those
considered here.

Moreover, the plots of empirical cdf of the data set and probability-probability (PP) plots of
TLFr, WFr, EFr, KFr, TMOFr, Fr, TFr and MOFr models are displayed in Figures 6 and 7,
respectively.
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Figure 6 Estimated pdf and cdf for the data set of models for the data set

TLFr Model WFr Model EFr Model

Exp

Ep

0a
AN

W

.
04
AN

AN

.
os
%\\
%o N\

% N\
%ﬁ'%

o 3;"” o // o 8
o o < e
e
i f{f ) / ) i’ﬂ
T T ° T °
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
b Obs Ob
TFr Model MOFr Model
e - S
S /!

Obs obs

Figure 7 PP plots of the fitted models for the data set
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Also from Figures 6 and 7, we can see the TLFr distribution provides a better fit than the
competitive models.

9. Summary and Conclusions

In this paper, a new [0,1] truncated Lomax distribution is introduced. Based on the new
truncated Lomax distribution, we propose a new truncated class of probability distributions called
truncated Lomax-G family. Four special sub-models are presented. We investigate several
structural properties of the family, such as, linear representations for the density function and
cumulative distribution function, expressions for the ordinary moments, generating function and
order statistics. The model parameters are estimated by the maximum likelihood method in case
of complete and censored samples. A simulation study reveals that the estimates of one sub-
model have desirable properties such as, (i) the maximum likelihood estimates are not too far
from the true parameter values; (ii) the biases and mean square errors of estimates in case of
complete sample are smaller than the corresponding in censored samples; and (iii) the biases and
the mean square error values decreases as the sample size increases. An application to a real life
data shows that the truncated Lomax Fréchet distribution is a strong and better competitor for the
Fréchet distribution, exponentiated Fréchet distribution, Marshall-Olkin Fréchet distribution,
transmuted Fréchet distribution, Kumaraswamy Fréchet distribution, transmuted Marshall-Olkin
Fréchet distribution and the Weibull Fréchet distribution.

Acknowledgments
The authors would like to thank the editor and the anonymous referees, for their valuable
and very constructive comments, which have greatly improved the contents of the paper.

References

Abid SH, Abdulrazak RK. [0,1] truncated Fréchet-G generator of distributions. Appl Math. 2017,
7(3): 51-66.

Afify AZ, Hamedani GG, Ghosh I, Mead ME. The transmuted Marshall-Olkin Fréchet
distribution: properties and applications. Int J Stat Prob. 2015; 4(4): 132-148.

Afify AZ, Yousof HM, Cordeiro GM, Ortega EMM, Nofal ZM. The Weibull Fréchet distribution
and its applications. J Appl Stat. 2016; 43(14): 2608-2626.

Alzaatreh A, Lee C, Famoye F. A new method for generating families of continuous
distributions. Metron. 2013; 71(1): 63-79.

Atkinson AB, Harrison AJ. Distribution of personal wealth in Britain. New York: Cambridge
University Press; 1978.

Bourguignon M, Silva RB, Cordeiro GM. The Weibull-G family of probability distributions. J
Data Sci. 2014; 12(1): 53-68.

Cordeiro GM, de Castro M. A new family of generalized distribution. J Stat Comput Sim. 2011;
81(7): 883-898.

Cordeiro GM, Alizadeh M, Ortega EMM. The exponentiated half-logistic family of distributions:
properties and applications. J Prob Stat. 2014a; 1-21.

Cordeiro GM, Ortega EMM, da Cunha DCC. The exponentiated generalized class of
distributions. J Data Sci. 2013; 11(1): 1-27.



214 Thailand Statistician, 2020; 18(2): 196-214

Cordeiro GM, Ortega EMM, Popovic BV, Pescim RR. The Lomax generator of distributions:
properties, minification process and regression model. Appl Math Comput. 2014b; 247: 465-
486.

Cordeiro GM, Alizadeh M, Tahir MH, Mansoor M, Bourguignon M, Hamedani GG. The beta
odd log-logistic generalized family of distributions. Hacet J] Math Stat. 2016; 45(4): 1175-
1202.

Elgarhy M, Haq M, Ozel G. A new exponentiated extended family of distributions with
applications. Gazi Univ J Sci. 2017; 30(3): 101-115.

Eugene N, Lee C, Famoye F. Beta-normal distribution and its applications. Commun Stat-Theory
Methods. 2002; 31(4): 497-512.

Haq M, Elgarhy M. The odd Frechet-G family of probability distributions. J Stat Appl Prob.
2018; 7(1): 185-201.

Harris CM. The Pareto distribution as a queue service discipline. Oper Res. 1968; 16(2): 307-
313.

Hassan AS, Al-Ghamdi AS. Optimum step stress accelerated life testing for Lomax distribution.
J Appl Sci Res. 2009; 5(12): 2153-2164.

Hassan AS, Elgarhy M. Kumaraswamy Weibull-generated family of distributions with
applications. Adv Appl Stat. 2016a; 48(3): 205-239.

Hassan AS, Elgarhy M. A new family of exponentiated Weibull-generated distributions. Int J
Math Appl. 2016b; 4: 135-148.

Hassan AS, Hemeda SE. The additive Weibull-G family of probability distributions.
International J Math Appl. 2016; 4: 151-164.

Hassan AS, Nassr SG. The inverse Weibull generator of distributions: properties and
applications. J Data Sci. 2018; 16(4): 723-742.

Hassan AS, Nassr SG. Power Lindley-G family of distributions. Ann Data Sci. 2019; 6(2): 189-
210.

Hassan AS, Elgarhy M, Shakil M. Type II half logistic family of distributions with applications.
Pak J Stat Oper Res. 2017a; 13(2): 245-264.

Hassan AS, Hemeda SE, Maiti SS, Pramanik S. The generalized additive Weibull-G family of
distributions. Int J Stat Prob. 2017b; 6(5): 65-83.

Krishna E, Jose KK, Alice T, Risti¢ MM. The Marshall-Olkin Fréchet distribution. Commun
Stat-Theory Methods. 2013; 42(22): 4091-4107.

Mahmoud MR, Mandouh RM. On the transmuted Fréchet distribution. J Appl Sci Res. 2013;
9(10): 5553-5561.

Mansoor M, Tahir MH, Cordeiro GM, Alzaatreh A, Zubair M. A new family of distributions to
analyze lifetime data. J Stat Theory Appl. 2017; 16(4): 490-507.

Mathsoft, PTC, MathCad, Version 15. www.ptc.com/en/products/mathcad, Mathsoft, PTC 2010.

Mead ME, Abd-Eltawab AR. A note on Kumaraswamy Fréchet distribution. Aust J Basic Appl
Sci. 2014; 8(15): 294-300.

Nadarajah S, Kotz S. The exponentiated Fréchet distribution. Interstat Electron. 2003; 1-7.

Nichols MD, Padgett WJ. A bootstrap control chart for Weibull percentiles. Qual Reliab Eng Int.
2006; 22(2): 141-151.

Wolfram Research, Inc, Mathematica, Version 10. Champaign, Illinois, 2014.



