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Abstract

A new four-parameter power function distribution, named as exponentiated generalized
power function (EGPF) is proposed. Some of its statistical properties are obtained including
moments, probability weighted moments, incomplete moments and Rényi entropy measure. The
estimation of the model parameters is performed based on type II censored samples. The
maximum likelihood estimators are developed for estimating the model parameters. Asymptotic
confidence interval estimators of the model parameters are developed. Simulation procedure and
real data are performed to illustrate the theoretical purposes.

Keywords: Exponentiated generalized power function distribution, moments, order statistics, maximum
likelihood estimation.

1. Introduction

In statistical literature, many of probability distributions are used for modeling business
failure data and widely applied in a variety of contexts studies. Some particular distributions like,
Weibull, gamma and lognormal occupy a central role because of their demonstrated advantages
in variety of situations. Power function (PF) is a flexible life time distribution that arises in
several scientific fields. The PF distribution is a special model from the uniform distribution. The
PF is the inverse of Pareto distribution (see Dallas 1976). Estimation of the PF parameters has
been done by various authors, for instance; Saran and Pandey (2004), Zaka and Akhter (2013),
Zarrin et al. (2013), Naveed-Shahzad et al. (2015) and Hanif et al. (2015).

The probability density function (pdf) and cumulative distribution function (cdf) of two-
parameter PF distribution with scale parameter A and shape parameter & are, respectively, given
by

Ox%!
A0 7

g(x;4,0)=

O<x<A, >0,
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and

0
G(x;1,0) =Gj . (1)

Extensions of the PF distribution have been extensively studied by some authors. For
instance; Meniconi and Barry (1996) proposed the two-parameter PF distribution as a simple
alternative to the exponential distribution when it comes for modelling failure data related to
electrical components. Cordeiro and Brito (2012) proposed the beta PF distribution. The Weibull
PF distribution was suggested by Tahir et al. (2016). Oguntunde et al. (2015) suggested the
Kumaraswamy PF distribution. Haq et al. (2016) introduced the transmuted PF distribution. The
exponentiated Kumaraswamy PF distribution was presented by Bursa and Kadilar (2017). Okorie
et al. (2017) proposed the modified PF distribution. Hassan and Assar (2017) proposed
exponentiated Weibull PF distribution. Hassan et al. (2019) introduced the odd generalized
exponential PF distribution.

Many classical distributions have been extensively used for modeling real data in many
areas. However, in many situations; there is a clear need for extended forms of these distributions
in order to improve the flexibility and goodness of fit of these distributions. For that reason,
generated families of continuous distributions are development by introducing one or more
additional shape parameter(s) to the baseline distribution. We present a list of some generated
families as follows; the beta-G by Eugene et al. (2002) and Jones (2004), gamma-G (Type I) by
Zografos and Balakrishanan (2009), Kumaraswamy-G by Cordeiro and Castro (2011),
McDonald-G by Alexander et al. (2012), gamma-G (Type 1I) by Risti¢ and Balakrishnan (2012),
transformed-transformer by Alzaatreh et al. (2013), exponentiated generalized (EG) by Cordeiro
et al. (2013), Weibull-G by Bourguignon et al. (2014), Kumaraswamy Weibull-G by Hassan and
Elgarhy (2016a), exponentiated Weibull-G by Hassan and Elgarhy (2016b), additive Weibull-G
by Hassan and Hemeda (2016) and type II half logistic-G by Hassan et al. (2017), inverse
Weibull-G by Hassan and Nassr (2018) and power Lindley-G by Hassan and Nassr (2019),
among others.

The cdf of the EG class of distributions (see Cordeiro et al. 2013), is defined as

nY;
F(x;a,ﬁ,g):{l—(l—G(x;g))} . x>0,a,8>0, )

where ¢ and g are the two shape parameters and G(x;¢) is the cdf of any distribution. The
associated pdf is given by

a1 AL
S, B.6) = afe(xo)[1-Gxa)] " I-(1-Gxa)} x>0, ap>0. ()

Special sub-models can be obtained from (3) as follows; For a =1, the pdf (3) gives
Lehmann type I class. For B =1, the pdf (3) gives the Lehmann type II class. For =1 and
S =1, the pdf (3) gives the baseline distribution G(x;¢). According to Cordeiro et al. (2013) the
class of the EG distributions shares an attractive physical interpretation whenever « and [ are

positive integers. Consider a device made of independent components in a parallel system with
each component is made of independent subcomponents identically distributed according to
G(x;¢) inaseries system. The device fails if all components fail and each component fails if any

subcomponent fails. Let X,,,...,X,, denote the lifetimes of the subcomponents within the "
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component, k=1,...,8 with common cdf G(x;5). Let X, denote the lifetime of the k"
component and let x denote the lifetime of the device. Therefore, the cdf of X is as follows
P(X <x)=P(X, £ x,.., X, <x) = P(X, <x) =[1-P(X, > )]’

=[1-P(X,, >x,... X,, > %) =[1-P(X,, >x)")

=[1-(1-P(X,, <)Y,
and the lifetime of the device obeys the EG class. Further, the EG family allows for greater
flexibility of its tails and can be widely applied to many areas of engineering and biology. So,
the present work provides new generalizations of the PF distribution based on the EG family with
more flexibility than the baseline (2). The generalization of classical distributions sometimes
provides reasonable parametric fits to particular applications as in lifetimes and reliability
studies. The new distribution has more sub-models when compared with baseline distribution
and hence it allows us to study more comprehensive structural properties. Further, we consider
the parameter estimation for EGPF distribution when the available data are of type II censoring
(TIIC). Further, approximate confidence intervals (CIs) of the unknown parameters based on s-
normal approximation are constructed. The rest of the paper contains the following sections. The
formation of the pdf and cdf of the EGPF distribution is performed in Section 2. Some statistical
properties of EGPF distribution are provided in Section 3. Estimation of parameters, simulation

study and application to real data are presented in Section 4. The article ends with concluding
remarks.

2. The EGPF Distribution
In this section, we introduce a four-parameter EGPF distribution. The cdf of the EGPF
distribution is obtained by inserting cdf (1) in cdf (2) as follows

6 a
F(x;¥) = 1—[1—[%)} . B A,050, 0<x<A,

where ¥ =(a, f,1,6). The corresponding pdf of the EGPF distribution is written as follows

0o 0-1 977! o
f(x;q’)=%(%) [1—(%” 1—[1—@)} , 0<x<A; a,0,5>0.

“)
X ~EGPF(e, #,4,0) denotes a random variable with pdf (4). Some sub-models can be

obtained from (4) as follows
e For p =1, the pdf of the EGPF distribution reduces to exponentiated PF distribution.

e For #=1 and A =1, the pdf of the EGPF distribution reduces to exponentiated standard PF

distribution.
e For a =1, the pdf of the EGPF distribution reduces to generalized PF distribution.
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e For =1 and A =1, the pdf of the EGPF distribution reduces to generalized standard PF
distribution.
e For a =1, =1, the pdf of the EGPF distribution provides PF distribution.

Figure 1 displays a variety of possible shapes of the pdf of the EGPF distribution for some
selected values of parameters.
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Figure 1 Plots of the EGPF density function for different values of «, 3,4 and &

Clearly, the EGPF densities take various shapes such as, uni-model, left skewed, reversed J
shaped, U shaped and right skewed.
The survival and hazard rate function (hrf) of the EGPF distribution are respectively given

Flew)=1- 1-[1—[§TT ,
s (T -6

o\ /
2041- 1—(1—()6} J
A
Figure 2 displays a variety of possible shapes of the hrf of the EGPF distribution for some
selected values of parameters.

and
B-1

e(x; W) =
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Figure 2 Plots of the EGPF hrf for different values of «, 8,4 and[1 6

As seen from Figure 2 the hrfs of the EGPF distribution can have increasing, decreasing, and
U-shaped. This fact implies that the EGPF can be very useful for modeling different types of
data.

2.1. Shapes and asymptotics
To characterize the shape of the EGPF distribution, we start by obtaining the first derivative
of its pdf
dlog f(x;'¥) 6-1 (a—-1)Ox"" N a(f-1)0x"" (A7 —x")
dx x A0 —x? A% (A7 =x")"

The critical points of the density of f(x) are the roots of the previous equation. It is often

difficult to obtain an analytical solution for the critical points of this function. Therefore, it is
common to obtain numerical solutions with high accuracy through optimization routines in most
mathematical and statistical platforms.

The first derivative of the hrf of X is given by

= a-— P
dloge(x'¥) _0-1 (a-10x""  a(f-Dox"' (2" —x"y" afpox" (A0 =) [ A% = (A7 =) ]

dx X l(?_xa A&Z _(lﬁ_xﬂ)a Aﬁaﬂ_[lﬁa_(lg_xﬁ)a]ﬁ

The critical values of &(x ;) are the roots of the previous equation.

2.2. Limiting behavior of EGPF density and hazard functions
Lemma 1. The limit of the EGPF density function as x — « is © and the limitas x > A are

0 for0<a<l,
: OB _
llirif(x,\}‘)— R for ¢ =1,

o for a > 1.
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Proof: It is easy to demonstrate the result from the density function (4).

Lemma 2. The limit of the EGPF hazard function as x — o is © and the limit as x > A are

0 forO0<a<l,
11m e(x; W) = 6;{)’ for ¢ =1,
00 for a > 1.

Proof: It is straightforward to prove this result.

3. Statistical Properties
In this section, some important properties of the EGPF distribution are provided, specifically

the 7" moment, the moment-generating function, probability weighted moments, incomplete
moments and Rényi entropy.

3.1. Moments
Moments are very necessary and significant in any statistical analysis, especially for

application studies. So, we concern here with the »" moment and the moment generating
function (MGF) of the EGPF distribution.

To obtain the »" moment of the EGPF, we firstly obtain a simplified form of the pdf (4),

since the generalized binomial theorem, for b > 0 is real non integer and |Z| <1,

-1) .
1-z)'" = Z( 1y’ [ ; ]Z'- ®)

Then, by applying the binomial theorem (5) in (4), the pdf of the EGPF distribution where
B 1is real non integer becomes

=S (R (T

Employing the generalized binomial (5) another time, then the pdf of the EGPF distribution
takes the following form

S = ZZ 8o (0,

e L
J i (i+1)

(6)

where gy, (x) denotes the pdf of the PF distribution with parameters 6(i+1) and A. Hence

the " moment of EGPF distribution is given by

A
> > A (03 +1
= E(X") = jx’ > W, 8o Ddx= > W, M,r =1,2,.. %

S0 ) r+6+0i

Setting  =1,2,3,4 in (7), we can obtain the first four moments about zero. Generally, the MGF
of the EGPF distribution is obtained as follows
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2 2 2 (0G+D))
M E(X") W ——
(0= Z(; ( ,,Z‘o "ol r+0+06i

The important feature and characterizations of the EGPF distribution can thus be studied
using (7). The mean, variance, skewness and kurtosis measures may be calculated from ordinary
moments using well-known relationships. Table 1 lists numerical values of mean and variance
of the EGPF distribution for some selected values of the parameters. Table 2 contains the
skewness (o) and kurtosis (,) of the EGPF for some selected values of the parameters.

Table 1 Mean and variance of the EGPF distribution for various values of «, 8,1 and &

5 ; 0=025 =15 0=3 =5
“ u e u e u e u P

05 0066 0018 0180 0029 0251 0027 0308 0021

05 15 0198 0162 0539 0263 0754 0240 0923 0.189
30 0395 0647 1.078 1.053 1507 0961 1.846 0.758

05 5.800° 0690° 0087 0011 0167 0015 0238 0015

025 25 15 0017 6211° 0260 0095 0502 0.138 0714 0.137
30 0035 0025 0520 0378 1.003 0553 1427 0.548

05 1.049° 0048 0058 5303 0.136 0011 0209 0012

50 1.5 3.146° 0432° 0.175 0.048 0407 0.096 0628 0.110

30 6293 1.729° 0350 0.191 0814 038 1256 0.440

05 0306 0028 0439 5914 0466 2143 0479 00915

05 15 0919 0253 1318 0053 1399 0019 1437 8230°
30 1838 1.013 2635 0213 2798 0077 2873 0.033

05 0039 3.942° 0265 9.171° 0357 4.924° 0406 2496

2 25 15 0.116 0035 079 0083 1.071 0044 1219 0.022

30 0232 0142 1589 0330 2142 0177 2439 0.090

05 7437 0328 0.186 6075 0298 4407 0364 2537

50 1.5 0022 2947° 0559 0055 0894 0040 1.092 0.023
30 0045 0012 1.118 0219 1787 0159 2.185 0.091

05 0425 9610° 0484 7.153 0492 0205 0495 0.078

05 15 1274 0086 1451 6438 1475 1.847° 1485 0.705"

3.0 2548 0346 2902 0.026 2949 7.388° 2969 2.820°

05 0077 6461° 0335 5103 0407 2051° 0441 0903

5 25 15 0231 0058 1005 0046 1220 0018 1323 8.127°
30 0462 0233 2010 0.184 2440 0074 2.646 0.033

05 0016 0665 0244 4296 0346 2292° 0400 1.135

50 1.5 0048 5988 0731 0039 1.037 0021 1.199 0.010
30 0096 0024 1462 0155 2075 0083 2399 0.041

Note: * Indicate that the value multiply 107
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Table 2 Skewness and kurtosis of the EGPF distribution for various values of «, 5,41 and &
6=0.5 =3 =5 =15
B«
a, a, a, a, a, a, a, a,
0.5 0.647 1.884 —0.678 2.330 -—1.042 3299 -1.835 7.061
2.5 2729  11.275 -5.794" 2.096 —0.449 2.504 -0.747 3.126

0.5 5.0 4.061 24.989 0.155 2249 —0.332 2474 —-0.633 3.009
7.5 4.907 37.664 0.219 2335 —0.274 2477 —0.591 2.976
0.5 -0979 2830 —2.291 9.388 —2.558 11.601 —2.720 13.122
20 2.5 1.184 3922  —-0.537 2941 —0.782 3.562 —-0.923 4.028
5.0 2.130 8.849  —0.228 2.736 —0.494 3.143 —-0.644 3.490
7.5 2.687 13.425 —-0.112  2.739 —0.390 3.059 -0.545 3.359
0.5 2371 9477 -3.520 21.191 -3.682 23.478 -3.770 24.810
5.0 2.5 0.591 2.725  —0.601 3.203 —0.740 3.573  —-0.816 3.837
50 1.454 5.604 —0.209 2.846 —0.372 3.056 —0.457 3.205
7.5 1.928 8.391 —0.068 2.843 —0.243 2983 —0.334 3.099
0.5 3212 16.899 —4.145 29.879 —-4.251 30.073 —4.295 18.596
2.0 2.5 0.377 2.528 —0.591 3222 —0.695 3.497 -0.750 3.672

5.0 1.220 4775 -0.171 2.846 —0.299 2.984 —0.366 3.079
7.5 1.669 7.048 —0.021 2.857 —0.162 2.934 —0.234 3.001

Note: * Indicate that the value multiply 107

3.2. The probability weighted moments

The probability weighted moments (PWM) of a random variable X, say 7, ,, is formally

defined by

©

7, = ELX F(x)']= [ X' f(e)(F(x)) dx. )

To obtain the PWM of the EGPF, we firstly obtain a simplified form of [F (x; ‘{’)]S for s is
a positive integer as follows
[Flsw)] = éo(—l)’””’ (isJ[OZ{]G (x). ©)
where, G, (x) denotes the cdf of the PF distribution with parameters &m, and A. Substituting
pdf (6) and cdf (9), in (8) then the PWM of the EGPF is given by

- +m k 4 1 .
z_r!s _ Z (_l)k [isj(fn j I/Vi!j-[ 9(1; 1) xr (%) O(i+m+1)-1 dx.

i,jk,m=0 0

Hence, the PWM of the EGPF distribution takes the following form

C = ¥ (is}(ak] W, A66i+1)

=0 m r+67(i+m+l).

3.3. Incomplete and conditional moments
The 5" incomplete moment of the EGPF distribution, say K (¢), is given by
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K, (t)=[x f(x)dx.
0
Using (6), then K_(#) can be written as

0 0(i+1)t€(i+l)+.\'
K ()= 10
®)= LZO Q00 (6G +1)+S) (10)

The first incomplete moments of the EGPF distribution is obtained by setting s=1 in (10).
The mean deviations provide useful information about the characteristics of a population and it
can be calculated from the first incomplete moments. Indeed, the amount of dispersion in a
population may be measured to some extent by the totality of the deviations from the mean and
median. The mean deviations of x about the mean £ and about the median m can be calculated
from the following relations

6,(X) =2uF (1) - 2T (1)
and
8,(X) = 2T (m),
where T'(p) is the first incomplete moments. An important application of the first incomplete

moments is related to the Bonferroni and Lorenz curves. These curves are very useful in
economics, reliability, demography, insurance and medicine. The Lorenz and Bonferroni curves
are obtained, respectively, as follows

i :9(i+l)+1 0(1 + 1)

- z+] 9 . 1 1
L.(x)= Kl(x) i,j=0 . i (i+1)+
EX) Sw, A(0G+D)
i,j=0 b €+ 01 +1
and
i - xﬁ(i+l)+1 M
Ly (x) _ i,j=0 o G +1)+1

B (x) =

PRl ’
F@) ) e A6a6+)
(2] S, A D)
A g0 T 0+0i+1
Further, the conditional moments, say v, (¢), is defined by
v, (1) = j X f(x) dx.
t

Hence, by using pdf (6), leads to

ZHQ(H—I) _ts+19(i+1) ]

; 1+1)
s0= ZWU ’”[ (s+6(i+1))

i,j=0
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3.4. Rényi entropy

The entropy of random variable is defined in terms of its probability distribution and can be
shown to be a good measure of randomness or uncertainty. It has been used in many fields such
as physics, engineering and economics. The Rényi entropy of random variable X, is defined by

Ip()('):1 ! logjf(x)pdx, p>0and p=1.
—-pP o

The pdf, f(x;¥)”, of the EGPF distribution after simplification can be expressed as follows

P(0-1)+0k
(fw)) Z S k( j ,

J.k=0

where

_(_1\J+k p(ﬂ_l) p(a_1)+aj % P
oo (L]

Therefore, the Rényi entropy of the EGPF distribution is given by

o P(O-1)+0k |
! (X)‘_log IZ&,;{ j de\=1"log zé”‘ (O 1)+6?k+1

Jj.k=0 l_p | J.k=0

3.5. Order statistics
Suppose that X <X, <..<JX, Dbe the order statistics (OS) of a random sample of size

n from the EGPF distribution. The pdf of the 4" OS is defined by

_ S (%) < 1V n—h h+v—1
fhm(x)——B(h,n_hH);( 1)[ ) ]F(x) , (11)

where B(.,.) is the beta function. Subsituting (6) and (9) in (11) by replacing s withvy + A —1,
leads to

1 n—h . 9(1_"_1) ( xjﬂ(m-ﬂ-%—l)—l
)= M., = ,
Jea ) B(h,n—h+1)Z 2 Mk A \a

v=0i,j,k,m=0 ( )

M _ 1 v+k+mW n—h ﬂ(V"rh—]) ak
ijem = (_ ) ij v k m )

In particuler, the the pdf of the smallest and largest OSs are obtained by subsituting /2 =1

and £ =n in (12), respectively, as follows

n-1 0 9(l+1) X O(m+i+1)-1
jfl:n (x) :nz Z nv,i,j,k,m /1 (ZJ >

v=01,j,k,,m=0

_(_ v+k+m n_l 'BV ak
Mijim _( 1) VV”[ v J( k J(m}

o 9(1 + 1) X O(m+i+1)-1
n n ('x) =n Z Ev,i,‘/',k,m (z]

i,j,k,,m=0 /’{'

and
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Evijkm :(_1)»'+k+m Wj(ﬁ(v+n_l)J{akJ

4. Estimation Based on TIIC Samples

In many life tests and reliability studies, the experimenter may not always obtain complete
information on failure times for all experimental units due to the cost and time considerations.
Data obtained from such experiments are called censored data. Life tests terminated after a
specified number of failures are known as TIIC. With possibility of censoring, their advantages
arise, first, reduction of the cost of the test; second, giving us a good chance to reach a decision
in a shorter time or with fewer observations and the third advantage gives us analysis in complete
data if some observations are missed.

This section considers the maximum likelihood (ML) estimators of the unknown parameters
for the EGPF distribution under TIIC samples. Approximate Cls are obtained. Simulation study
and application to real data are also provided.

4.1. ML estimators

The length of the life tests of items cannot be observed failure times exactly. Generally there
are constraints on the length of life tests or other reliability studies. During the analysis of highly
reliable items, the testing has to be stopped before all of the items have failed as there is limited
availability of test time. Life tests terminated after a specified number of failures are known as

TIIC or failure censoring. Let X =(X;) <X, <...<X|,)) isa TIIC of size r from a life test
on n items whose lifetimes have the EGPF distribution with set of parameters ¥ = (2,8, 3, 4).

The likelihood function of r failures and (n—r) censored values is given by

sttt BT H ]

for simplicity, we write x;, instead of Xx,. The log-likelihood function for the vector of

parameters ¥ = (., 8, f,1) is

lnL(‘P):ln(( " )j+rlna+rlnﬂ+rln€ rOln A+ (0 - 1)Zln(x)+(a I)ZIn(y)
n—r

i=l1 i=l1

+(ﬂ—1)21n(1—y;’)+(n—r)1n[1—(1—y:’)f’],

o o
X. X
where y. =1—-| =~ | and y, =1—-| = | .
Vi (lj Y, (/1]

It is known that, the estimate of A is the sample maxima. The elements of the score function
Uw)=U,,U,U,) are given by

r 1
=—+Zln(y,) (B-DY (“Ey; +Bn=r)n(y, )y =y [1==50) ]
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U,}=%@ma—y?)—(n—r)ln(l—yf‘)(l—y:‘)”[1—(1—y:’)ﬂ]’1,

i=1

and

r r ‘
Ug=g—rln/1+21n(x,»)—(a—l);m(%)(%) v

- xl. xl. g
el 1)2(1_ B (TJ(T)
— =)y 1=y h{";)(%j [1-a-»y T

However, it is not easy to obtain a closed form solution for the above equations; therefore
an iterative technique is applied to obtain the ML estimates.

The most common method to set confidence bounds for the parameters is to use the
asymptotic normal distribution of the ML estimators (see Vander Wiel and Meeker 1990). The
asymptotic variances and covariance matrix of the ML estimators of the parameters can be
approximated by numerically inverting the asymptotic Fisher-information matrix F. It is
composed of the negative second and mixed derivatives of the natural logarithm of the likelihood
function evaluated at the ML estimators So, the elements of the Fisher information are given by

1 “(1- p-1 1 2
ez
v, (1— ) 2(lny,)2 _ 24 (12 37) 2 (In y, )?

— B(B—1)n— .
B(B-D(n—r) [1—(1—yf)ﬂ] B (n [1_(1_y;1)ﬂT
V;
U (-] (1ﬁy,) ) [in(1— ) | (1= 5y
ﬁ I:l (1 r) ] |:1_(1_y:z)ﬂ:|

=t DZH BERORY o
e M;;j (5] gl w(3)] ()
ot 6]

B-1
s ? (3]

o A=y [ (s (%)
+ala-1n )[1_(1_yf)ﬂJ{ln(ﬂﬂ [ﬂj
, yr2a—2(1_y:z)ﬂ—2 X, 2 x, 26
R reTTy Mﬂﬂ (zj
—a’ B (n—r) e

- y) Mx_ﬂ (xj
[-a-yy ] LA LA

;}
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RN EATER IR CAPNEATERY
B B =N

—a+l Nl Xl X | -y oYy Xl X ’
g {3 5] e A

A=y’ y2 " In(y,)

2 1=y 2a]ln(y,) [x j(x)g
- In| == || 2= “D(n-
+ap (n—r) [1 . y,)ﬂJ | =7 +af(f-1)(n—r) [1—(1—)),)”]
_ A=y "y ), (%)% )
e [1 -] %))
3 ln(y yr =y In(y,)
U — 1 i i i
“ z‘(y, - Z‘ [1-a-y")"]
+B(n-r) 2 (l—y, )ﬂ LICAL G O NP /U P il Iny,)Inl= ')
[1-a-50)] [1-0-2)"]
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In relation to the asymptotic variance-covariance matrix of the ML estimators of the
parameters, it can be approximated by numerically inverting the above Fisher’s information

matrix F. Thus, the approximate 100(1—y)% two-sided CIs for @, 8 and B can be,
respectively, easily obtained by

atZ, o, 0+Z 0, and BtZ,,0;,

where Z is the [100(1— y)/ 2]lh standard normal percentile and o(.) is the standard deviation
for the ML estimates.

4.2. Simulation study
A simulation study is carried out to compare the performance of the estimates based on
different sampling schemes. The performance of the resulting estimates of the unknown
parameters (&, 6, ) has been considered in terms of their mean squared errors (MSEs), absolute
relative bias (ARB), standard errors (SEs), and average lengths (AL) of CIs. The simulation
procedure is described as follows:
= 1000 random samples of sizes 30, 50, 100 and 300 are generated from the EGPF
distribution is very simple, if U has a uniform(0,1) random number, then

yp \Ve ve .
Y=2 1—(1 -U ) follows an EGPF distribution.
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= In TIIC, the numbers of the failure unites r are selected as » =0.7n,0.9n for different
samples under TIIC data. Also, we take r =n, i.e., complete sample.

= Select different values of the unknown parameters («,8, ) as
Casel = (¢ =0.5,6=0.25,=0.7), Case Il =(a=0.75,0=0.25,5=0.7),
Case Ill =(a =0.5,0=0.25,=0.5), Case IV =(a=0.5,0=0.5,5=0.7).

= [terative technique is used for solving the three nonlinear equations for «,60 and g to

obtain ML estimates under complete and TIIC data.
= The MSEs, ARBs, SEs, and AL with confidence level y = 0.95 for all sample sizes and

for the all selected sets of parameters are listed in Tables 3 and 4.
We conclude the following based on Tables 3, 4 and Figures 3 to 8.
1. For all cases, it is clear that MSEs and SEs decrease as sample size increases (see Tables
3 to 4).
2. The MSEs for the numbers of the failure unites at » = n for all parameters values, are
the smallest among the other numbers of the failure unites » =0.7,0.9 (see, Tables 3,

4 and see for example Figures 3 and 4).

3. For all cases, it is clear that AL of Cls for the unknown parameters decreases as n
increases (see Tables 3, 4 and see for example Figures 5 and 6).

4. For all cases of parameters, as the values of » and » increase, MSEs of all estimates
decrease (see, Tables 3, 4 and see for example Figures 3 to 6).

5. The MSEs of « estimates are smaller than the corresponding MSEs for the other
estimates for € and B in almost all of the cases (see Tables 3 and 4).

6. The MSE and AL for all estimates in Case I have the smallest values corresponding to
the other cases and hence it has good statistical properties (see Tables 3 and 4).

4.3. Applications to real data

In this subsection, two real data sets are provided to illustrate the importance of the EGPF
distribution. To check the validity of the fitted model, Kolmogorov-Smirnov goodness of fit test
is performed for each data set and the p-values in each case indicates that the model fits the data
very well. The data I represent the survival times (in days) of 72 guinea pigs infected with virulent
tubercle bacilli, observed and reported by Bjerkedal (1960). The data are:

0.1,0.33, 0.44, 0.56, 0.59,0.72, 0.74,0.77,0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08,
1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44,
1.46,1.53,1.59,1 .6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15,
2.16, 2.22, 51, 2.53, 2.54, 2.3, 2.31, 2.4, 2.45, 2. 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02,
4.32,4.58,5.55.

The data II reported by Jorgensen (1982) will be considered. It consists of 40 observations
of the active repair times (in hours) for airborne communication transceiver. The data are:

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50,
1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40 5.40,
7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.

The ML estimates of the parameters and their SEs for the real data based on TIIC are listed
in Table 5.



Amal S. Hassan and Said G. Nassr

Table 3 The ARBs, MSEs, SEs and AL of the estimates for Case I and Case 11

229

(@¢=05,0=0.253=07) 95% (x¢=0.75,0=0.25,=0.7) 95%

n rrI::trSr_s Properties Cls Properties Cls
ARB SE AL MSE ARB SE AL
a 0.025 0.116 4904* 0331 0.114 0314 8.091" 0.591
21 0 0.047 0.860 0.752° 0.088 0.032 0.710 0.960° 0.113
B 0.442 0945 2.109° 0248 0.194 0.622 2216° 0.261
a 0.016 0.069 4.106° 0271 0.052 0.141 6.695" 0.473
30 27 0 0.035 0.749 0.676° 0.079 0.037 0.764 0.853" 0.100
B 0.538 1.044 2.104* 0247 0.229 0.678 2.013 0237
a 0.014 0.060 3.808" 0250 0.040 0.098 6.158" 0.429
30 0 0.035 0.744 0.647° 0.076 0.063 0.999 0.803" 0.094
B 0.503  1.009 2.156° 0254 0.200 0.634 1.790° 0.210
a 0.015 0.063 2395 0263 0.053 0.142 4.068" 0.480
35 0 0.015 0.487 3.670° 0.072 0.021 0573 0.541° 0.106
B 0.437 0941 1.186" 0232 0.088 0416 1.157° 0227
a 0.010 0.047 1.969° 0212 0.027 0.046 3.208" 0.365
50 45 0 0.016 0.495 3.412° 0.067 0.027 0.650 0.449"° 0.088
B 0.435 0938 1.135" 0222 0.101 0.448 1.039" 0.204
a 8.718" 0.040 1.824" 0.195 0.022 0.037 2.914" 0327
50 0 0.017 0513 3.394" 0.067 0.028 0.669 0.425° 0.083
B 0.350 0.841 1.155* 0226 0.130 0.511 0.996" 0.195
a 8.422% 1.266" 0.918* 0.196 0.024 0.019 1.540" 0.348
70 0 0.012  0.440 0.160° 0.063 0.015 0.482 2.422° 0.095
B 0.233  0.687 0.442° 0.173 9.698" 0.125 4.546" 0.178
a 5.407° 8.460° 0.734" 0.154 0.014 5.558" 1.190" 0.261
100 90 0 0.010 0399 0.150° 0.059 0.012 0.439 0.208" 0.082
B 0.197 0.631 0.457° 0.179 0.031 0244 0.446° 0.175
a 4.492° 5287" 0.669" 0.140 0.012 5.649" 1.104" 0.240
100 0 0.010 0397 0.157° 0.062 0.017 0511 1.994" 0.078
B 0.132 0515 0.467° 0.183 0.031 0244 4.177° 0.164
a 3.290"  0.026 0.186" 0.116 8.527° 0.018 0.304" 0.195
210 0 5329  0.287 0.096" 0.052 7.065° 0.326 0.068" 0.080
B 0.043 0292 0.106° 0.125 1.338" 0.015 0.117° 0.138
a 1.921" 2.203" 0.146° 0.090 5.083" 0.013 0.236" 0.148
300 270 0 2.930" 0209 0.048" 0.057 5.550° 0290 0.057° 0.067
B 0.026 0225 0.119" 0.140 3.213" 0.065 0.113" 0.133
a 1.574" 4.942° 0.132° 0.081 4.055" 9.854" 0.211" 0.132
300 0 1.816" 0.159 0.052° 0.061 5.510° 0291 0.051" 0.060
B 0.019 0.191 0.131" 0.154 5.724* 0.097 0.109° 0.128

Note: * Indicate that the value multiply 107
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Table 4 The ARBs, MSEs, SEs and AL of the estimates for Case III and Case IV
(¢=0.5,0=025,=0.5) 95% (a¢=056=05/p=07) 9%

Para-

n " eters Properties Cls Properties Cls
MSE ARB SE AL MSE ARB SE AL
a 0.049 0.256 5.977° 0.414 0.030 0210 4.601" 0.308
21 0 0.012 0.434 0.782" 0.092 0.050 0.444 0.971" 0.114
B 0.243 0978 1.950" 0.229 1.137 1.520 2.480" 0.292
a 0.026  0.139  4.902° 0.331 0.017 0.097 3.965" 0.261
30 27 0 0.013 0.441 0.634" 0.075 0.079 0.558 0.974" 0.114
B 0.315 1.117 1.829 0.215 1.016 1436 2300 0.270
a 0.021  0.122  4.421" 0294 0.013 0.061 3.673" 0.240
30 0 0.016 0.498 0.625° 0.073 0.108 0.655 0.980" 0.115
B 0.258 1.009 1.783 0210 0.797 1272 2.191" 0.258
a 0.030 0.141 3.178" 0361 0.014 0.084 2.225" 0.242
35 0 7.817° 0344  0.402° 0.079 0.037 0383 0.526" 0.103
B 0.165 0.807 0.962" 0.189 0.893 1347 1.224" 0.240
a 0.015 0.051 2.437° 0.268 9.928" 0.060 1.902° 0.204
50 45 0 0.011 0.408 0.352° 0.069 0.052 0.454 0.523" 0.102
B 0.160 0.794 0.888" 0.174 0.765 1246 1.169" 0.229
a 0.012 0.042 2.166" 0.235 8.182" 0.046 1.749" 0.186
50 0 0.012 0.425 0.346" 0.068 0.062 0.495 4.865" 0.095
B 0.135 0.730 0.883" 0.173 0.636 1.137 1.181" 0.231
a 0.015 0.044 1.218" 0.268 6.805" 0.021 0.818" 0.173
70 0 3.496" 0225 0.183" 0.072 0.029 0335 0.219" 0.086
B 0.086 0.581 0.384" 0.151 0475 0983 0.468" 0.184
a 8.408" 0.016 0.913" 0.195 4.757° 2.346" 0.690" 0.144
100 90 0 0.049 0.256 5.977° 0.414 0.030 0210 4.601" 0.308
B 0.012 0.434 0.782" 0.092 0.050 0.444 0.971° 0.114
a 0.243 0978 1.950° 0.229 1.137 1.520 2.480" 0.292
100 0 0.026  0.139  4.902° 0.331 0.017 0.097 3.965" 0.261
B 0.013 0.441 0.634" 0.075 0.079 0.558 0.974" 0.114
a 0.315 1.117 1.829 0.215 1.016 1.436 2.300 0.270
210 0 0.021  0.122  4.421" 0294 0.013 0.061 3.673" 0.240
B 0.016 0.498 0.625° 0.073 0.108 0.655 0.980" 0.115
a 0.258  1.009 1.783 0.210 0.797 1272 2.191" 0.258
300 270 0 0.030 0.141 3.178" 0361 0.014 0.084 2.225" 0.242
B 7.817°  0.344  0.402° 0.079 0.037 0383 0.526" 0.103
a 0.165 0.807 0.962" 0.189 0.893 1347 1.224" 0.240
300 0 0.015 0.051 2.437° 0.268 9.928" 0.060 1.902° 0.204
B 0.011 0.408 0.352° 0.069 0.052 0.454 0.523" 0.102

Note: * Indicate that the value multiply 107
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In previous table, the numbers of the failure unites » are selected as » =0.9n for both two
real data sets under TIIC data. The estimate of A is the maximum value, which are 5.55 for data
I and 24.5 for data II. The estimates of «, 3,60 and their SEs are as given in Table 5. We notice

that the SEs of @ take the smallest values corresponding to the SEs of « and g.
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Table 5 ML estimates and their SEs based on TIIC data

Real data n 7 Estimator  Estimate SEs
G 4.168 0.019
1 5.550 -

I 72 65 ’1
0 0.860 0.006
B 4592 0.086
a 3.793 0.023
) 24.500 -

1l 40 28 -
0 0.357 0.003
B 5.767 0.087

5. Concluding Remarks

We introduce a new generalization for the PF distribution called the exponentiated
generalized power function. Some statistical properties are obtained. The estimation of the model
parameters is established based on complete and TIIC samples. The maximum likelihood
estimators and asymptotic confidence interval of the model parameters are obtained. Simulation
study is conducted to compare the performance of estimates under TIIC with different censoring
levels. Applications to real data are given.
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