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Abstract 

A  new  four-parameter  power  function  distribution,  named  as  exponentiated  generalized 

power  function  (EGPF)  is  proposed.  Some  of  its  statistical  properties  are obtained  including 

moments, probability weighted moments, incomplete moments and Rényi entropy measure. The 

estimation  of  the  model  parameters  is  performed  based  on  type  II  censored  samples.  The 

maximum likelihood estimators are developed for estimating the model parameters. Asymptotic 

confidence interval estimators of the model parameters are developed. Simulation procedure and 

real data are performed to illustrate the theoretical purposes. 

______________________________ 
Keywords: Exponentiated generalized power function distribution, moments, order statistics, maximum 

likelihood estimation. 

 

1. Introduction 

In  statistical  literature,  many  of  probability  distributions  are  used  for  modeling  business 

failure data and widely applied in a variety of contexts studies. Some particular distributions like, 

Weibull, gamma and lognormal occupy a central role because of their demonstrated advantages 

in  variety  of  situations.  Power  function  (PF)  is  a  flexible  life  time  distribution  that  arises  in 

several scientific fields. The PF distribution is a special model from the uniform distribution. The 

PF is the inverse of Pareto distribution (see Dallas 1976). Estimation of the PF parameters has 

been done by various authors, for instance; Saran and Pandey (2004), Zaka and Akhter (2013), 

Zarrin et al. (2013), Naveed-Shahzad et al. (2015) and Hanif et al. (2015). 

The probability density  function  (pdf)  and cumulative distribution  function  (cdf) of  two-

parameter PF distribution with scale parameter    and shape parameter   are, respectively, given 

by 

 
1

( ; , ) , 0 , 0,
x

g x x





   





               



216  Thailand Statistician, 2020; 18(2): 215-234 

and 

  ( ; , ) .
x

G x


 


 
  
 

            (1) 

Extensions  of  the  PF  distribution  have  been  extensively  studied  by  some  authors.  For 

instance; Meniconi and Barry  (1996) proposed  the  two-parameter PF distribution as a  simple 

alternative  to  the exponential distribution when  it comes  for modelling  failure data  related  to 

electrical components. Cordeiro and Brito (2012) proposed the beta PF distribution. The Weibull 

PF  distribution  was  suggested  by  Tahir  et  al.  (2016).  Oguntunde  et  al.  (2015)  suggested  the 

Kumaraswamy PF distribution. Haq et al. (2016) introduced the transmuted PF distribution. The 

exponentiated Kumaraswamy PF distribution was presented by Bursa and Kadilar (2017). Okorie 

et  al.  (2017)  proposed  the  modified  PF  distribution.  Hassan  and  Assar  (2017)  proposed 

exponentiated  Weibull  PF  distribution.  Hassan  et  al.  (2019)  introduced  the  odd  generalized 

exponential PF distribution. 

Many  classical  distributions  have  been  extensively  used  for  modeling  real  data  in  many 

areas. However, in many situations; there is a clear need for extended forms of these distributions 

in order  to  improve  the  flexibility and goodness of  fit of  these distributions. For  that  reason, 

generated  families  of  continuous  distributions  are  development  by  introducing  one  or  more 

additional shape parameter(s) to the baseline distribution. We present a list of some generated 

families as follows; the beta-G by Eugene et al. (2002) and Jones (2004), gamma-G (Type I) by 

Zografos  and  Balakrishanan  (2009),  Kumaraswamy-G  by  Cordeiro  and  Castro  (2011), 

McDonald-G by Alexander et al. (2012), gamma-G (Type II) by Ristić and Balakrishnan (2012), 

transformed-transformer by Alzaatreh et al. (2013), exponentiated generalized (EG) by Cordeiro 

et al. (2013), Weibull-G by Bourguignon et al. (2014), Kumaraswamy Weibull-G by Hassan and 

Elgarhy (2016a), exponentiated Weibull-G by Hassan and Elgarhy (2016b), additive Weibull-G 

by  Hassan  and  Hemeda  (2016)  and  type  II  half  logistic-G  by  Hassan  et  al.  (2017),  inverse 

Weibull-G  by  Hassan  and  Nassr  (2018)  and  power  Lindley-G  by  Hassan  and  Nassr  (2019), 

among others. 

The cdf of the EG class of distributions (see Cordeiro et al. 2013), is defined as
 

   ( ; , , ) 1 1 ( ; ) , 0 , , 0,F x G x x


                  (2) 

where    and    are the two shape parameters and  ( ; )G x   is the cdf of any distribution. The 

associated pdf is given by 

      
11

( ; , , ) ( ; ) 1 ( ; ) 1 1 ( ; ) , 0 , , 0.f x g x G x G x x
 

        


            (3) 

Special  sub-models  can  be  obtained  from  (3)  as  follows;  For 1,    the  pdf  (3)  gives 

Lehmann type I class. For  1,   the pdf (3) gives the Lehmann type II class. For    1   and

1,   the pdf (3) gives the baseline distribution  ( ; ).G x   According to Cordeiro et al. (2013) the 

class of the EG distributions shares an attractive physical interpretation whenever     and    are 

positive integers. Consider a device made of independent components in a parallel system with 

each  component  is  made  of  independent  subcomponents  identically  distributed  according  to 
( ; )G x   in a series system. The device fails if all components fail and each component fails if any 

subcomponent fails. Let  1, ,k k aX X  denote the lifetimes of the subcomponents within the  thk  
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component,  1, ,k     with  common  cdf ( ; ).G x    Let  kX   denote  the  lifetime  of  the  thk  

component and let  X denote the lifetime of the device. Therefore, the cdf of X  is as follows 

  1 1 1( ) ( ,..., ) ( ) 1 ( )P X x P X x X x P X x P X x


          

 11 1 11[1 ( ,..., )] [1 ( ) ]P X x X x P X x  
        

 11[1 (1 ( ) ] ,P X x       

and  the  lifetime  of  the  device  obeys  the  EG  class.  Further,  the  EG  family  allows  for  greater 

flexibility of its tails and can be widely applied to many areas of engineering and biology.  So, 

the present work provides new generalizations of the PF distribution based on the EG family with 

more  flexibility  than  the  baseline  (2).  The  generalization  of  classical  distributions  sometimes 

provides  reasonable  parametric  fits  to  particular  applications  as  in  lifetimes  and  reliability 

studies. The new distribution has more  sub-models when compared with baseline distribution 

and hence it allows us to study more comprehensive structural properties. Further, we consider 

the parameter estimation for EGPF distribution when the available data are of type II censoring 

(TIIC). Further, approximate confidence intervals (CIs) of the unknown parameters based on s-

normal approximation are constructed. The rest of the paper contains the following sections. The 

formation of the pdf and cdf  of the EGPF distribution is performed in Section 2. Some statistical 

properties of EGPF distribution are provided in Section 3. Estimation of parameters, simulation 

study and application to real data are presented in Section 4. The article ends with concluding 

remarks.  

 
2. The EGPF Distribution 

In  this  section,  we  introduce  a  four-parameter  EGPF  distribution.  The  cdf  of  the  EGPF 

distribution is obtained by inserting cdf (1) in cdf (2) as follows 

( ; ) 1 1 , , , , 0 ,   0 ,
x

F x x



    


    
              

 

where  ( , , , ).      The corresponding pdf of the EGPF distribution is written as follows

  
 

1
1

1
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(4)

 
EGPF( , , , )X       denotes  a  random variable with pdf  (4). Some  sub-models  can be 

obtained from (4) as follows 

 For  1,   the pdf of the EGPF distribution reduces to exponentiated PF distribution. 

 For  1   and  1,   the pdf of the EGPF distribution reduces to exponentiated standard PF 

distribution.  

 For  1,   the pdf of the EGPF distribution reduces to generalized PF distribution. 



218  Thailand Statistician, 2020; 18(2): 215-234 

 For  1   and  1,   the pdf of the EGPF distribution reduces to generalized standard PF 

distribution. 

 For  1, 1,    the pdf of the EGPF distribution provides PF distribution. 

Figure 1 displays a variety of possible shapes of the pdf of the EGPF distribution for some 

selected values of parameters. 

 
Figure 1 Plots of the EGPF density function for different values of  , ,    and  

 

Clearly, the EGPF densities take various shapes such as, uni-model, left skewed, reversed J 

shaped, U shaped and right skewed.  

The survival and hazard rate function (hrf) of the EGPF distribution are respectively given 

by  

( ; ) 1 1 1 ,
x

F x





    
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and 
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Figure 2 displays a variety of possible shapes of the hrf of the EGPF distribution for some 

selected values of parameters. 
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  1.0  5.0 2.0  4.0
  0.5  4.0 2.5  5.0
  0.6  3.5 2.8  5.5
  0.8  5.0 2.0  5.0
  0.1  2.3 2.5  1.5
  0.9  6.0 6.0  10.0
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Figure 2 Plots of the EGPF hrf for different values of  , ,    and�  

 

As seen from Figure 2 the hrfs of the EGPF distribution can have increasing, decreasing, and 

U-shaped. This fact implies that the EGPF can be very useful for modeling different types of 

data. 

 

2.1. Shapes and asymptotics 

To characterize the shape of the EGPF distribution, we start by obtaining the first derivative 

of its pdf 
1 1 1log ( ; ) 1 ( 1) ( 1) ( )

.
( )

d f x x x x

dx x x x

    
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  

  
 

The critical points of the density of  ( )f x  are the roots of the previous equation. It is often 

difficult to obtain an analytical solution for  the critical points of this function. Therefore,  it is 

common to obtain numerical solutions with high accuracy through optimization routines in most 

mathematical and statistical platforms.  

The first derivative of the hrf of  X  is given by 
11 11 1 1 ( ) ( )log ( ; ) 1 ( 1) ( 1) ( )
.
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The critical values of  ( ; )x   are the roots of the previous equation.  

 

2.2. Limiting behavior of EGPF density and hazard functions 

Lemma 1. The limit of the EGPF density function as x    is   and the limit as x   are 
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  0.6  3.5 2.8 5.5
  0.8  5.0 2.0 5.0
  0.1  2.3 2.5 1.5
  0.9  6.0 6.0 10.0
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Proof: It is easy to demonstrate the result from the density function (4). 

 

Lemma 2. The limit of the EGPF hazard function as x    is   and the limit as x   are 

0 for 0 1,

lim ( ; ) for 1,

for 1.
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Proof: It is straightforward to prove this result.  

 

3. Statistical Properties 

In this section, some important properties of the EGPF distribution are provided, specifically 

the  thr  moment,  the moment-generating  function, probability weighted moments,  incomplete 

moments and Rényi entropy. 

 

3.1. Moments 

Moments  are  very  necessary  and  significant  in  any  statistical  analysis,  especially  for 

application  studies.  So,  we  concern  here  with  the  thr   moment  and  the  moment  generating 

function (MGF) of the EGPF distribution. 

To obtain the  thr  moment of the EGPF, we firstly obtain a simplified form of the pdf (4), 

since the generalized binomial theorem, for  0b   is real non integer and  1,z      
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Then, by applying the binomial theorem (5) in (4), the pdf of the EGPF distribution where 
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Employing the generalized binomial (5) another time, then the pdf of the EGPF distribution 

takes the following form 
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          (6) 

where  ( 1) ( )ig x   denotes the pdf  of the PF distribution with parameters    ( 1)i  and    .  Hence 

the  thr  moment of EGPF distribution is given by 
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Setting  1,2,3,4r   in (7), we can obtain the first four moments about zero. Generally, the MGF 

of the EGPF distribution is obtained as follows 
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The  important  feature and characterizations of  the EGPF distribution can  thus be studied 

using (7). The mean, variance, skewness and kurtosis measures may be calculated from ordinary 

moments using well-known relationships. Table 1 lists numerical values of mean and variance 

of  the  EGPF  distribution  for  some  selected  values  of  the  parameters.  Table  2  contains  the 

skewness  3( )  and kurtosis  4( )  of the EGPF for some selected values of the parameters.  

 

Table 1 Mean and variance of the EGPF distribution for various values of  , ,    and  

      
0.25   1.5   3   5 

 
  2    2    2    2  

0.25 

0.5 

0.5  0.066  0.018  0.180  0.029  0.251  0.027  0.308  0.021 

1.5  0.198  0.162  0.539  0.263  0.754  0.240  0.923  0.189 

3.0  0.395  0.647  1.078  1.053  1.507  0.961  1.846  0.758 

2.5 

0.5  5.800*  0.690*  0.087  0.011  0.167  0.015  0.238  0.015 

1.5  0.017  6.211*  0.260  0.095  0.502  0.138  0.714  0.137 

3.0  0.035  0.025  0.520  0.378  1.003  0.553  1.427  0.548 

5.0 

0.5  1.049*  0.048*  0.058  5.303*  0.136  0.011  0.209  0.012 

1.5  3.146*  0.432*  0.175  0.048  0.407  0.096  0.628  0.110 

3.0  6.293*  1.729*  0.350  0.191  0.814  0.386  1.256  0.440 

2 

0.5 

0.5  0.306  0.028  0.439  5.914*  0.466  2.143*  0.479  0.915* 

1.5  0.919  0.253  1.318  0.053  1.399  0.019  1.437  8.230* 

3.0  1.838  1.013  2.635  0.213  2.798  0.077  2.873  0.033 

2.5 

0.5  0.039  3.942*  0.265  9.171*  0.357  4.924*  0.406  2.496* 

1.5  0.116  0.035  0.794  0.083  1.071  0.044  1.219  0.022 

3.0  0.232  0.142  1.589  0.330  2.142  0.177  2.439  0.090 

5.0 

0.5  7.437*  0.328*  0.186  6.075*  0.298  4.407*  0.364  2.537* 

1.5  0.022  2.947*  0.559  0.055  0.894  0.040  1.092  0.023 

3.0  0.045  0.012  1.118  0.219  1.787  0.159  2.185  0.091 

5 

0.5 

0.5  0.425  9.610*  0.484  7.153*  0.492  0.205*  0.495  0.078* 

1.5  1.274  0.086  1.451  6.438*  1.475  1.847*  1.485  0.705* 

3.0  2.548  0.346  2.902  0.026  2.949  7.388*  2.969  2.820* 

2.5 

0.5  0.077  6.461*  0.335  5.103*  0.407  2.051*  0.441  0.903* 

1.5  0.231  0.058  1.005  0.046  1.220  0.018  1.323  8.127* 

3.0  0.462  0.233  2.010  0.184  2.440  0.074  2.646  0.033 

5.0 

0.5  0.016  0.665*  0.244  4.296*  0.346  2.292*  0.400  1.135* 

1.5  0.048  5.988*  0.731  0.039  1.037  0.021  1.199  0.010 

3.0  0.096  0.024  1.462  0.155  2.075  0.083  2.399  0.041 

Note: * Indicate that the value multiply  310  
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Table 2 Skewness and kurtosis of the EGPF distribution for various values of  , ,    and  

    
0.5   3   5   7.5 

 
3  4  3  4  3  4  3  4  

0.5 

0.5  0.647  1.884  −0.678  2.330  −1.042  3.299  −1.835  7.061 

2.5  2.729  11.275  −5.794*  2.096  −0.449  2.504  −0.747  3.126 

5.0  4.061  24.989  0.155  2.249  −0.332  2.474  −0.633  3.009 

7.5  4.907  37.664  0.219  2.335  −0.274  2.477  −0.591  2.976 

2.0 

0.5  −0.979  2.830  −2.291  9.388  −2.558  11.601  −2.720  13.122 

2.5  1.184  3.922  −0.537  2.941  −0.782  3.562  −0.923  4.028 

5.0  2.130  8.849  −0.228  2.736  −0.494  3.143  −0.644  3.490 

7.5  2.687  13.425  −0.112  2.739  −0.390  3.059  −0.545  3.359 

5.0 

0.5  −2.371  9.477  −3.520  21.191  −3.682  23.478  −3.770  24.810 

2.5  0.591  2.725  −0.601  3.203  −0.740  3.573  −0.816  3.837 

5.0  1.454  5.604  −0.209  2.846  −0.372  3.056  −0.457  3.205 

7.5  1.928  8.391  −0.068  2.843  −0.243  2.983  −0.334  3.099 

8.0 

0.5  −3.212  16.899  −4.145  29.879  −4.251  30.073  −4.295  18.596 

2.5  0.377  2.528  −0.591  3.222  −0.695  3.497  −0.750  3.672 

5.0  1.220  4.775  −0.171  2.846  −0.299  2.984  −0.366  3.079 

7.5  1.669  7.048  −0.021  2.857  −0.162  2.934  −0.234  3.001 

 Note: * Indicate that the value multiply  310  
 

3.2. The probability weighted moments 

The probability weighted moments (PWM) of a random variable  ,X  say  , ,s r  is formally 

defined by 

  , [ ( ) ] ( )( ( )) .r s r s
r s E X F x x f x F x dx





           (8) 

To obtain the PWM of the EGPF, we firstly obtain a simplified form of   ( ; )
s

F x   for  s  is 

a positive integer as follows  

     
, 0

( ; ) 1 ( ),
s k m

m
k m

s k
F x G x

k m


 




   
     

  
        (9) 

where,  ( )mG x  denotes the cdf of the PF distribution with parameters  ,m and . Substituting 

pdf (6) and cdf (9), in (8) then the PWM of the EGPF is given by 

  ( 1) 1
, ,

, , , 0 0

( 1)
1 .

k m r i m
r s i j

i j k m

s k i x
W x dx

k m


  


 


   



      
     

    
   

Hence, the PWM of the EGPF distribution takes the following form 

  ,

,
, , , 0

( 1)
1 .

( 1)

r
k m i j

r s
i j k m

W is k

k m r i m

  









  
    

    
  

 

3.3. Incomplete and conditional moments  

The  ths  incomplete moment of the EGPF distribution, say  ( ),sK t  is given by 



Amal S. Hassan and Said G. Nassr  223 

 
 

0

( ) ( ) .
t

s
sK t x f x dx   

Using (6), then  ( )sK t  can be written as 

 
 

( 1)
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( 1)
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( 1)
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s i j i
i j

i t
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
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
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

 
      (10) 

The first incomplete moments of the EGPF distribution is obtained by setting  1s   in (10). 

The mean deviations provide useful information about the characteristics of a population and it 

can  be  calculated  from  the  first  incomplete  moments.  Indeed,  the  amount  of  dispersion  in  a 

population may be measured to some extent by the totality of the deviations from the mean and 

median. The mean deviations of  X about the mean and about the median  m can be calculated 

from the following relations 

1( ) 2 ( ) 2 ( )X F T               

and     

2 ( ) 2 ( ),X T m    

where  ( )T p  is the first incomplete moments. An important application of the first incomplete 

moments  is  related  to  the  Bonferroni  and  Lorenz  curves.  These  curves  are  very  useful  in 

economics, reliability, demography, insurance and medicine. The Lorenz and Bonferroni curves 

are obtained, respectively, as follows 
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Further, the conditional moments, say  ( ),s t  is defined by 

( ) ( ) .s
s

t

t x f x dx



   

Hence, by using pdf (6), leads to 
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3.4. Rényi entropy 

The entropy of random variable is defined in terms of its probability distribution and can be 

shown to be a good measure of randomness or uncertainty. It has been used in many fields such 

as physics, engineering and economics. The Rényi entropy of random variable ,X is defined by 

1
( ) log ( ) , 0 and   1.

1
I X f x dx
  







  
   

The pdf,  ( ; ) ,f x   of the EGPF distribution after simplification can be expressed as follows 
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Therefore, the Rényi entropy of the EGPF distribution is given by 
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3.5. Order statistics 

Suppose that  1: 2: :...n n n nX X X    be the order statistics (OS) of a random sample of size 

n  from the EGPF distribution. The pdf of the  thh  OS is defined by 
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where  (.,.)B  is the beta function. Subsituting (6) and (9) in (11) by replacing  s with  1,v h   

leads to 
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In particuler, the the pdf of the smallest and largest OSs are obtained by subsituting  1h   

and h n  in (12), respectively, as follows 
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4. Estimation Based on TIIC Samples 

In many life tests and reliability studies, the experimenter may not always obtain complete 

information on failure times for all experimental units due to the cost and time considerations. 

Data  obtained  from  such  experiments  are  called  censored  data.  Life  tests  terminated  after  a 

specified number of failures are known as TIIC. With possibility of censoring, their advantages 

arise, first, reduction of the cost of the test; second, giving us a good chance to reach a decision 

in a shorter time or with fewer observations and the third advantage gives us analysis in complete 

data if some observations are missed. 

This section considers the maximum likelihood (ML) estimators of the unknown parameters 

for the EGPF distribution under TIIC samples. Approximate CIs are obtained. Simulation study 

and application to real data are also provided. 

 

4.1. ML estimators 

The length of the life tests of items cannot be observed failure times exactly. Generally there 

are constraints on the length of life tests or other reliability studies. During the analysis of highly 

reliable items, the testing has to be stopped before all of the items have failed as there is limited 

availability of test time. Life tests terminated after a specified number of failures are known as 

TIIC or failure censoring. Let  (1) (2) ( )( ... )rX X X X      is a TIIC of size  r  from a life test 

on  n  items whose lifetimes have the EGPF distribution with set of parameters  ( , , , ).      

The likelihood function of  r  failures and  ( )n r  censored values is given by 
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for  simplicity,  we  write  ,ix   instead  of   ( ) .ix   The  log-likelihood  function  for  the  vector  of 

parameters  ( , , , )      is 
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It is known that, the estimate of   is the sample maxima. The elements of the score function 

( ) ( , , )U U U U     are given by 
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However, it is not easy to obtain a closed form solution for the above equations; therefore 

an iterative technique is applied to obtain the ML estimates. 

      The  most  common  method  to  set  confidence  bounds  for  the  parameters  is  to  use  the 

asymptotic normal distribution of the ML estimators (see Vander Wiel and Meeker 1990).  The 

asymptotic  variances  and  covariance  matrix  of  the  ML  estimators  of  the  parameters  can  be 

approximated  by  numerically  inverting  the  asymptotic  Fisher-information  matrix  F.  It  is 

composed of the negative second and mixed derivatives of the natural logarithm of the likelihood 

function evaluated at the ML estimators. So, the elements of the Fisher information are given by 
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In  relation  to  the  asymptotic  variance-covariance  matrix  of  the  ML  estimators  of  the 

parameters,  it  can  be  approximated  by  numerically  inverting  the  above  Fisher’s  information 

matrix  .F   Thus,  the  approximate  100(1 )%   two-sided  CIs  for  ,    and    can  be, 

respectively, easily obtained by 

ˆ ˆ/ 2 / 2
ˆˆ ,Z Z  

      and  ˆ/ 2
ˆ ,Z 
   

where  Z  is the   
th

100(1 ) / 2  standard normal percentile and  (.)  is the standard deviation 

for the ML estimates. 

 

4.2. Simulation study 

A  simulation  study  is  carried out  to  compare  the performance of  the  estimates based on 

different  sampling  schemes.  The  performance  of  the  resulting  estimates  of  the  unknown 

parameters  ( , , )    has been considered in terms of their mean squared errors (MSEs), absolute 

relative  bias  (ARB),  standard  errors  (SEs),  and  average  lengths  (AL)  of  CIs.  The  simulation 

procedure is described as follows:  

 1000  random  samples  of  sizes  30,  50,  100  and  300  are  generated  from  the  EGPF 

distribution  is  very  simple,  if  U  has  a  uniform (0,1)   random  number,  then 
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follows an EGPF distribution.   
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 In TIIC, the numbers of the failure unites r are selected as  0.7 , 0.9r n n  for different 

samples under TIIC data. Also, we take  ,r n  i.e., complete sample. 

 Select different values of the unknown parameters  ( , , )    as  

Case I  ( 0.5, 0.25, 0.7),       Case II  ( 0.75, 0.25, 0.7),        

Case III  ( 0.5, 0.25, 0.5),       Case IV  ( 0.5, 0.5, 0.7).        

 Iterative technique is used for solving the three nonlinear equations for  ,   and    to 

obtain ML estimates under complete and TIIC data. 

 The MSEs, ARBs, SEs, and AL with confidence level  0.95   for all sample sizes and 

for the all selected sets of parameters are listed in Tables 3 and 4.  

We conclude the following based on Tables 3, 4 and Figures 3 to 8. 

1. For all cases, it is clear that MSEs and SEs decrease as sample size increases (see Tables 

3 to 4). 

2. The MSEs for the numbers of the failure unites at  r n  for all parameters values, are 

the smallest among the other numbers of the failure unites  0.7, 0.9r   
 
(see, Tables 3, 

4 and see for example Figures 3 and 4). 

3. For  all  cases,  it  is  clear  that  AL  of  CIs  for  the  unknown  parameters  decreases  as  n 

increases (see Tables 3, 4 and see for example Figures 5 and 6). 

4. For all cases of parameters, as the values of r and  n  increase, MSEs of all estimates 

decrease (see, Tables 3, 4 and see for example Figures 3 to 6).  

5. The  MSEs  of     estimates  are  smaller  than  the  corresponding  MSEs  for  the  other 

estimates for   and    in almost all of the cases (see Tables 3 and 4).  

6. The MSE and AL for all estimates in Case I have the smallest values corresponding to 

the other cases and hence it has good statistical properties (see Tables 3 and 4).  

 

4.3. Applications to real data 

In this subsection, two real data sets are provided to illustrate the importance of the EGPF 

distribution. To check the validity of the fitted model, Kolmogorov-Smirnov goodness of fit test 

is performed for each data set and the p-values in each case indicates that the model fits the data 

very well. The data I represent the survival times (in days) of 72 guinea pigs infected with virulent 

tubercle bacilli, observed and reported by Bjerkedal (1960). The data are: 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 

1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 

1.46, 1.53, 1. 59, 1 .6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 

2.16, 2.22, 51, 2.53, 2.54, 2.3, 2.31, 2.4, 2.45, 2. 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 

4.32, 4.58, 5.55. 

The data II reported by Jorgensen (1982) will be considered. It consists of 40 observations 

of the active repair times (in hours) for airborne communication transceiver. The data are: 

0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 

1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70, 5.00, 5.40 5.40, 

7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50. 

The ML estimates of the parameters and their SEs for the real data based on TIIC are listed 

in Table 5. 
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Table 3 The ARBs, MSEs, SEs and AL of the estimates for Case I and Case II 

n   r  
Para- 

meters 

( 0.5, 0.25, 0.7)       95% 

CIs
 

( 0.75, 0.25, 0.7)       95% 

CIs
 

Properties  Properties 
MSE  ARB  SE  AL  MSE  ARB  SE  AL 

30 

21 

   0.025  0.116  4.904*  0.331  0.114  0.314  8.091*  0.591 

   0.047  0.860  0.752*  0.088  0.032  0.710  0.960*  0.113 
   0.442  0.945  2.109*  0.248  0.194  0.622  2.216*  0.261 

27 

   0.016  0.069  4.106*  0.271  0.052  0.141  6.695*  0.473 

   0.035  0.749  0.676*  0.079  0.037  0.764  0.853*  0.100 
   0.538  1.044  2.104*  0.247  0.229  0.678  2.013  0.237 

30 

   0.014  0.060  3.808*  0.250  0.040  0.098  6.158*  0.429 

   0.035  0.744  0.647*  0.076  0.063  0.999  0.803*  0.094 
   0.503  1.009  2.156*  0.254  0.200  0.634  1.790*  0.210 

50 

35 

   0.015  0.063  2.395*  0.263  0.053  0.142  4.068*  0.480 

   0.015  0.487  3.670*  0.072  0.021  0.573  0.541*  0.106 
   0.437  0.941  1.186*  0.232  0.088  0.416  1.157*  0.227 

45 

   0.010  0.047  1.969*  0.212  0.027  0.046  3.208*  0.365 

   0.016  0.495  3.412*  0.067  0.027  0.650  0.449*  0.088 
   0.435  0.938  1.135*  0.222  0.101  0.448  1.039*  0.204 

50 

   8.718*  0.040  1.824*  0.195  0.022  0.037  2.914*  0.327 

   0.017  0.513  3.394*  0.067  0.028  0.669  0.425*  0.083 
   0.350  0.841  1.155*  0.226  0.130  0.511  0.996*  0.195 

100 

70 

   8.422*  1.266*  0.918*  0.196  0.024  0.019  1.540*  0.348 

   0.012  0.440  0.160*  0.063  0.015  0.482  2.422*  0.095 
   0.233  0.687  0.442*  0.173  9.698*  0.125  4.546*  0.178 

90 

   5.407*  8.460*  0.734*  0.154  0.014  5.558*  1.190*  0.261 

   0.010  0.399  0.150*  0.059  0.012  0.439  0.208*  0.082 
   0.197  0.631  0.457*  0.179  0.031  0.244  0.446*  0.175 

100 

   4.492*  5.287*  0.669*  0.140  0.012  5.649*  1.104*  0.240 

   0.010  0.397  0.157*  0.062  0.017  0.511  1.994*  0.078 
   0.132  0.515  0.467*  0.183  0.031  0.244  4.177*  0.164 

300 

210 

   3.290*  0.026  0.186*  0.116  8.527*  0.018  0.304*  0.195 

   5.329*  0.287  0.096*  0.052  7.065*  0.326  0.068*  0.080 
   0.043  0.292  0.106*  0.125  1.338*  0.015  0.117*  0.138 

270 

   1.921*  2.203*  0.146*  0.090  5.083*  0.013  0.236*  0.148 

   2.930*  0.209  0.048*  0.057  5.550*  0.290  0.057*  0.067 
   0.026  0.225  0.119*  0.140  3.213*  0.065  0.113*  0.133 

300 

   1.574*  4.942*  0.132*  0.081  4.055*  9.854*  0.211*  0.132 

   1.816*  0.159  0.052*  0.061  5.510*  0.291  0.051*  0.060 
   0.019  0.191  0.131*  0.154  5.724*  0.097  0.109*  0.128 

 Note: * Indicate that the value multiply  310  
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Table 4 The ARBs, MSEs, SEs and AL of the estimates for Case III and Case IV 

n   r  
Para- 

meters 

( 0.5, 0.25, 0.5)       95% 

CIs
 

( 0.5, 0.5, 0.7)       95% 

CIs
 

Properties  Properties 
MSE  ARB  SE  AL  MSE  ARB  SE  AL 

30 

21 

   0.049  0.256  5.977*  0.414  0.030  0.210  4.601*  0.308 

   0.012  0.434  0.782*  0.092  0.050  0.444  0.971*  0.114 
   0.243  0.978  1.950*  0.229  1.137  1.520  2.480*  0.292 

27 

   0.026  0.139  4.902*  0.331  0.017  0.097  3.965*  0.261 

   0.013  0.441  0.634*  0.075  0.079  0.558  0.974*  0.114 
   0.315  1.117  1.829  0.215  1.016  1.436  2.300  0.270 

30 

   0.021  0.122  4.421*  0.294  0.013  0.061  3.673*  0.240 

   0.016  0.498  0.625*  0.073  0.108  0.655  0.980*  0.115 
   0.258  1.009  1.783  0.210  0.797  1.272  2.191*  0.258 

50 

35 

   0.030  0.141  3.178*  0.361  0.014  0.084  2.225*  0.242 

   7.817*  0.344  0.402*  0.079  0.037  0.383  0.526*  0.103 
   0.165  0.807  0.962*  0.189  0.893  1.347  1.224*  0.240 

45 

   0.015  0.051  2.437*  0.268  9.928*  0.060  1.902*  0.204 

   0.011  0.408  0.352*  0.069  0.052  0.454  0.523*  0.102 
   0.160  0.794  0.888*  0.174  0.765  1.246  1.169*  0.229 

50 

   0.012  0.042  2.166*  0.235  8.182*  0.046  1.749*  0.186 

   0.012  0.425  0.346*  0.068  0.062  0.495  4.865*  0.095 
   0.135  0.730  0.883*  0.173  0.636  1.137  1.181*  0.231 

100 

70 

   0.015  0.044  1.218*  0.268  6.805*  0.021  0.818*  0.173 

   3.496*  0.225  0.183*  0.072  0.029  0.335  0.219*  0.086 
   0.086  0.581  0.384*  0.151  0.475  0.983  0.468*  0.184 

90 

   8.408*  0.016  0.913*  0.195  4.757*  2.346*  0.690*  0.144 

   0.049  0.256  5.977*  0.414  0.030  0.210  4.601*  0.308 
   0.012  0.434  0.782*  0.092  0.050  0.444  0.971*  0.114 

100 

   0.243  0.978  1.950*  0.229  1.137  1.520  2.480*  0.292 

   0.026  0.139  4.902*  0.331  0.017  0.097  3.965*  0.261 
   0.013  0.441  0.634*  0.075  0.079  0.558  0.974*  0.114 

300 

210 

   0.315  1.117  1.829  0.215  1.016  1.436  2.300  0.270 

   0.021  0.122  4.421*  0.294  0.013  0.061  3.673*  0.240 
   0.016  0.498  0.625*  0.073  0.108  0.655  0.980*  0.115 

270 

   0.258  1.009  1.783  0.210  0.797  1.272  2.191*  0.258 

   0.030  0.141  3.178*  0.361  0.014  0.084  2.225*  0.242 
   7.817*  0.344  0.402*  0.079  0.037  0.383  0.526*  0.103 

300 

   0.165  0.807  0.962*  0.189  0.893  1.347  1.224*  0.240 

   0.015  0.051  2.437*  0.268  9.928*  0.060  1.902*  0.204 
   0.011  0.408  0.352*  0.069  0.052  0.454  0.523*  0.102 

Note: * Indicate that the value multiply  310
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Figure 3 The MSE for  of Case III 
 

Figure 4 The MSE for    of Case IV 

     

 

 

 

Figure 5 AL for  of Case I 
 

Figure 6 AL for   of Case II 

     

 

 

 
Figure 7 The MSE of  ( , , )    for Case II  

at 0.7r n  

  Figure 8 The MSE of   ( , , )    for Case II 

at  0.9r n  
 

In previous table, the numbers of the failure unites  r  are selected as  0.9r n  for both two 

real data sets under TIIC data. The estimate of   is the maximum value, which are 5.55 for data 

I and 24.5 for data II. The estimates of  , ,     and their SEs are as given in Table 5. We notice 

that the SEs of   take the smallest values corresponding to the SEs of  and  .  
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Table 5 ML estimates and their SEs based on TIIC data 

Real data  n   r  Estimator  Estimate  SEs 
 
 
I 

 
 

72 

 
 

65 

̂   4.168  0.019 

̂   5.550  - 

̂   0.860  0.006 

̂   4.592  0.086 

 
 

II 

 
 

40 

 
 

28 

̂   3.793  0.023 

̂   24.500  - 

̂   0.357  0.003 

̂   5.767  0.087 

 

5. Concluding Remarks 

We  introduce  a  new  generalization  for  the  PF  distribution  called  the  exponentiated 

generalized power function. Some statistical properties are obtained. The estimation of the model 

parameters  is  established  based  on  complete  and  TIIC  samples.  The  maximum  likelihood 

estimators and asymptotic confidence interval of the model parameters are obtained. Simulation 

study is conducted to compare the performance of estimates under TIIC with different censoring 

levels. Applications to real data are given. 
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