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Abstract 

The  comparison  of  efficiency  of  complete  and  incomplete  nearest  neighbour  balanced  block 

designs (NNBD) over regular block design using average variance, generalized variance and min-max 

variance with the error term    given in the NNBD model follows using first order correlated models.  

It is observed that,  HR  and  DR  show increasing efficiency values for direct and neighbour effects (left 

and  right)  for  MA(1)  models.    The  AR  and  GR  show  neither  increasing  nor  decreasing  efficiency 

values are observed for direct and neighbouring effects for AR(1) and MA(1) models.  In the case of 

ARMA(1,1)  model,  neither  increasing  nor  decreasing  efficiency  values  have  observed  for  average 

variance and generalized variance. The  ER  shows decreasing efficiency values with   in the interval 

0.1 to 0.4 for direct and neighbouring effects for AR(1), MA(1) and ARMA(1,1) models. 

______________________________ 
Keywords:   Autoregressive,  moving  average,  autoregressive  moving  average,  information  matrix,  efficiency, 

regular block design, average variance, generalized variance, min-max variance. 

 

1. Introduction 

The  assumptions  in  the  classical  (Fisherian)  block  model  are  that  the  response  on  a  plot  to  a 

particular treatment does not affect the response on the neighbouring plots and the fertility associated 

with plots in a block is constant. However, in many fields of agricultural research, like horticultural 

and agro-forestry experiments, the treatment applied to one experimental plot in a block may affect 

the response on the neighbouring plots if the blocks are linear with no guard areas between the plots. 

The treatments are varieties, neighbour effects may be caused by differences in height, root vigor, or 

germination date especially on small plots, which are used in plant breeding experiments. Treatments 

such as fertilizer, irrigation, or pesticide may spread to adjacent plots causing neighbour effects.  Such 

experiments exhibit neighbour effects, because  the effect of having no  treatment as a neighbour  is 

different  from  the  neighbour  effects  of  any  treatment.  Competition  or  interference  between 

neighbouring units in field experiments can contribute to variability in experimental results and lead 

to substantial losses in efficiency.  In case of block design setup, if each block is a single line of plots 

and blocks are well separated, extra parameters are needed for the effect of left and right neighbours. 

An  alternative  is  to  have  border  plots  on  both  ends  of  every  block.  Each  border  plot  receives  an 


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experimental treatment, but it is not used for measuring the response variable. These border plots do 

not add too much to the cost of one-dimensional experiments. The estimates of treatment differences 

may  therefore deviate because of  interference  from neighbouring units. Neighbour balanced block 

designs, where in the allocation of treatments is such that every treatment occurs equally often with 

every  other  treatment  as  neighbours,  are  used  for  modeling  and  controlling  interference  effects 

between neighbouring plots. Azais et al. (1993) obtained a series of efficient neighbour designs with 

border plots that are balanced in  1   blocks of size   and   blocks of size  1,  where   is the 

number of treatments. Santharam and Ponnuswamy (1997a) observed that the performance of NNBD 

is quite satisfactory for the remaining models. Druilhet (1999) studied optimality of circular neighbour 

balanced block designs obtained by Azais et al.  (1993). Bailey (2003) had given some designs  for 

studying one-sided neighbour effects.  These neighbour balanced block designs have been developed 

under the assumption that the observations within a block are uncorrelated.  In situations where the 

correlation structure among the observations within a block is known, may be from the data of past 

similar experiments, it may be advantageous to use this information in designing an experiment and 

analyzing the data so as to make more precise inference about treatment effects (Gill and Shukla 1985). 

Kunert  et  al.  (2003)  considered  two  related  models  for  interference  and  have  shown  that  optimal 

designs for one model can be obtained from optimal designs for the other model. Martin and Eccelston 

(2004) has given variance balanced designs under  interference and dependent observations. Tomar 

and Jaggi (2007) observed that efficiency is quite high,  in case of complete block designs for both 

AR(1)  and  Nearest  Neighbour  (NN)  correlation  structures.  In  case  of  incomplete  block  designs, 

designs with AR(1) structure turns out to be more efficient. However, the efficiency of direct effects 

of treatments is more as compared to neighbour effects under both the structures. Mingyao et al. (2007) 

studied the optimality of circular neighbour balanced designs for total effects when the one-sided or 

two-sided  neighbour  effects  are  present  in  the  model  and  the  observation  errors  are  correlated 

according to a first-order circular autoregressive (AR(1,C)) process.  

In  this  article,  we  have  compared  the  efficiencies of  nearest neighbour  balanced  block design 

(NNBD)  and  nearest  neighbour  balanced  incomplete  block  design  (NNBIBD)  over  regular  block 

design using  average  variance,  generalized  variance  and  min-max  variance  with  the  error  term    

given in the NNBD model follows AR(1), MA(1) and ARMA(1,1) models. We have investigated the 

various measures of efficiencies  ( , , ,A H G DR R R R  and  )ER  of NNBD over regular block design using 

first  order  correlated  models.  We  have  also  investigated  the  various  measures  of  efficiencies 

( , , ,A H G DR R R R  and  )ER  of NNBIBD over regular block design using first order correlated models. 

 

2. Model Structures 

The designs considered here are assumed to be in linear blocks, with neighbour effects only in the 

direction of the blocks (say left-neighbour or right-neighbour or both). Because the effect of having 

no treatment differs from the neighbour effects of any treatment, designs with border plots have been 

considered, which is, designs with one point added at each end of each block. The border plots receive 

treatments but  are  not  used  for  measuring  the  response  variables. The  plots, which are  not  on  the 

borders, are inner plots.  The length of a block is the number of its inner plots. It is further assumed 

that all the designs are circular, that is the treatment on border plots is same as the treatment on the 

inner plot at the other end of the block. 

Let    be a class of binary neighbour balanced block designs  with  n bk  units  that  form  b  

blocks  each  containing  k   units.  ijY   be  the  response  from  the  thi   plot  in  the  thj   block 
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( 1,2,..., ; 1, 2,..., ).i k j b   The layout includes border plots at both ends of every block, i.e., at   th0   

and  th( 1)k   position and observations for these units are not modelled. It is assumed that the design 

is circular, that is the treatment on border plots is same as the treatment on the inner plot at the other 

end of the block. 

The following fixed effects additive model is considered for analyzing a neighbour balanced block 

design under correlated observations: 

  ( , ) ( 1, ) ( 1, )  ,ij i j i j i j j ijY l e                             (1) 

where    is the general mean,  ( , )i j  is the direct effect of the treatment in the  thi  plot of  thj  block,  j  

is the effect of the  thj  block,  ( 1, )i jl   is the left neighbour effect due to the treatment in the  th( 1)i  plot 

of  thj  block,  ( 1, )i j   is the right neighbour effect due to the treatment in the  th( 1)i   plot in  thj  block, 

ije  are error terms distributed with mean zero and a variance-covariance structure  bI     ( bI  is 

an identity matrix of order  b  and   denotes the Kronecker product). The ARMA(1,1) model along 

with AR(1) and MA(1) and explored the performance of NNBD range from    = −0.4 to 0.4. If the 

errors  within  a  block  follow  a  AR(1)  structure,  then     is  a  k k   matrix  with  th( , )i i   entry 

( , 1, 2, , )i i k    as 
i i

,  1.   The MA(1) structure, then   is a matrix with diagonal entries as 1 

and  th( , )i i  entry  ( , 1, 2, , )i i k    as  ,  when  1,i i   otherwise zero (Gill and Shukla 1985). If 

the errors within a block follow an ARMA(1,1) model then  .bI    
bI  is an identity matrix of 

order  b   and 
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1 ( 1)r
kr k    for  2k    (Santharam  and  Ponnuswamy  1997b).  The  Nearest  Neighbour  (NN) 

correlation structure, the   is a matrix with diagonal entries as 1 and off-diagonal entries as  .  Model 

(1) can be rewritten in the matrix notation as follows 

1 2  1 ,Y l D e                                                                    (2) 

where  Y  is  1n  vector of observations, 1 is  1n  vector of ones,    is an  n v  incidence matrix of 

observations versus direct treatments,   is  1v  vector of direct treatment effects,  1
  is a  n v  matrix 

of observations versus  left neighbour  treatment,  2
   is a  n v  matrix of observations versus  right 

neighbour treatment,  l  is  1v  vector of left neighbour effects,    is  1v  vector of right neighbour 

effects,  D  is an  n b  incidence matrix of observations versus blocks,    is  1b  vector of block 

effects  and  e   is  1n   vector  of  errors.  The  joint  information  matrix  for  estimating  the  direct  and 

neighbour (left and right) effects under correlated observations estimated by generalized least squares 

is obtained as follows: 

     
     
     

* * *
1 2

* * *
1 1 1 1 2

* * *
2 2 1 2 2

b b b

b b b

b b b

I I I

C I I I

I I I

           
 
            
 
             

                             (3) 
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with 

 
1

* 1 1 1 11 1 1 1 .k k k k


            

The above  3 3v v  information matrix  ( )C  for estimating the direct effects and neighbour effects of 

treatments in a block design setting is symmetric, non-negative definite with row and column sums 

equal  to zero. The  information matrix for estimating  the direct effects of  treatments  from (3)  is as 

follows  

  1
11 12 22 21,C C C C C

                       (4) 

where   *
11 ,bC I          * *

12 1 2b bC I I        
 

 and 

   
   

* *
1 1 1 2

22
* *

2 1 2 2

.
b b

b b

I I
C

I I

       
 
       
 

 

Similarly, the information matrix for estimating the left neighbour effect of treatments  ( )lC  and right 

neighbour effect of treatments  ( )C  can be obtained. 

 

Definition 1 A block design is neighbour balanced if every treatment has every treatment appearing 

as a neighbour (left and right) constant number of times (say, ).  

 

Definition 2  A neighbour balanced block design is called pair-wise uniform on the plots if each 

treatment ( 1,2, , )s v   occurs equally often in each plot position ( 1, 2, , )i k   and each pair of 

treatments s  and  ,s  ( 1,2, , )s s v    occurs equally often ( )time within the same block in each 

unordered pair of plot positions i  and ,i  ( 1, 2, , ).i i k    

 

Definition 3  A neighbour balanced block design with correlated observations permitting the 

estimation of direct and neighbour (left and right) effects, is called variance balanced if the variance 

of any estimated elementary contrast among the direct effects is constant, say 1 ,V  the variance of any 

estimated elementary contrast among the left neighbour effect is constant, say 2 ,V  and the variance 

of any estimated elementary contrast among the right neighbour effects is constant, say 3 .V  The 

constants 1 2,V V  and 3V  may not be equal.  A block design is totally balanced if 1 2 3.V V V   

 

3. Construction of Designs 

Tomer et al. (2005) has constructed neighbour balanced block design with parameters  v  (prime 

or  prime  power),  ( 1),b v v  ( 1)( ),r v v m     ( ),k v m    1, 2, , 4m v   and  ( )v m    using 

mutually orthogonal Latin  squares  (MOLS) of order  .v  This  series of design has been  investigated 

under the correlated error structure. It is seen that the design turns out to be pair-wise uniform with 

1   and also variance balanced for estimating direct  1( )V  and neighbour effects  2 3( ).V V  

 

Example 1 Let  6v   and  0.m   The following is a neighbour balanced pair-wise uniform complete 

block design with parameters  6, 30, 30, 6, 6v b r k       and  1:   
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4  5  6  1  2  3  4  5 

5  6  1  2  3  4  5  6 

6  1  2  3  4  5  6  1 

1  2  3  4  5  6  1  2 

2  3  4  5  6  1  2  3 

3  4  5  6  1  2  3  4 

5  6  1  2  3  4  5  6 

6  1  2  3  4  5  6  1 

1  2  3  4  5  6  1  2 

2  3  4  5  6  1  2  3 

3  4  5  6  1  2  3  4 

4  5  6  1  2  3  4  5 

6  1  2  3  4  5  6  1 

1  2  3  4  5  6  1  2 

2  3  4  5  6  1  2  3 

3  4  5  6  1  2  3  4 

4  5  6  1  2  3  4  5 

5  6  1  2  3  4  5  6 

1  2  3  4  5  6  1  2 

2  3  4  5  6  1  2  3 

3  4  5  6  1  2  3  4 

4  5  6  1  2  3  4  5 

5  6  1  2  3  4  5  6 

6  1  2  3  4  5  6  1 

2  3  4  5  6  1  2  3 

3  4  5  6  1  2  3  4 

4  5  6  1  2  3  4  5 

5  6  1  2  3  4  5  6 

6  1  2  3  4  5  6  1 

1  2  3  4  5  6  1  2 

3  4  5  6  1  2  3  4 

4  5  6  1  2  3  4  5 

5  6  1  2  3  4  5  6 

6  1  2  3  4  5  6  1 

1  2  3  4  5  6  1  2 

2  3  4  5  6  1  2  3. 

 

The information matrices for estimating the direct and neighbour effects (left and right) of treatments 

for AR(1) structure with  0.1   was obtained as given below 
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J
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 and  15.893 .

5
l

J
C C I

 
   

 
 

Similarly for MA(1), ARMA(1,1) and NN structures 

15.561
5

J
C I
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  

 
 and  16.886 ,

5
l

J
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14.687
5

J
C I

 
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 
 and  13.678 ,

5
l

J
C C I

 
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 
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16.572
5

J
C I

 
  

 
 and  17.391 .

5
l

J
C C I

 
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 
 

These matrices have been worked out using in R (R Core Team 2018). 

Similarly, we have worked a neighbour balanced pair-wise uniform complete block design with 

parameter  5v   and  0.m   

 

Example 2 Let  5v   and  1.m   The  following  is  a  neighbour  balanced  pair-wise  uniform 

incomplete block design with parameters  5, 20, 16, 4, 4v b r k      and  1:   

5  2  3  4  5  2 

1  3  4  5  1  3 

2  4  5  1  2  4 

3  5  1  2  3  5 

4  1  2  3  4  1 

1  3  4  2  1  3 

2  4  1  3  2  4 

3  5  2  4  3  5 

4  1  3  5  4  1 

5  2  4  1  5  2 

3  4  2  5  3  4 

4  5  3  1  4  5 

5  1  4  2  5  1 

1  2  5  3  1  2 

2  3  1  4  2  3 

2  5  4  3  2  5 

3  1  5  4  3  1 

4  2  1  5  4  2 

5  3  2  1  5  3 

1  4  3  2  1  4. 

 

The information matrices for estimating the direct and neighbour effects (left and right) of treatments 

for AR(1) structure with  0.1   is obtained as given below 
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Similarly for MA(1), ARMA(1,1) and NN structures, 

11.18748
5

J
C I

 
  

 
 and  13.68067 ,

5
l

J
C C I

 
   

 
 

11.18748
5

J
C I

 
  

 
 and  12.62843 ,

5
l

J
C C I

 
   

 
 

13.17057
5

J
C I

 
  

 
 and  12.60091 .

5
l

J
C C I

 
   

 
 

These matrices have been worked out using in R (R Core Team 2018). 
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Similarly, we have worked a neighbour balanced pair-wise uniform incomplete block design with 

parameters (i)  6v   and  1, 2m   and (ii)  7v   and  3.m   

 

4. Comparison of Measures of Efficiency of NNBD 

 In this section, we study the behaviour of some estimators of    and  2 .  The nearest neighbour 

balanced block design (NNBD) and regular block design data sets were generated with the following 

true parameters:  0.4    to 0.4,  2 1,    5, 20t r   and  6, 30.t r   

  The  estimation  of  2
  based  on  NNBD  and  regular  block  design  were  compared  using  the 

following three measures. 

 

4.1. Average variance comparison 

Consider the measure 
1

2 1
( )

1

1
2 1
( )

1

( )

,

( )

t

RBD RBD
i

A t

NNBD NNBD
i

i
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



 

 















 

where  2
( )RBD  denotes the estimate of  2

  based on regular block design  2
( )NNBD  denotes the estimate 

of  2
  based on NNBD  ( )d i ’s and are nonzero eigen values of the information matrix. 

The above measure  AR  compares the average variance of elementary treatment contrast when the 

same data are analysed by regular block design and nearest neighbour balanced block design. It may 

be noted that the estimates of  2
  and    can be different in case of regular block design and nearest 

neighbour  balanced  block  design.  The  ratio  2 2
RBD NNBD     could  mask  the  genuine  efficiency  of 

NNBD.  Therefore, the ratio 
1

1

1

1
1

1
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( )

t

RBD
i

H t
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i

i

R

i




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
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




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
 

of harmonic means will also be considered as an index of efficiency. 

 

4.2. Generalized variance comparison 

Another way to compare regular block design and nearest neighbour balanced block design is the 

ratio 
1

12 2 1
( ) ( )

1

t
t

G RBD NNBD NNBD i RBD i
i

R    


 



      

of generalized variances of  1t   orthonormal treatment contrasts estimated under regular block design 

and nearest neighbour balanced block design.  It may be noted that  GR  is very sensitive to the ratio 

2 2 .RBD NNBD   We therefore, consider the ratio 

1
1

( ) ( )
1

.
t

D NNBD i RBD i
i

R  






  

This gives a better comparison of regular block design and nearest neighbour balanced block design. 
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4.3. Min-max variance comparison 

This closeness is measured by the ratio of the smallest nonzero eigen-value to the largest eigen 

value  of  the  information  matrix.  Note  that  this  ratio  independent  of  2 .   For  comparing  nearest 

neighbour balanced block design (NNBD) and regular block design, we take the ratio 

(1) ( 1)

( 1) (1)

.
NNBD RBD t

E

NNBD t RBD

R
 

 




   

Tables  1,  2  and  3  show  the  efficiencies  of  AR(1),  MA(1)  and  ARMA(1,1)  models  with 

5, 20t r   and 1,   there is considerable advantage in using NNBD as far as average variance 

( AR  and  ),GR  generalized variance  ( HR  and  )DR  and min-max variance  ( )ER  are concerned. The 

efficiency  factor  ( )E   for direct effects of  the neighbour,  left and  right  ( )lE  and  ( )E  neighbour 

effects of treatments is obtained by Tomer et al. (2007).  The  HR  and  DR  show increasing efficiency 

values,  AR  and  E  show decreasing efficiency values for direct effects of treatments for both AR(1) 

and MA(1) models. In the case of ARMA(1,1) model, neither increasing nor devcreasing efficiency 

values  are  observed  for  average  variance  and  generalized  variance.  The  ER   show  decreasing 

efficiency values  with     in  the  interval  0.1  to 0.4  for  direct  and  neighbouring  effects  for AR(1), 

MA(1) and ARMA(1,1) models. We have concluded that, the higher efficiency values are observed 

for direct  effects of  treatments  for both MA(1) and ARMA(1,1) models  for average variance. The 

lower  efficiency  values  are  observed  for  direct,  left  and  right  neighbour  effects  of  treatments  for 

AR(1), MA(1) and ARMA(1,1) models for min-max variance. 

Tables  4,  5  and  6  show  the  efficiencies  of  AR(1),  MA(1)  and  ARMA(1,1)  models  with 

6, 30t r   and 1,   there is considerable advantage in using NNBD as far as average variance  

( AR  and  ),GR  generalized variance  ( HR  and  )DR  and min-max variance  ( )ER  are concerned.   The 

efficiency  factor  ( )E  for  direct  effects  of  the  neighbour,  left  and  right  ( )lE  and  ( )E  neighbour 

effects of treatments is obtained by Tomer et al. (2007). The  HR  and  DR  show increasing efficiency 

values for direct, left and right neighbour effects  for MA(1) models. Whereas neither increasing nor 

decreasing efficiency values are observed for  AR  and  GR  for AR(1), MA(1) and ARMA(1,1) models. 

The  ER  show  decreasing  efficiency  values  with    in  the  interval  0.1  to  0.4  for  direct  and 

neighbouring effects for AR(1), MA(1) and ARMA(1,1) models. We have concluded that, the higher 

efficiency values are observed for direct for MA(1) and ARMA(1,1) models for average variance.  The 

lower  efficiency  values  are  observed  for  direct,  left  and  right  neighbour  effects  of  treatments  for 

ARMA(1,1) model for min-max variance. 
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Table 1 AR(1) -  , , ,H A D GR R R R  and  ER  values for NNBD  5, 20t r   and  1   

AR(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.82206  0.84056  0.84849  0.92776  0.99731  1.07535  1.11937  1.19711  1.33701 

 lE 0.88057  0.88385  0.87055  0.93609  0.99731  1.07443  1.14159  1.19428  1.38385 

 E 0.87535  0.87293  0.90202  0.93467  0.99731  1.07842  1.14588  1.17232  1.44921 

AR E 1.71980  1.62361  1.43725  1.16062  1.03300  0.88094  0.70476  0.67051  0.58753 

 lE 1.04258  1.23553  1.35437  1.05331  1.03300  1.02668  0.95449  0.93141  0.90494 

 E 0.84175  0.83609  0.77479  0.78136  1.03300  1.02670  0.94460  0.94350  0.72666 

DR E 0.65693  0.76922  0.80208  0.91668  0.99742  1.06470  1.07019  1.10153  1.15849 

 lE 0.75975  0.80215  0.79492  0.93214  0.99742  1.13410  1.10125  1.13779  1.18341 

 E 0.75451  0.73194  0.86888  0.93505  0.99742  1.08569  1.11999  1.07228  1.21074 

GR E 1.37434  1.68040  1.35863  1.14676  1.03311  0.87221  0.67380  0.61698  0.50908 

 lE 1.09700  1.02896  1.28008  1.13454  1.03311  0.98796  0.87841  0.84006  0.83029 

 E 0.87294  0.74411  0.72419  0.86790  1.03311  1.02708  1.02430  0.83693  0.73724 

ER E 0.34195  0.41605  0.58207  0.80513  1.02397  0.80117  0.61089  0.51894  0.38149 

 lE 0.50890  0.50607  0.49748  0.90509  1.02397  0.90788  0.71547  0.51062  0.39041 

 E 0.40937  0.50946  0.57910  0.79090  1.0297  0.77891  0.51938  0.44272  0.35021 

 

Table 2 MA(1) -  , , ,H A D GR R R R  and  ER  values for NNBD  5, 20t r   and  1   

MA(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.84249  0.86817  0.86119  0.93935  0.99731  1.08974  1.14109  1.24952  1.46584 

 lE 0.84164  0.86526  0.86778  0.92234  0.99731  1.11430  1.14735  1.26867  1.54839 

 E 0.85300  0.86664  0.93185  0.96478  0.99731  1.08162  1.18884  1.30402  1.50626 

AR E 1.74409  1.71577  1.38649  1.13382  1.03300  0.85413  0.73994  0.59917  0.45844 

 lE 1.44720  1.36032  1.25010  1.22789  1.03300  0.99040  0.85540  0.81432  0.79324 

 E 0.97037  0.89610  0.86960  0.83836  1.03300  0.79912  0.72593  0.76606  0.68569 

DR E 0.72640  0.89669  0.89790  0.92919  0.99742  1.06906  1.08207  1.07493  1.08956 

 lE 0.78649  0.81766  0.89177  0.91675  0.99742  1.10748  1.09527  1.13450  1.14402 

 E 0.77146  0.76634  0.89765  0.94456  0.99742  1.06893  1.12330  1.12611  1.19308 

GR E 1.50378  1.47508  1.31983  1.12156  1.03311  0.83792  0.70167  0.51545  0.34076 

 lE 1.35236  1.29648  1.20373  1.12044  1.03311  0.98434  0.81658  0.81763  0.73881 

 E 0.98717  0.83761  0.83769  0.82070  1.03311  0.86120  0.81950  0.81146  0.71732 

ER E 0.42834  0.53675  0.58745  0.81568  1.02397  0.74110  0.56530  0.40386  0.24452 

 lE 0.63471  0.56779  0.65418  0.90441  1.02397  0.93008  0.66682  0.42463  0.25251 

 E 0.51057  0.52467  0.59003  0.70308  1.02397  0.77840  0.55752  0.36290  0.22587 

 
 
 
 
 

 
 
 

 



260                                                                    Thailand Statistician, 2020; 18(3): 251-266 

Table 3 ARMA(1) -  , , ,H A D GR R R R  and  ER  values for NNBD  5, 20t r   and  1   

ARMA 
(1,1) 

1 0.4  

2 0.4  

 

1 0.3  

2 0.3  

 

1 0.2  

2 0.2  

 

1 0.1  

2 0.1  

 

1 0   

2 0 

 

1 0.1 

2 0.1 

 

1 0.2 

2 0.2 

 

1 0.3 

2 0.3 

 

1 0.4 

2 0.4 

 
HR E 1.73929  1.40782  1.13165  1.03135  0.99731  1.07079  1.25615  1.80200  1.73929 

 lE 1.27542  1.24219  1.11838  1.00941  0.99731  1.14190  1.33971  1.97894  1.27542 

 E 1.64768  1.14631  1.19344  1.01525  0.99731  1.10410  1.36069  1.86532  1.64768 

AR E 2.38589  2.29292  1.66082  1.25045  1.03300  0.81184  0.49451  0.39819  2.38589 

 lE 1.38934  1.28048  1.20192  1.28074  1.03300  0.96485  0.41140  0.32256  1.38934 

 E 1.11417  1.14094  1.12845  1.08510  1.03300  0.93729  0.41176  0.31165  1.11417 

DR E 1.24259  1.11109  0.99616  1.00093  0.99742  1.02257  0.99765  1.04287  1.24259 

 lE 2.21619  1.65773  1.03140  0.97924  0.99742  1.08982  1.05636  1.02048  2.21619 

 E 1.64380  1.62707  1.06986  0.98238  0.99742  1.05094  1.07005  1.07228  1.64380 

GR E 1.70454  1.70964  1.46198  1.21357  1.03311  0.77528  0.39275  0.23044  1.70454 

 lE 2.41413  1.70565  1.41117  1.24246  1.03311  0.92084  0.82094  0.82197  2.41413 

 E 1.78736  1.76492  1.70332  1.28235  1.03311  0.97291  0.78334  0.81147  1.78736 

ER E 0.25425  0.30840  0.40455  0.71882  1.02397  0.58190  0.29767  0.16850  0.25425 

 lE 0.49622  0.19640  0.52302  0.70143  1.02397  0.64260  0.34204  0.25408  0.49622 

 E 0.26500  0.29737  0.40302  0.62134  1.02397  0.57200  0.27076  0.21844  0.26500 

 

Table 4 AR(1) -  , , ,H A D GR R R R  and  ER  values for NNBD  6, 30t r   and 1   

AR(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.77832  0.83364  1.18472  0.94421  1.00000  1.07791  1.16081  1.25413  1.36637 

 lE 1.01559  1.19869  0.88125  0.94508  1.00000  1.05268  1.30270  1.28229  1.41284 

 E 0.84044  0.88062  0.85890  0.96807  1.00000  1.08877  1.16076  1.26551  1.38382 

AR E 2.40263  1.61135  1.84549  1.03443  1.00000  1.00032  0.76598  0.63805  0.57940 

 lE 1.26510  1.51088  0.98075  0.99408  1.00000  1.12142  1.27964  1.25184  1.36862 

 E 0.86283  0.81914  0.91018  0.87069  1.00000  1.06665  1.21837  1.33880  1.55820 

DR E 0.56238  0.72942  0.83232  0.93186  1.00000  1.06837  1.10932  1.14256  1.16253 

 lE 0.98933  0.77681  0.84631  0.93420  1.00000  1.04625  1.12387  1.16745  1.21139 

 E 0.66824  0.72392  0.82160  0.95574  1.00000  1.08248  1.10874  1.14809  1.16696 

GR E 1.73602  1.40989  1.29655  1.02091  1.00000  0.87209  0.73199  0.58129  0.49297 

 lE 1.23239  0.97912  0.94187  0.98263  1.00000  1.11458  1.10398  1.13974  1.17347 

 E 0.68604  0.77824  0.87065  0.85955  1.00000  1.06049  1.16377  1.21458  1.31401 

ER E 0.20321  0.38802  0.22031  0.74089  1.00000  0.81287  0.56315  0.43954  0.31437 

 lE 0.37858  0.18556  0.59450  0.78300  1.00000  0.88736  0.49702  0.44176  0.34283 

 E 0.28271  0.37227  0.55862  0.79059  1.00000  0.83293  0.55672  0.42128  0.31865 
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Table 5 MA(1) -  , , ,H A D GR R R R  and  ER  values for NNBD  30,6  rt  and 1  

MA(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.81306  0.87290  0.88637  0.95041  1.00000  1.06427  1.17653  1.30554  1.48406 

 lE 0.83938  0.86753  0.88976  0.94990  1.00000  1.07059  1.17567  1.31853  1.61137 

 E 0.83063  0.83380  0.87932  0.95711  1.00000  1.08149  1.18381  1.32796  1.52774 

AR E 1.86872  1.56309  1.35701  1.13493  1.00000  0.86109  0.75763  0.61426  0.45750 

 lE 0.89214  0.91607  0.95486  1.00367  1.00000  1.10168  1.10623  1.21367  1.48584 

 E 0.94657  0.92795  0.87022  1.05528  1.00000  1.16852  1.27713  1.59889  1.62079 

DR E 0.66748  0.79552  0.84534  0.93460  1.00000  1.04624  1.10775  1.11528  1.12876 

 lE 0.74005  0.80019  0.86031  0.93618  1.00000  1.05731  1.11667  1.16043  1.25151 

 E 0.70136  0.75171  0.84213  0.94158  1.00000  1.06839  1.11933  1.15073  1.17200 

GR E 1.53412  1.42454  1.29418  1.11604  1.00000  0.84623  0.71333  0.52474  0.31714 

 lE 0.78657  0.84496  0.92326  0.98917  1.00000  1.08803  1.05072  1.06815  1.13281 

 E 0.79927  0.83659  0.83342  1.03816  1.00000  1.15436  1.20756  1.38551  1.69864 

ER E 0.29554  0.46831  0.57965  0.76171  1.00000  0.71332  0.51385  0.33502  0.18494 

 lE 0.39038  0.49585  0.62406  0.74412  1.00000  0.81210  0.54731  0.38071  0.25370 

 E 0.33012  0.41470  0.57104  0.73282  1.00000  0.75395  0.51760  0.34924  0.18346 

 

Table 6 ARMA(1,1) -  , , ,H A D GR R R R  and  ER  values for NNBD  6, 30t r   and 1   

ARMA 
(1,1) 

1 0.4  

2 0.4  

 

1 0.3  

2 0.3  

 

1 0.2  

2 0.2  

 

1 0.1  

2 0.1  

 

1 0   

2 0 

 

1 0.1 

2 0.1 

 

1 0.2 

2 0.2 

 

1 0.3 

2 0.3 

 

1 0.4 

2 0.4 

 
HR E 1.61665  1.29861  1.09650  0.90622  1.00000  1.09023  1.22625  1.83774  2.15711 

 lE 1.51890  1.77775  1.14375  1.01721  1.00000  1.07553  1.39113  1.70890  1.98760 

 E 0.94790  1.39883  1.11723  1.04661  1.00000  1.10188  1.39116  1.99808  1.99897 

AR E 2.86234  2.71432  1.82587  1.28585  1.00000  0.73195  0.45467  0.25593  0.23836 

 lE 1.35838  1.28848  0.92658  0.92199  1.00000  1.24563  1.27625  1.47355  1.60108 

 E 0.97760  0.83002  0.92133  0.88979  1.00000  1.24768  1.40949  1.67064  1.72301 

DR E 0.99559  0.89055  0.93523  0.84926  1.00000  1.03193  0.92058  0.90077  0.90214 

 lE 0.88983  1.43282  1.04002  0.98194  1.00000  1.02545  1.19841  1.19478  1.38984 

 E 1.91865  1.14741  0.96832  0.95574  1.00000  1.04569  1.07585  1.18192  1.27654 

GR E 1.76278  1.86140  1.55732  1.20503  1.00000  0.84234  0.34133  0.12544  0.22336 

 lE 0.79579  1.03848  0.84255  0.89002  1.00000  1.18763  1.17720  1.32107  1.31403 

 E 0.19787  0.68081  0.79854  0.81254  1.00000  1.18405  1.32204  1.44180  1.53403 

ER E 0.14236  0.19702  0.35713  0.48975  1.00000  0.53588  0.23090  0.09060  0.00867 

 lE 0.13541  0.27493  0.45441  0.62825  1.00000  0.62983  0.36037  0.29192  0.18219 

 E 0.41038  0.31932  0.35525  0.61146  1.00000  0.54712  0.24009  0.21890  0.17624 

 

5. Comparison of Measures of Efficiency of NNBIBD 

In this section, we study the behavior of some estimators of    and  2 .  The nearest neighbour 

balanced  incomplete  block  design  (NNBIBD)  data  sets  were  generated  with  the  following  true 

parameters:  0.4     to  0.4,  2 1, 5, 16t r      and  6, 25.t r    Tables  7,  8  and  9  show  the 

efficiencies  of  AR(1),  MA(1)  and  ARMA(1,1)  models  with  5, 16t r   and  1,    there  is 
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considerable  advantage  in  using  NNBIBD  as  far  as  average  variance  ( AR   and  ),GR   generalized 

variance  ( HR  and  )DR  and min-max variance  ( )ER  are concerned. The efficiency factor  ( )E  for 

direct  effects  of  the  neighbour,  left  and  right  ( )lE   and  ( )E   neighbour  effects  of  treatments  is 

obtained by Tomer et al. (2005).  The  HR  and  DR  show increasing efficiency values with    in the 

interval 0.1 to 0.4 for direct, left and right neighbour effects for AR(1) and MA(1) models.  Whereas 

neither increasing nor decreasing efficiency values are observed for  AR and  GR  for both AR(1) and 

MA(1) models.  In the case of ARMA(1,1) model, neither increasing nor decreasing efficiency values 

are  observed  for  average  variance  and  generalized  variance.  The  ER   shows  decreasing  efficiency 

values with    in the interval 0.1 to 0.4 for direct, left and right neighbour effects for AR(1), MA(1) 

and ARMA(1,1) models.  We have concluded that, the higher efficiency values are observed for direct, 

left and right neighbour effects of treatments for AR(1) and MA(1) models for average variance. The 

lower  efficiency  values  are  observed  for  direct,  left  and  right  neighbour  effects  of  treatments  for 

AR(1), MA(1) and ARMA(1,1) models for min-max variance. 

 

Table 7 AR(1) -  , , ,H A D GR R R R  and  ER  values for NNBIBD  5, 16t r   and 1   

AR(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.77786  0.83529  0.88792  0.99261  1.00000  1.01727  1.09963  1.15674  1.19348 

 lE 0.89672  0.83497  0.96549  0.95583  1.00000  1.09572  1.11314  1.14588  1.25147 

 E 0.88430  0.89980  0.94050  0.93840  1.00000  1.05232  1.07227  1.15538  1.24844 

AR E 1.27944  1.28998  1.13598  1.08621  1.00000  0.88803  0.94038  0.90180  0.86450 

 lE 1.01177  1.24454  1.34190  0.97799  1.00000  0.76243  0.93141  0.91137  1.06250 

 E 1.05091  0.65846  0.96372  0.84897  1.00000  1.07127  1.06240  1.19190  1.19601 

DR E 0.69488  0.78461  0.86158  0.98803  1.00000  1.01377  1.07613  1.10434  1.11442 

 lE 0.81570  0.80860  0.93505  0.95152  1.00000  1.08822  1.09513  1.10064  1.18071 

 E 0.79788  0.81662  0.90576  0.93376  1.00000  1.04854  1.04827  1.11896  1.16330 

GR E 1.14295  1.21171  1.10228  1.08120  1.00000  0.88498  0.92028  0.86094  0.80724 

 lE 0.92036  1.20524  1.29959  0.97358  1.00000  0.75721  0.91634  0.87539  1.00242 

 E 0.94821  0.59759  0.92812  0.84477  1.00000  1.06743  1.03862  1.15433  1.11445 

ER E 0.53018  0.57122  0.69325  0.93115  1.00000  0.92787  0.71842  0.65256  0.58474 

 lE 0.45317  0.75637  0.68621  0.90216  1.00000  0.83254  0.73473  0.64376  0.51054 

 E 0.44395  0.46696  0.65170  0.89680  1.00000  0.92690  0.78959  0.69013  0.54842 

 

Tables  10,  11  and  12  show  the  efficiencies  of  AR(1),  MA(1)  and  ARMA(1,1)  models  with 

6, 25t r   and 1,   there is considerable advantage in using NNBIBD as far as average variance 

( AR  and  ),GR  generalized  variance  ( HR  and  )DR  and  min-max  variance  ( )ER  are  concerned.  The 

efficiency  factor  ( )E  for  direct  effects  of  the  neighbour,  left  and  right  ( )lE  and  ( )E  neighbour 

effects of treatments is obtained by Tomer et al. (2005). The  HR  and  DR  show increasing efficiency 

values for direct, left and right neighbour effects whereas neither increasing nor decreasing efficiency 

values are observed for  AR  and  GR  for both AR(1) and MA(1) models. In the case of ARMA(1,1) 

model,  neither  increasing  nor  decreasing  efficiency  values  are  observed  for  average  variance  and 

generalized variance. The  ER  show decreasing efficiency values with    in the interval 0.1 to 0.4 for 
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direct, left and right neighbour effects for AR(1), MA(1) and ARMA(1,1) models. We have concluded 

that, the higher efficiency values are observed for direct effects of treatments for AR(1), MA(1) and 

ARMA(1,1) models for average variance. The lower efficiency values are observed for direct, left and 

right neighbour effects of treatments for AR(1), MA(1) and ARMA(1,1) models for min-max variance. 

 

Table 8 MA(1) -  , , ,H A D GR R R R  and  ER  values for NNBIBD  5, 16t r   and 1   

MA(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.86083  0.88038  0.89597  0.96944  1.00000  1.06681  1.11907  1.18888  1.26490 

 lE 0.88099  0.83125  0.93124  1.00291  1.00000  1.03877  1.09574  1.23675  1.35791 

 E 0.84355  0.86391  0.91231  0.94774  1.00000  1.02830  1.08648  1.23418  1.35574 

AR E 1.13284  1.40250  1.19237  1.07885  1.00000  0.97629  0.87999  0.97257  0.83735 

 lE 1.10314  1.10937  1.08170  0.75168  1.00000  0.96844  0.94299  0.92745  0.95085 

 E 0.79164  0.71453  0.92204  0.87113  1.00000  1.07506  1.15091  1.47112  1.55587 

DR E 0.80087  0.83408  0.87537  0.96886  1.00000  1.05467  1.07995  1.09565  1.09872 

 lE 0.70347  0.82745  0.91711  0.99903  1.00000  1.01769  1.05690  1.13925  1.14744 

 E 0.79398  0.83028  0.89981  0.94494  1.00000  1.02287  1.06245  1.15902  1.17491 

GR E 1.05393  1.32875  1.16495  1.07821  1.00000  0.96518  0.84922  0.89630  0.68176 

 lE 0.88086  1.10430  1.06528  0.74877  1.00000  0.94880  0.90957  0.85430  0.80347 

 E 0.74512  0.68672  0.90942  0.86856  1.00000  1.06938  1.12545  1.38153  1.34835 

ER E 0.63365  0.57701  0.73024  0.99507  1.00000  0.92787  0.71842  0.65256  0.58474 

 lE 0.55367  0.90369  0.77949  0.89515  1.00000  0.68152  0.63403  0.51547  0.36212 

 E 0.52558  0.66838  0.79267  0.91481  1.00000  0.86625  0.77192  0.56403  0.39041 

 

Table 9 ARMA(1,1) -  , , ,H A D GR R R R  and  ER  values for NNBIBD  5, 16t r   and 1   

ARMA 
(1,1) 

1 0.4  

2 0.4  

 

1 0.3  

2 0.3  

 

1 0.2  

2 0.2  

 

1 0.1  

2 0.1  

 

1 0   

2 0 

 

1 0.1 

2 0.1 

 

1 0.2 

2 0.2 

 

1 0.3 

2 0.3 

 

1 0.4 

2 0.4 

 
HR E 1.71592  1.26114  1.29357  1.01964  1.00000  1.03598  1.14253  1.37358  1.81046 

 lE 2.59153  1.49485  1.12954  1.05501  1.00000  1.02735  1.22523  2.01832  2.09753 

 E 1.72077  1.38987  1.15548  1.04394  1.00000  1.03976  1.15657  1.67583  2.14000 

AR E 1.47312  1.55894  1.86328  1.15464  1.00000  0.76940  0.84150  0.88997  1.27818 

 lE 0.72351  1.01397  0.89693  1.05316  1.00.68  0.84368  1.01321  2.24453  2.23429 

 E 1.27917  0.95827  0.88167  0.99717  1.00000  1.15908  1.50302  2.32502  2.45010 

DR E 1.40212  1.05921  1.17711  1.01432  1.00000  0.99693  0.97581  0.85306  0.50820 

 lE 1.87295  1.31061  1.08719  1.04027  1.00000  0.99888  1.08788  1.36470  1.46250 

 E 1.56621  1.26519  1.10650  1.03511  1.00000  1.01353  1.04043  1.23131  1.35643 

GR E 1.20373  1.30932  1.69553  1.14862  1.00000  0.74039  0.71870  0.55271  0.35879 

 lE 0.52290  0.88900  0.86330  1.03844  1.00000  0.82030  0.89962  1.21632  0.96622 

 E 1.16427  0.84279  0.84430  0.98873  1.00000  1.12984  1.35209  1.70830  1.52313 

ER E 0.39495  0.42941  0.47639  0.90605  1.00000  0.92787  0.44354  0.23878  0.08087 

 lE 0.21028  0.45689  0.62885  0.80132  1.00000  0.67754  0.43285  0.10564  0.09841 

 E 0.42202  0.47483  0.63525  0.85213  1.00000  0.73622  0.49250  0.26196  0.09723 
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Table 10 AR(1) -  , , ,H A D GR R R R  and  ER  values for NNBIBD  6, 25t r   and 1   

AR(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.75715  0.81741  0.87770  0.94752  1.00000  1.07554  1.13153  1.18912  1.25529 

 lE 0.78991  0.82209  0.87333  0.98171  1.00000  1.07280  1.13023  1.21005  1.28822 

 E 0.76911  0.79349  0.89559  0.92212  1.00000  1.05652  1.14089  1.19583  1.27012 

AR E 1.54026  1.31995  1.20874  1.07690  1.00000  0.96936  0.90038  0.85262  0.84582 

 lE 1.03521  0.93301  0.97859  1.18969  1.00000  1.01818  1.11520  1.16400  1.20850 

 E 0.77878  1.16049  1.19915  0.86793  1.00000  1.04292  1.16891  1.16952  1.28236 

DR E 0.63806  0.748000  0.84232  0.93948  1.00000  1.06938  1.09691  1.11265  1.12397 

 lE 0.70426  0.76875  0.84913  0.95630  1.00000  1.06987  1.10394  1.15359  1.18623 

 E 0.67859  0.71308  0.86226  0.91027  1.00000  1.05014  1.11379  1.12729  1.14820 

GR E 1.29801  1.20786  1.16001  1.06776  1.00000  0.96381  0.87283  0.79778  0.80211 

 lE 0.92296  0.87248  0.95148  1.15890  1.00000  1.01540  1.08926  1.10968  1.11283 

 E 0.68709  1.04288  1.15452  0.85677  1.00000  1.03662  1.14114  1.10249  1.15926 

ER E 0.33526  0.46349  0.58736  0.85204  1.00000  0.83486  0.64981  0.54126  0.47121 

 lE 0.36148  0.52131  0.66916  0.65587  1.00000  0.89743  0.69088  0.58654  0.52776 

 E 0.38828  0.38737  0.64417  0.76051  1.00000  0.85220  0.67219  0.55838  0.47193 

 

Table 11 MA(1) -  , , ,H A D GR R R R  and  ER  values for NNBIBD  6, 25t r   and 1  

MA(1)  0.4    0.3    0.2  
 

0.1  
 

0   0.1 
 

0.2   0.3   0.4   

HR E 0.79925  0.84719  0.89198  0.93825  1.00000  1.06842  1.14266  1.22395  1.32585 

 lE 0.82072  0.84036  0.88665  0.92991  1.00000  1.06064  1.15554  1.24376  1.38881 

 E 0.78236  0.78786  0.88938  0.94766  1.00000  1.05418  1.13472  1.23931  1.34378 

AR E 1.43244  1.27030  1.15913  1.10366  1.00000  0.95051  0.85093  0.83533  0.82640 

 lE 0.80049  0.91451  0.96212  0.91096  1.00000  1.11134  1.08876  1.16081  1.27921 

 E 0.96247  0.89751  0.95033  0.95515  1.00000  1.05072  1.16246  1.33932  1.71044 

DR E 0.70495  0.78941  0.86471  0.93623  1.00000  1.05878  1.09525  1.09093  1.12666 

 lE 0.73048  0.79861  0.86714  0.92454  1.00000  1.05143  1.11810  1.14792  1.15737 

 E 0.62016  0.74205  0.86729  0.94049  1.00000  1.04549  1.09393  1.11950  1.15923 

GR E 1.26342  1.18365  1.12369  1.10129  1.00000  0.94193  0.81563  0.74454  0.63992 

 lE 0.71248  0.86909  0.94095  0.90569  1.00000  1.10170  1.05348  1.07136  0.97393 

 E 0.76294  0.84532  0.92673  0.94792  1.00000  1.04206  1.12066  1.20984  1.34825 

ER E 0.42503  0.52744  0.63889  0.92392  1.00000  0.79331  0.58556  0.41827  0.27592 

 lE 0.42951  0.58203  0.72463  0.86101  1.00000  0.80398  0.62561  0.48249  0.36456 

 E 0.52545  0.55748  0.77617  0.80675  1.00000  0.82280  0.60038  0.43560  0.28557 
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Table 12 ARMA(1,1) -  , , ,H A D GR R R R  and  ER  values for NNBIBD  6, 25t r   and 1   

ARMA 
(1,1) 

1 0.4  

2 0.4  

 

1 0.3  

2 0.3  

 

1 0.2  

2 0.2  

 

1 0.1  

2 0.1  

 

1 0   

2 0 

 

1 0.1 

2 0.1 

 

1 0.2 

2 0.2 

 

1 0.3 

2 0.3 

 

1 0.4 

2 0.4 

 
HR E 1.52232  1.25590  1.09540  1.01367  1.00000  1.05858  1.19610  1.39511  1.34311 

 lE 1.84867  1.31759  1.29502  1.04689  1.00000  1.05439  1.24908  1.74777  1.22016 

 E 1.76384  1.79428  1.11238  1.01631  1.00000  1.09183  1.23092  1.57102  1.16281 

AR E 1.96092  1.65797  1.38649  1.17350  1.00000  0.89106  0.81524  0.83425  1.46755 

 lE 0.99938  0.89095  1.08132  0.94590  1.00000  1.11011  1.19732  1.36251  1.41134 

 E 0.95179  0.97118  1.00614  0.90295  1.00000  1.18075  1.57642  1.30807  1.49198 

DR E 1.11823  1.02162  0.98559  0.98581  1.00000  1.01768  0.98571  0.79179  0.86027 

 lE 1.53911  1.16715  1.16601  1.02631  1.00000  1.02261  1.11055  1.51474  1.42191 

 E 1.44149  1.24356  1.02314  0.98868  1.00000  1.05391  1.03416  0.88280  1.13944 

GR E 1.44042  1.34870  1.24750  1.14125  1.00000  0.85664  0.67185  0.47347  0.64453 

 lE 0.83203  0.78923  0.97360  0.92730  1.00000  1.07665  1.06453  1.91419  1.56911 

 E 0.77785  0.67309  0.92543  0.87841  1.00000  1.13975  1.32443  1.73118  1.63531 

ER E 0.26028  0.33942  0.44471  0.70276  1.00000  0.60797  0.31515  0.13047  0.18893 

 lE 0.28127  0.41457  0.37418  0.74233  1.00000  0.63558  0.41272  0.36627  0.10550 

 E 0.36160  0.17001  0.56562  0.65460  1.00000  0.62718  0.33230  0.12040  0.14824 

 

6. Results and Conclusions 

We have compared the efficiencies of NNBD using average variance, generalized variance and 

min-max  variance  when  the  errors  follow  first  order  correlated  models.  The  HR  and  DR  show 

increasing efficiency values for direct, left and right neighbour effects for MA(1) models. The  AR  and 

GR  show  neither  increasing  nor  decreasing  efficiency  values  are  observed  for  AR(1),  MA(1)  and 

ARMA(1,1) models.  The  ER  show decreasing efficiency values with    in the interval 0.1 to 0.4 for 

direct  and  neighbouring  effects  for  AR(1),  MA(1)  and  ARMA(1,1)  models.  Finally,  we  have 

concluded that,  the efficiencies of NNBD using  the three measures when the errors  follow the first 

order correlated models. The higher efficiency values are observed for direct effects of treatments for 

MA(1) and ARMA(1,1) models for average variance.  The lower efficiency values are observed for 

direct, left and right neighbour effects of treatments for ARMA(1,1) model for min-max variance. 

We have compared the efficiencies of NNBIBD using average variance, generalized variance and 

min-max variance  when  the  errors  follow  the  first  order  correlated  models.  The  HR  and  DR  show 

increasing efficiency values with    in the interval 0.1 to 0.4 for direct, left and right neighbour effects 

for  AR(1)  and  MA(1)  models.    Whereas  neither  increasing  nor  decreasing  efficiency  values  are 

observed for  AR  and  GR  for both AR(1) and MA(1) models. In the case of ARMA(1,1) model, neither 

increasing  nor  decreasing  efficiency  values  are  observed  for  average  variance  and  generalized 

variance.  The  ER  show decreasing efficiency values with    in the interval 0.1 to 0.4 for direct, left 

and right neighbour effects for AR(1), MA(1) and ARMA(1,1) models.   Finally, we have concluded 

that,  the  efficiencies  of  NNBIBD  using  the  three  measures  when  the  errors  follow  the  first  order 

correlated  models.    The  higher  efficiency  values  are  observed  for  direct,  left  and  right  neighbour 

effects of treatments for AR(1) and MA(1) models for average variance. The lower efficiency values 

are  observed  for  direct,  left  and  right  neighbour  effects  of  treatments  for  AR(1),  MA(1)  and 

ARMA(1,1) models for min-max variance. 
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