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Abstract

The comparison of efficiency of complete and incomplete nearest neighbour balanced block
designs (NNBD) over regular block design using average variance, generalized variance and min-max
variance with the error term & given in the NNBD model follows using first order correlated models.

It is observed that, R, and R, show increasing efficiency values for direct and neighbour effects (left
and right) for MA(1) models. The R, and R, show neither increasing nor decreasing efficiency

values are observed for direct and neighbouring effects for AR(1) and MA(1) models. In the case of
ARMA(1,1) model, neither increasing nor decreasing efficiency values have observed for average
variance and generalized variance. The R, shows decreasing efficiency values with p in the interval

0.1 to 0.4 for direct and neighbouring effects for AR(1), MA(1) and ARMA(1,1) models.

Keywords: Autoregressive, moving average, autoregressive moving average, information matrix, efficiency,
regular block design, average variance, generalized variance, min-max variance.

1. Introduction

The assumptions in the classical (Fisherian) block model are that the response on a plot to a
particular treatment does not affect the response on the neighbouring plots and the fertility associated
with plots in a block is constant. However, in many fields of agricultural research, like horticultural
and agro-forestry experiments, the treatment applied to one experimental plot in a block may affect
the response on the neighbouring plots if the blocks are linear with no guard areas between the plots.
The treatments are varieties, neighbour effects may be caused by differences in height, root vigor, or
germination date especially on small plots, which are used in plant breeding experiments. Treatments
such as fertilizer, irrigation, or pesticide may spread to adjacent plots causing neighbour effects. Such
experiments exhibit neighbour effects, because the effect of having no treatment as a neighbour is
different from the neighbour effects of any treatment. Competition or interference between
neighbouring units in field experiments can contribute to variability in experimental results and lead
to substantial losses in efficiency. In case of block design setup, if each block is a single line of plots
and blocks are well separated, extra parameters are needed for the effect of left and right neighbours.
An alternative is to have border plots on both ends of every block. Each border plot receives an
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experimental treatment, but it is not used for measuring the response variable. These border plots do
not add too much to the cost of one-dimensional experiments. The estimates of treatment differences
may therefore deviate because of interference from neighbouring units. Neighbour balanced block
designs, where in the allocation of treatments is such that every treatment occurs equally often with
every other treatment as neighbours, are used for modeling and controlling interference effects
between neighbouring plots. Azais et al. (1993) obtained a series of efficient neighbour designs with
border plots that are balanced in v —1 blocks of size v and v blocks of size v —1, where v is the
number of treatments. Santharam and Ponnuswamy (1997a) observed that the performance of NNBD
is quite satisfactory for the remaining models. Druilhet (1999) studied optimality of circular neighbour
balanced block designs obtained by Azais et al. (1993). Bailey (2003) had given some designs for
studying one-sided neighbour effects. These neighbour balanced block designs have been developed
under the assumption that the observations within a block are uncorrelated. In situations where the
correlation structure among the observations within a block is known, may be from the data of past
similar experiments, it may be advantageous to use this information in designing an experiment and
analyzing the data so as to make more precise inference about treatment effects (Gill and Shukla 1985).
Kunert et al. (2003) considered two related models for interference and have shown that optimal
designs for one model can be obtained from optimal designs for the other model. Martin and Eccelston
(2004) has given variance balanced designs under interference and dependent observations. Tomar
and Jaggi (2007) observed that efficiency is quite high, in case of complete block designs for both
AR(1) and Nearest Neighbour (NN) correlation structures. In case of incomplete block designs,
designs with AR(1) structure turns out to be more efficient. However, the efficiency of direct effects
of treatments is more as compared to neighbour effects under both the structures. Mingyao et al. (2007)
studied the optimality of circular neighbour balanced designs for total effects when the one-sided or
two-sided neighbour effects are present in the model and the observation errors are correlated
according to a first-order circular autoregressive (AR(1,C)) process.

In this article, we have compared the efficiencies of nearest neighbour balanced block design
(NNBD) and nearest neighbour balanced incomplete block design (NNBIBD) over regular block
design using average variance, generalized variance and min-max variance with the error term ¢
given in the NNBD model follows AR(1), MA(1) and ARMA(1,1) models. We have investigated the
various measures of efficiencies (R,,R,,R;,R, and R;) of NNBD over regular block design using

first order correlated models. We have also investigated the various measures of efficiencies
(R,,R;,R;,R,, and R,) of NNBIBD over regular block design using first order correlated models.

2. Model Structures

The designs considered here are assumed to be in linear blocks, with neighbour effects only in the
direction of the blocks (say left-neighbour or right-neighbour or both). Because the effect of having
no treatment differs from the neighbour effects of any treatment, designs with border plots have been
considered, which is, designs with one point added at each end of each block. The border plots receive
treatments but are not used for measuring the response variables. The plots, which are not on the
borders, are inner plots. The length of a block is the number of its inner plots. It is further assumed
that all the designs are circular, that is the treatment on border plots is same as the treatment on the
inner plot at the other end of the block.

Let A be a class of binary neighbour balanced block designs with »n = bk units that form b
th

blocks each containing k units. Y, be the response from the i plot in the j™ block
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(i=1,2,...k; j=1,2,...,b). The layout includes border plots at both ends of every block, i.e., at 0"

and (k+1)™ position and observations for these units are not modelled. It is assumed that the design

is circular, that is the treatment on border plots is same as the treatment on the inner plot at the other
end of the block.

The following fixed effects additive model is considered for analyzing a neighbour balanced block
design under correlated observations:

Yy =ut vy Hloap tann + B+ ey M

where 4 is the general mean, 7. . is the direct effect of the treatment in the i plot of ;™ block, B;

(0.)
is the effect of the ;™ block, L. 1s the left neighbour effect due to the treatment in the (i — )™ plot
of j™ block, Vs, 18 the right neighbour effect due to the treatment in the (i + )™ plotin ;" block,
e, are error terms distributed with mean zero and a variance-covariance structure Q =17, ® A (I, is

an identity matrix of order » and ® denotes the Kronecker product). The ARMA(1,1) model along
with AR(1) and MA(1) and explored the performance of NNBD range from p = —0.4 to 0.4. If the

errors within a block follow a AR(1) structure, then A is a kxk matrix with (i,i')" entry
@(i,i'=1,2,...,k) as p‘i_i" , | p| <1. The MA(1) structure, then A is a matrix with diagonal entries as 1
and (i,i)" entry (i,i'=1,2,...,k) as p, when |i—i'|=1, otherwise zero (Gill and Shukla 1985). If
the errors within a block follow an ARMA(1,1) model then Q =7, ® A. [, is an identity matrix of

rO I’i r2 rk—l
n 1 I8 7
1 0 1 k=2 2 2 2
1+2 + 1+ +p,(1+
order b and A=|r £ n o rll o= p1p22 P rlzpl( P) /Zz( pl),
: : 1=p 1=p
Lewt T2 Tis T |

r,=p (k—1) for k>2 (Santharam and Ponnuswamy 1997b). The Nearest Neighbour (NN)
correlation structure, the A is a matrix with diagonal entries as 1 and off-diagonal entries as p. Model
(1) can be rewritten in the matrix notation as follows

Y=pl+A'r+All+Ay+D'fB+e, 2)
where Y is nx1 vector of observations, 1is nx1 vector of ones, A" is an nxv incidence matrix of
observations versus direct treatments, 7 is vx1 vector of direct treatment effects, A| isa »n xv matrix
of observations versus left neighbour treatment, A} is a nxv matrix of observations versus right
neighbour treatment, / is vx1 vector of left neighbour effects, y is vx1 vector of right neighbour
effects, D' is an nxb incidence matrix of observations versus blocks, £ is bx1 vector of block

effects and e is nx1 vector of errors. The joint information matrix for estimating the direct and
neighbour (left and right) effects under correlated observations estimated by generalized least squares
is obtained as follows:

AL, ®@A)A" A(L,®AT)A] AL, ®A)A,
C=[A(,®A)A" A (1,®A")A] A (1, ®A")A, 3)
A, (1, ®A)A A, (1, ®A7)A; A, (1, ®A7)A,
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with
A=A —(ATL) AT AT
The above 3vx3v information matrix (C) for estimating the direct effects and neighbour effects of

treatments in a block design setting is symmetric, non-negative definite with row and column sums
equal to zero. The information matrix for estimating the direct effects of treatments from (3) is as
follows

Cr =C, _C12C521C21» “)
where G, =A(I, ®A)A", C, =[A(Ib®A*)A1’ A([b@)A*)A;] and

A(L,®A )AL A (1, ®A)A,
n =

A (L, ®A)A A (1, @A )A, |
Similarly, the information matrix for estimating the left neighbour effect of treatments (C,) and right

neighbour effect of treatments (C,) can be obtained.

Definition 1 4 block design is neighbour balanced if every treatment has every treatment appearing
as a neighbour (left and right) constant number of times (say, 1).

Definition 2 A neighbour balanced block design is called pair-wise uniform on the plots if each
treatment s(=1,2,...,v) occurs equally often in each plot position i (=1,2,...,k) and each pair of

treatments s and s', s#s'(=1,2,...,v) occurs equally often (a time) within the same block in each

unordered pair of plot positions i and i', i#i' (=1,2,...,k).

Definition 3 A4 neighbour balanced block design with correlated observations permitting the
estimation of direct and neighbour (left and right) effects, is called variance balanced if the variance
of any estimated elementary contrast among the direct effects is constant, say V,, the variance of any
estimated elementary contrast among the left neighbour effect is constant, say V,, and the variance

of any estimated elementary contrast among the right neighbour effects is constant, say V,. The

constants V,,V, and V, may not be equal. A block design is totally balanced if V, =V, =V,.

3. Construction of Designs
Tomer et al. (2005) has constructed neighbour balanced block design with parameters v (prime

or prime power), b=v(v-1), r=(v-1)(v-m), k=(v-m), m=12,...,v—4 and A =(v—m) using
mutually orthogonal Latin squares (MOLS) of order v. This series of design has been investigated
under the correlated error structure. It is seen that the design turns out to be pair-wise uniform with
a =1 and also variance balanced for estimating direct (/) and neighbour effects (V, =V,).

Example 1 Let v=6 and m =0. The following is a neighbour balanced pair-wise uniform complete
block design with parameters v=6,b=30,r=30,k=6, 1 =6 and a =1:
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The information matrices for estimating the direct and neighbour effects (left and right) of treatments

0.1 was obtained as given below

for AR(1) structure with p

4

C, =15.893[1—

14.620[[—%} and C, =

C =

Similarly for MA(1), ARMA(1,1) and NN structures

J

J
5

C, = 16.886[1 -

15.561[1—%} and C, =

T

C

I

J
5

C, :13.678[1—

i} and C,
5

14.687[[—

C =
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C =16.572[1—i} and C, =C =17.391{I—i}.
i 5 g 5
These matrices have been worked out using in R (R Core Team 2018).
Similarly, we have worked a neighbour balanced pair-wise uniform complete block design with
parameter v =15 and m =0.

Example 2 Let v=5 and m=1. The following is a neighbour balanced pair-wise uniform
incomplete block design with parameters v=15,b=20,r =16,k =4, A=4and o =1:

— R W N~ LR W R WD = AW RN~ W
B W RN = LW = RN~ R W~ LA WN
W N~ LA = R WA W N~ AN~ AW
N = LA W R W= = R W W= A
— R WD~ LR WA WD = AW RN~ W
AW N R, WD R, RN~ R W= R W

The information matrices for estimating the direct and neighbour effects (left and right) of treatments
for AR(1) structure with p = 0.1 is obtained as given below

C, =12.02696 1—% and C, =C, =12.20456 1—% .
Similarly for MA(1), ARMA(1,1) and NN structures,
C =11.18748 I—% and C, =C, =13.68067 I—% ,
SN C
C =11.18748 I—g and C, =C, =12.62843 I—g ,
A g
C. =13.17057 1—; and C, =C, =12.60091 1—; .

These matrices have been worked out using in R (R Core Team 2018).
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Similarly, we have worked a neighbour balanced pair-wise uniform incomplete block design with
parameters (i) v=6 and m=1,2 and (ii)) v=7 and m =3.

4. Comparison of Measures of Efficiency of NNBD
In this section, we study the behaviour of some estimators of p and o’. The nearest neighbour

balanced block design (NNBD) and regular block design data sets were generated with the following
true parameters: p=-0.4 t00.4, o’ =1, t=>5,r =20 and 7 =6,r =30.
The estimation of o based on NNBD and regular block design were compared using the

following three measures.

4.1. Average variance comparison
Consider the measure

t-1
2 -1 .
JL‘(RBD) Z 7/RBD (l)
R _ i=1
- H

4 1
2 . .
O .(NNBD) Z 7 wap ()
iml

where af_( rspy denotes the estimate of o based on regular block design Gf( wep) denotes the estimate
of o based on NNBD y, . S and are nonzero eigen values of the information matrix.

The above measure R, compares the average variance of elementary treatment contrast when the
same data are analysed by regular block design and nearest neighbour balanced block design. It may

be noted that the estimates of o"f and p can be different in case of regular block design and nearest

neighbour balanced block design. The ratio 62,,, /0 sp could mask the genuine efficiency of

NNBD. Therefore, the ratio
-1
2 i ()
_ =l
H — ﬁ
Z e XINBD (i )
i=1
of harmonic means will also be considered as an index of efficiency.
4.2. Generalized variance comparison

Another way to compare regular block design and nearest neighbour balanced block design is the
ratio

-1
_[ 2 2 -1 -1
R; = [GRBD /O-NNBDj| H7NNBDU)7RBDU)
i-1

of generalized variances of ¢ —1 orthonormal treatment contrasts estimated under regular block design
and nearest neighbour balanced block design. It may be noted that R is very sensitive to the ratio

) ) . .
O rsp / O wsp - We therefore, consider the ratio

-1
_ -1
RD = H Y nnBp i)Y RBD (i)
i=1

This gives a better comparison of regular block design and nearest neighbour balanced block design.
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4.3. Min-max variance comparison
This closeness is measured by the ratio of the smallest nonzero eigen-value to the largest eigen

value of the information matrix. Note that this ratio independent of o’. For comparing nearest
neighbour balanced block design (NNBD) and regular block design, we take the ratio

¥ nnsp(1) % Y rBD(1-1)

R, =

Yanspe-1y  VrBD()

Tables 1, 2 and 3 show the efficiencies of AR(1), MA(1) and ARMA(1,1) models with
t=5,7r=20 and « =1, there is considerable advantage in using NNBD as far as average variance
(R, and R;), generalized variance (R, and R,) and min-max variance (R,) are concerned. The
efficiency factor (E,) for direct effects of the neighbour, left and right (£,) and (£,) neighbour
effects of treatments is obtained by Tomer et al. (2007). The R,, and R, show increasing efficiency
values, R, and E, show decreasing efficiency values for direct effects of treatments for both AR(1)
and MA(1) models. In the case of ARMA(1,1) model, neither increasing nor devcreasing efficiency
values are observed for average variance and generalized variance. The R, show decreasing
efficiency values with p in the interval 0.1 to 0.4 for direct and neighbouring effects for AR(1),

MA(1) and ARMA(1,1) models. We have concluded that, the higher efficiency values are observed
for direct effects of treatments for both MA(1) and ARMA(1,1) models for average variance. The
lower efficiency values are observed for direct, left and right neighbour effects of treatments for
AR(1), MA(1) and ARMAC(1,1) models for min-max variance.

Tables 4, 5 and 6 show the efficiencies of AR(1), MA(1) and ARMA(1,1) models with
t=6,r=30 and o =1, there is considerable advantage in using NNBD as far as average variance
(R, and R.), generalized variance (R, and R,) and min-max variance (R,) are concerned. The

efficiency factor (£,) for direct effects of the neighbour, left and right (£,) and (£,) neighbour

effects of treatments is obtained by Tomer et al. (2007). The R, and R,, show increasing efficiency
values for direct, left and right neighbour effects for MA(1) models. Whereas neither increasing nor
decreasing efficiency values are observed for R, and R, for AR(1), MA(1) and ARMA(1,1) models.
The R, show decreasing efficiency values with p in the interval 0.1 to 0.4 for direct and

neighbouring effects for AR(1), MA(1) and ARMA(1,1) models. We have concluded that, the higher
efficiency values are observed for direct for MA(1) and ARMA(1,1) models for average variance. The
lower efficiency values are observed for direct, left and right neighbour effects of treatments for
ARMA(1,1) model for min-max variance.
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Table 1 AR(1) - R,,,R,,R,,R; and R, values for NNBD ¢ =5,7=20 and a =1

259

AR(1) p=-04 p=-03 p=-02 p=-01 p=0 p=0.1 p=02 p=03 p=04
R, E, 082206 0.84056 0.84849 0.92776 ~ 0.99731  1.07535 1.11937 1.19711 1.33701
E, 0.88057 0.88385 0.87055 0.93609  0.99731  1.07443 1.14159 1.19428 1.38385

Ey 0.87535 0.87293 0.90202 0.93467  0.99731  1.07842 1.14588 1.17232 1.44921

R, E, 1.71980 1.62361 1.43725 1.16062 1.03300  0.88094 0.70476 0.67051 0.58753
E, 1.04258 1.23553 1.35437 1.05331 1.03300  1.02668 0.95449 0.93141 0.90494

Ey 0.84175 0.83609 0.77479 0.78136 1.03300  1.02670 0.94460 0.94350 0.72666

R, E, 065693 0.76922 0.80208 091668  0.99742  1.06470 1.07019 1.10153 1.15849
E, 0.75975 0.80215 0.79492 0.93214 099742  1.13410 1.10125 1.13779 1.18341

Ey 0.75451 0.73194 0.86888 0.93505  0.99742  1.08569 1.11999 1.07228 1.21074

R, E, 1.37434 1.68040 1.35863 1.14676 1.03311  0.87221 0.67380 0.61698 0.50908
E, 1.09700 1.02896 1.28008 1.13454 1.03311  0.98796 0.87841 0.84006 0.83029

Ey 0.87294 0.74411 0.72419 0.86790 1.03311  1.02708 1.02430 0.83693 0.73724

R, E,_ 034195 0.41605 0.58207 0.80513 1.02397  0.80117 0.61089 0.51894 0.38149
E, 0.50890 0.50607 0.49748 0.90509 1.02397  0.90788 0.71547 0.51062 0.39041

Ey 0.40937 0.50946 0.57910 0.79090 1.0297 0.77891 0.51938 0.44272 0.35021

Table 2 MA(1) - R, ,R,,R,,R; and R, values for NNBD ¢ =5, =20 and a =1

MA() p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04
R, E, 084249 0.86817 0.86119 0.93935  0.99731  1.08974 1.14109 1.24952 1.46584
E, 0.84164 0.86526 0.86778 0.92234  0.99731  1.11430 1.14735 1.26867 1.54839

Ey 0.85300 0.86664 0.93185 0.96478  0.99731  1.08162 1.18884 1.30402 1.50626

R, E, 1.74409 1.71577 1.38649 1.13382 1.03300  0.85413 0.73994 0.59917 0.45844
E, 1.44720 1.36032 1.25010 1.22789 1.03300  0.99040 0.85540 0.81432 0.79324

Ey 0.97037 0.89610 0.86960 0.83836 1.03300  0.79912 0.72593 0.76606 0.68569

R, E, 072640 0.89669 0.89790 0.92919  0.99742  1.06906 1.08207 1.07493 1.08956
E, 0.78649 0.81766 0.89177 091675 099742  1.10748 1.09527 1.13450 1.14402

Ey 0.77146 0.76634 0.89765 0.94456  0.99742  1.06893 1.12330 1.12611 1.19308

R, E, 1.50378 1.47508 1.31983 1.12156 1.03311  0.83792 0.70167 0.51545 0.34076
E, 1.35236 1.29648 1.20373 1.12044 1.03311  0.98434 0.81658 0.81763 0.73881

Ey 0.98717 0.83761 0.83769 0.82070 1.03311  0.86120 0.81950 0.81146 0.71732

R, E, 042834 0.53675 0.58745 0.81568 1.02397  0.74110 0.56530 0.40386 0.24452
E, 0.63471 0.56779 0.65418 0.90441 1.02397  0.93008 0.66682 0.42463 0.25251

E 0.51057 0.52467 0.59003 0.70308 1.02397  0.77840 0.55752 0.36290 0.22587

<
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Table 3 ARMA(1) - R, ,R,,R,,R; and R, values for NNBD ¢=35,7=20 and a =1
ARMA p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04
(1,1) p,=—04 p,=-03 p,=-02 p,=-01 p,=0 p,=01 p,=02 p,=03 p,=04
R, E, 1.73929 1.40782 1.13165 1.03135  0.99731 1.07079 1.25615 1.80200 1.73929
E, 1.27542 1.24219 1.11838 1.00941 0.99731 1.14190 1.33971 1.97894 1.27542
Ey 1.64768 1.14631 1.19344 1.01525  0.99731 1.10410 1.36069 1.86532 1.64768
R, E, 2.38589 2.29292 1.66082 1.25045 1.03300 0.81184 0.49451 0.39819 2.38589
E, 1.38934 1.28048 1.20192 1.28074 1.03300  0.96485 0.41140 0.32256 1.38934
Ey 1.11417 1.14094 1.12845 1.08510 1.03300  0.93729 0.41176 0.31165 1.11417
R, E, 1.24259 1.11109 0.99616 1.00093 0.99742  1.02257 0.99765 1.04287 1.24259
E, 2.21619 1.65773 1.03140 0.97924  0.99742  1.08982 1.05636 1.02048 221619
Ey 1.64380 1.62707 1.06986 0.98238  0.99742  1.05094 1.07005 1.07228 1.64380
R, E, 1.70454 1.70964 1.46198 1.21357 1.03311  0.77528 0.39275 0.23044 1.70454
E, 2.41413 1.70565 1.41117 1.24246 1.03311  0.92084 0.82094 0.82197 2.41413
Ey 1.78736 1.76492 1.70332 1.28235 1.03311  0.97291 0.78334 0.81147 1.78736
R, E, 0.25425 0.30840 0.40455 0.71882 1.02397  0.58190 0.29767 0.16850 0.25425
E, 0.49622 0.19640 0.52302 0.70143 1.02397  0.64260 0.34204 0.25408 0.49622
Ey 0.26500 0.29737 0.40302 0.62134 1.02397  0.57200 0.27076 0.21844 0.26500
Table 4 AR(1) - R,,,R,,R,,R; and R, values for NNBD ¢ =6, =30 and a =1

AR(1) p=-04 p=-03 p=-02 p=-01 p=0 p=0.1 p=02 p=03 p=04
R, E, 0.77832 0.83364 1.18472 0.94421 1.00000  1.07791 1.16081 1.25413 1.36637
E, 1.01559 1.19869 0.88125 0.94508 1.00000  1.05268 1.30270 1.28229 1.41284
Ey 0.84044 0.88062 0.85890 0.96807 1.00000  1.08877 1.16076 1.26551 1.38382
R, E, 2.40263 1.61135 1.84549 1.03443 1.00000  1.00032 0.76598 0.63805 0.57940
E, 1.26510 1.51088 0.98075 0.99408 1.00000  1.12142 1.27964 1.25184 1.36862
Ey 0.86283 0.81914 0.91018 0.87069 1.00000  1.06665 1.21837 1.33880 1.55820
R, E, 0.56238 0.72942 0.83232 0.93186 1.00000  1.06837 1.10932 1.14256 1.16253
E, 0.98933 0.77681 0.84631 0.93420 1.00000  1.04625 1.12387 1.16745 1.21139
Ey 0.66824 0.72392 0.82160 0.95574 1.00000  1.08248 1.10874 1.14809 1.16696
R, E, 1.73602 1.40989 1.29655 1.02091 1.00000  0.87209 0.73199 0.58129 0.49297
E, 1.23239 0.97912 0.94187 0.98263 1.00000  1.11458 1.10398 1.13974 1.17347
Ey 0.68604 0.77824 0.87065 0.85955 1.00000  1.06049 1.16377 1.21458 1.31401
R, E, 0.20321 0.38802 0.22031 0.74089 1.00000  0.81287 0.56315 0.43954 0.31437
E, 0.37858 0.18556 0.59450 0.78300 1.00000  0.88736 0.49702 0.44176 0.34283
E 0.28271 0.37227 0.55862 0.79059 1.00000  0.83293 0.55672 0.42128 0.31865

<
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Table S MA(1) - R,;,R,,R,,R; and R, values for NNBD ¢ =6, =30 and a =1

261

MA(1) p=—04 p=-03 p=-02 p=-01 p=0 p=0.1 p=02 p=03 p=04
RH ET 0.81306 0.87290 0.88637 0.95041 1.00000  1.06427 1.17653 1.30554 1.48406
El 0.83938 0.86753 0.88976 0.94990 1.00000  1.07059 1.17567 1.31853 1.61137
Ey 0.83063 0.83380 0.87932 0.95711 1.00000  1.08149 1.18381 1.32796 1.52774
RA Er 1.86872 1.56309 1.35701 1.13493 1.00000  0.86109 0.75763 0.61426 0.45750
El 0.89214 0.91607 0.95486 1.00367 1.00000  1.10168 1.10623 1.21367 1.48584
Ey 0.94657 0.92795 0.87022 1.05528 1.00000  1.16852 1.27713 1.59889 1.62079
RD ET 0.66748 0.79552 0.84534 0.93460 1.00000  1.04624 1.10775 1.11528 1.12876
El 0.74005 0.80019 0.86031 0.93618 1.00000  1.05731 1.11667 1.16043 1.25151
Ey 0.70136 0.75171 0.84213 0.94158 1.00000  1.06839 1.11933 1.15073 1.17200
RG Er 1.53412 1.42454 1.29418 1.11604 1.00000  0.84623 0.71333 0.52474 031714
El 0.78657 0.84496 0.92326 0.98917 1.00000  1.08803 1.05072 1.06815 1.13281
Ey 0.79927 0.83659 0.83342 1.03816 1.00000  1.15436 1.20756 1.38551 1.69864
RE ET 0.29554 0.46831 0.57965 0.76171 1.00000  0.71332 0.51385 0.33502 0.18494
El 0.39038 0.49585 0.62406 0.74412 1.00000  0.81210 0.54731 0.38071 0.25370
E 0.33012 0.41470 0.57104 0.73282 1.00000  0.75395 0.51760 0.34924 0.18346

~<

Table 6 ARMA(1,1) - R,,,R,,R,,R; and R, values for NNBD ¢ =6,r=30 and o =1

ARMA p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04
(1,1) p,=-04 p,=-03 p,=-02 p,=-01 p,=0 p,=01 p,=02 p,=03 p,=04
RH ET 1.61665 1.29861 1.09650 0.90622 1.00000 1.09023 1.22625 1.83774 2.15711
El 1.51890 1.77775 1.14375 1.01721 1.00000 1.07553 1.39113 1.70890 1.98760
Ey 0.94790 1.39883 1.11723 1.04661 1.00000 1.10188 1.39116 1.99808 1.99897
RA Er 2.86234 2.71432 1.82587 1.28585 1.00000  0.73195 0.45467 0.25593 0.23836
E, 1.35838 1.28848 0.92658 0.92199 1.00000  1.24563 1.27625 1.47355 1.60108
Ey 0.97760 0.83002 0.92133 0.88979 1.00000  1.24768 1.40949 1.67064 1.72301
RD ET 0.99559 0.89055 0.93523 0.84926 1.00000 1.03193 0.92058 0.90077 0.90214
El 0.88983 1.43282 1.04002 0.98194 1.00000 1.02545 1.19841 1.19478 1.38984
EV 1.91865 1.14741 0.96832 0.95574 1.00000 1.04569 1.07585 1.18192 1.27654
RG Er 1.76278 1.86140 1.55732 1.20503 1.00000  0.84234 0.34133 0.12544 0.22336
E, 0.79579 1.03848 0.84255 0.89002 1.00000  1.18763 1.17720 1.32107 1.31403
Ey 0.19787 0.68081 0.79854 0.81254 1.00000  1.18405 1.32204 1.44180 1.53403
RE ET 0.14236 0.19702 0.35713 0.48975 1.00000  0.53588 0.23090 0.09060 0.00867
El 0.13541 0.27493 0.45441 0.62825 1.00000  0.62983 0.36037 0.29192 0.18219
EV 0.41038 0.31932 0.35525 0.61146 1.00000  0.54712 0.24009 0.21890 0.17624

5. Comparison of Measures of Efficiency of NNBIBD

In this section, we study the behavior of some estimators of p and . The nearest neighbour

balanced incomplete block design (NNBIBD) data sets were generated with the following true
parameters: p=-0.4 to 0.4, of =1,t=5r=16 and t=6, r =25. Tables 7, 8 and 9 show the
efficiencies of AR(1), MA(1) and ARMA(1,1) models with =5, r=16 and «a =1, there is
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considerable advantage in using NNBIBD as far as average variance (R, and R.), generalized
variance (R, and R,) and min-max variance (R,) are concerned. The efficiency factor (£,) for
direct effects of the neighbour, left and right (£,) and (£,) neighbour effects of treatments is

obtained by Tomer et al. (2005). The R, and R, show increasing efficiency values with p in the
interval 0.1 to 0.4 for direct, left and right neighbour effects for AR(1) and MA(1) models. Whereas
neither increasing nor decreasing efficiency values are observed for R, and R, for both AR(1) and
MA(1) models. In the case of ARMA(1,1) model, neither increasing nor decreasing efficiency values
are observed for average variance and generalized variance. The R, shows decreasing efficiency
values with p in the interval 0.1 to 0.4 for direct, left and right neighbour effects for AR(1), MA(1)

and ARMA(1,1) models. We have concluded that, the higher efficiency values are observed for direct,
left and right neighbour effects of treatments for AR(1) and MA(1) models for average variance. The
lower efficiency values are observed for direct, left and right neighbour effects of treatments for
AR(1), MA(1) and ARMA(1,1) models for min-max variance.

Table 7 AR(1) - R,,R,,R,,R; and R, values for NNBIBD ¢=5,r=16 and o =1

AR(1) p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04

R, E, 0.77786 0.83529 0.88792 0.99261 1.00000  1.01727 1.09963 1.15674 1.19348

E, 0.89672 0.83497 0.96549 0.95583 1.00000  1.09572 1.11314 1.14588 1.25147
Ey 0.88430 0.89980 0.94050 0.93840 1.00000  1.05232 1.07227 1.15538 1.24844
R, E, 1.27944 1.28998 1.13598 1.08621 1.00000  0.88803 0.94038 0.90180 0.86450
E, 1.01177 1.24454 1.34190 0.97799 1.00000  0.76243 0.93141 0.91137 1.06250
Ey 1.05091 0.65846 0.96372 0.84897 1.00000  1.07127 1.06240 1.19190 1.19601
R, E, 0.69488 0.78461 0.86158 0.98803 1.00000  1.01377 1.07613 1.10434 1.11442
E, 0.81570 0.80860 0.93505 0.95152 1.00000  1.08822 1.09513 1.10064 1.18071
Ey 0.79788 0.81662 0.90576 0.93376 1.00000  1.04854 1.04827 1.11896 1.16330
R, E, 1.14295 1.21171 1.10228 1.08120 1.00000  0.88498 0.92028 0.86094 0.80724
E, 0.92036 1.20524 1.29959 0.97358 1.00000  0.75721 0.91634 0.87539 1.00242
Ey 0.94821 0.59759 0.92812 0.84477 1.00000  1.06743 1.03862 1.15433 1.11445
R, E, 0.53018 0.57122 0.69325 0.93115 1.00000  0.92787 0.71842 0.65256 0.58474
E, 0.45317 0.75637 0.68621 0.90216 1.00000  0.83254 0.73473 0.64376 0.51054
E 0.44395 0.46696 0.65170 0.89680 1.00000  0.92690 0.78959 0.69013 0.54842

<

Tables 10, 11 and 12 show the efficiencies of AR(1), MA(1) and ARMA(1,1) models with
t=6, r=25 and a =1, there is considerable advantage in using NNBIBD as far as average variance

(R, and R.), generalized variance (R, and R,) and min-max variance (R,) are concerned. The
efficiency factor (£,) for direct effects of the neighbour, left and right (£,) and (E,) neighbour
effects of treatments is obtained by Tomer et al. (2005). The R, and R, show increasing efficiency
values for direct, left and right neighbour effects whereas neither increasing nor decreasing efficiency
values are observed for R, and R, for both AR(1) and MA(1) models. In the case of ARMA(1,1)
model, neither increasing nor decreasing efficiency values are observed for average variance and
generalized variance. The R, show decreasing efficiency values with p in the interval 0.1 to 0.4 for
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direct, left and right neighbour effects for AR(1), MA(1) and ARMA(1,1) models. We have concluded
that, the higher efficiency values are observed for direct effects of treatments for AR(1), MA(1) and
ARMA(1,1) models for average variance. The lower efficiency values are observed for direct, left and
right neighbour effects of treatments for AR(1), MA(1) and ARMA(1,1) models for min-max variance.

Table 8 MA(1) - R,,R,,R,,R; and R, values for NNBIBD ¢ =5, =16 and a =1

MA(1) p=—04 p=-03 p=-02 p=-01 p=0 p=0.1 p=02 p=03 p=04

R, E, 0.86083 0.88038 0.89597 0.96944 1.00000  1.06681 1.11907 1.18888 1.26490

E, 0.88099 0.83125 0.93124 1.00291 1.00000  1.03877 1.09574 1.23675 1.35791

Ey 0.84355 0.86391 0.91231 0.94774 1.00000  1.02830 1.08648 1.23418 1.35574

R, E, 1.13284 1.40250 1.19237 1.07885 1.00000  0.97629 0.87999 0.97257 0.83735

E, 1.10314 1.10937 1.08170 0.75168 1.00000  0.96844 0.94299 0.92745 0.95085

Ey 0.79164 0.71453 0.92204 0.87113 1.00000  1.07506 1.15091 1.47112 1.55587

R, E, 0.80087 0.83408 0.87537 0.96886 1.00000  1.05467 1.07995 1.09565 1.09872

E, 0.70347 0.82745 0.91711 0.99903 1.00000  1.01769 1.05690 1.13925 1.14744

Ey 0.79398 0.83028 0.89981 0.94494 1.00000  1.02287 1.06245 1.15902 1.17491

R, E, 1.05393 1.32875 1.16495 1.07821 1.00000  0.96518 0.84922 0.89630 0.68176

E, 0.88086 1.10430 1.06528 0.74877 1.00000  0.94880 0.90957 0.85430 0.80347

Ey 0.74512 0.68672 0.90942 0.86856 1.00000  1.06938 1.12545 1.38153 1.34835

R, E, 0.63365 0.57701 0.73024 0.99507 1.00000  0.92787 0.71842 0.65256 0.58474

E, 0.55367 0.90369 0.77949 0.89515 1.00000  0.68152 0.63403 0.51547 0.36212

Ey 0.52558 0.66838 0.79267 0.91481 1.00000  0.86625 0.77192 0.56403 0.39041
Table 9 ARMA(1,1) - R, ,R,,R,,R; and R, values for NNBIBD ¢ =5, =16 and a =1

ARMA p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04

(1,1) p,=-04 p,=-03 p,=-02 p,=-01 p,=0 p,=01 p,=02 p,=03 p,=04

R, E, 1.71592 1.26114 1.29357 1.01964 1.00000  1.03598 1.14253 1.37358 1.81046

E, 2.59153 1.49485 1.12954 1.05501 1.00000  1.02735 1.22523 2.01832 2.09753

Ey 1.72077 1.38987 1.15548 1.04394 1.00000  1.03976 1.15657 1.67583 2.14000

R, E, 1.47312 1.55894 1.86328 1.15464 1.00000  0.76940 0.84150 0.88997 1.27818

E, 0.72351 1.01397 0.89693 1.05316 1.00.68  0.84368 1.01321 2.24453 2.23429

Ey 1.27917 0.95827 0.88167 0.99717 1.00000  1.15908 1.50302 2.32502 2.45010

R, E, 1.40212 1.05921 1.17711 1.01432 1.00000  0.99693 0.97581 0.85306 0.50820

E, 1.87295 1.31061 1.08719 1.04027 1.00000  0.99888 1.08788 1.36470 1.46250

Ey 1.56621 1.26519 1.10650 1.03511 1.00000  1.01353 1.04043 1.23131 1.35643

R, E, 1.20373 1.30932 1.69553 1.14862 1.00000  0.74039 0.71870 0.55271 0.35879

E, 0.52290 0.88900 0.86330 1.03844 1.00000  0.82030 0.89962 1.21632 0.96622

Ey 1.16427 0.84279 0.84430 0.98873 1.00000  1.12984 1.35209 1.70830 1.52313

R, E, 0.39495 0.42941 0.47639 0.90605 1.00000  0.92787 0.44354 0.23878 0.08087

E, 0.21028 0.45689 0.62885 0.80132 1.00000  0.67754 0.43285 0.10564 0.09841

Ey 0.42202 0.47483 0.63525 0.85213 1.00000  0.73622 0.49250 0.26196 0.09723
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Table 10 AR(1) - R,,,R,,R,,R; and R, values for NNBIBD ¢ =6, =25 and a =1

AR(1) p=-04 p=-03 p=-02 p=-01 p=0 p=0.1 p=02 p=03 p=04
R, E_ 075715 0.81741 0.87770 0.94752 1.00000  1.07554 1.13153 1.18912 1.25529
E, 0.78991 0.82209 0.87333 0.98171 1.00000  1.07280 1.13023 1.21005 1.28822

Ey 0.76911 0.79349 0.89559 0.92212 1.00000  1.05652 1.14089 1.19583 1.27012

R, E, 1.54026 1.31995 1.20874 1.07690 1.00000  0.96936 0.90038 0.85262 0.84582
E, 1.03521 0.93301 0.97859 1.18969  1.00000  1.01818 1.11520 1.16400 1.20850

Ey 0.77878 1.16049 1.19915 0.86793 1.00000  1.04292 1.16891 1.16952 1.28236

R, E, 0.63806 0.748000 0.84232 0.93948 1.00000  1.06938 1.09691 1.11265 1.12397
E, 0.70426 0.76875 0.84913 0.95630 1.00000  1.06987 1.10394 1.15359 1.18623

Ey 0.67859 0.71308 0.86226 0.91027 1.00000  1.05014 1.11379 1.12729 1.14820

R, E, 1.29801 1.20786 1.16001 1.06776 1.00000  0.96381 0.87283 0.79778 0.80211
E, 0.92296 0.87248 0.95148 1.15890  1.00000  1.01540 1.08926 1.10968 1.11283

Ey 0.68709 1.04288 1.15452 0.85677 1.00000  1.03662 1.14114 1.10249 1.15926

R, E, 033526 0.46349 0.58736 0.85204  1.00000  0.83486 0.64981 0.54126 0.47121
E, 0.36148 0.52131 0.66916 0.65587 1.00000  0.89743 0.69088 0.58654 0.52776

Ey 0.38828 0.38737 0.64417 0.76051 1.00000  0.85220 0.67219 0.55838 0.47193

Table 11 MA(1) - R,,,R,,R,,R; and R, values for NNBIBD ¢=6,7=25 and =1

MA(1) p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04
R, E_ 079925 0.84719 0.89198 0.93825 1.00000  1.06842 1.14266 1.22395 1.32585
E, 082072 0.84036 0.88665 0.92991 1.00000  1.06064 1.15554 1.24376 1.38881

Ey 0.78236 0.78786 0.88938 0.94766 1.00000  1.05418 1.13472 1.23931 1.34378

R, E, 143244 1.27030 1.15913 1.10366 1.00000  0.95051 0.85093 0.83533 0.82640
E, 0.80049 0.91451 0.96212 0.91096 1.00000 1.11134 1.08876 1.16081 1.27921

Ey 0.96247 0.89751 0.95033 0.95515 1.00000  1.05072 1.16246 1.33932 1.71044

R, E_ 0.70495 0.78941 0.86471 0.93623 1.00000  1.05878 1.09525 1.09093 1.12666
E, 073048 0.79861 0.86714 0.92454 1.00000  1.05143 1.11810 1.14792 1.15737

Ey 0.62016 0.74205 0.86729 0.94049 1.00000  1.04549 1.09393 1.11950 1.15923

R, E, 126342 1.18365 1.12369 1.10129 1.00000 0.94193  0.81563 0.74454 0.63992
E, 071248 0.86909 0.94095 0.90569 1.00000 1.10170 1.05348 1.07136 0.97393

Ey 0.76294 0.84532 0.92673 0.94792 1.00000  1.04206 1.12066 1.20984 1.34825

R, E_ 042503 0.52744 0.63889 0.92392 1.00000  0.79331 0.58556 0.41827 0.27592
E, 042951 0.58203 0.72463 0.86101 1.00000  0.80398  0.62561 0.48249 0.36456

E 052545 0.55748 0.77617 0.80675 1.00000  0.82280  0.60038 0.43560 0.28557

<
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Table 12 ARMA(1,1) - R,,R,,R,,R; and R, values for NNBIBD ¢=6,r =25 and a =1

ARMA p=-04 p=-03 p=-02 p=-01 p=0 p=01 p=02 p=03 p=04
(1,1) p,=-04 p,=-03 p,=-02 p,=-01 p,=0 p,=01 p,=02 p,=03 p,=04

R, E, 1.52232 1.25590 1.09540 1.01367 1.00000  1.05858 1.19610 1.39511 1.34311
E, 1.84867 1.31759 1.29502 1.04689 1.00000  1.05439 1.24908 1.74777 1.22016
Ey 1.76384 1.79428 1.11238 1.01631 1.00000  1.09183 1.23092 1.57102 1.16281
R, E, 1.96092 1.65797 1.38649 1.17350 1.00000  0.89106 0.81524 0.83425 1.46755
E, 0.99938 0.89095 1.08132 0.94590 1.00000  1.11011 1.19732 1.36251 1.41134
Ey 0.95179 0.97118 1.00614 0.90295 1.00000  1.18075 1.57642 1.30807 1.49198
R, E, 1.11823 1.02162 0.98559 0.98581 1.00000  1.01768 0.98571 0.79179 0.86027
E, 1.53911 1.16715 1.16601 1.02631 1.00000  1.02261 1.11055 1.51474 1.42191
Ey 1.44149 1.24356 1.02314 0.98868 1.00000  1.05391 1.03416 0.88280 1.13944
R, E, 1.44042 1.34870 1.24750 1.14125 1.00000  0.85664 0.67185 0.47347 0.64453
E, 0.83203 0.78923 0.97360 0.92730 1.00000  1.07665 1.06453 1.91419 1.56911
Ey 0.77785 0.67309 0.92543 0.87841 1.00000  1.13975 1.32443 1.73118 1.63531
R, E, 0.26028 0.33942 0.44471 0.70276 1.00000  0.60797 0.31515 0.13047 0.18893
E, 0.28127 0.41457 0.37418 0.74233 1.00000  0.63558 0.41272 0.36627 0.10550
E 0.36160 0.17001 0.56562 0.65460 1.00000  0.62718 0.33230 0.12040 0.14824

~<

6. Results and Conclusions
We have compared the efficiencies of NNBD using average variance, generalized variance and

min-max variance when the errors follow first order correlated models. The R, and R, show
increasing efficiency values for direct, left and right neighbour effects for MA(1) models. The R, and
R, show neither increasing nor decreasing efficiency values are observed for AR(1), MA(1) and
ARMA(1,1) models. The R, show decreasing efficiency values with p in the interval 0.1 to 0.4 for
direct and neighbouring effects for AR(1), MA(1) and ARMA(1,1) models. Finally, we have
concluded that, the efficiencies of NNBD using the three measures when the errors follow the first
order correlated models. The higher efficiency values are observed for direct effects of treatments for
MA(1) and ARMAC(1,1) models for average variance. The lower efficiency values are observed for
direct, left and right neighbour effects of treatments for ARMA(1,1) model for min-max variance.
We have compared the efficiencies of NNBIBD using average variance, generalized variance and
min-max variance when the errors follow the first order correlated models. The R,, and R, show

increasing efficiency values with p in the interval 0.1 to 0.4 for direct, left and right neighbour effects

for AR(1) and MA(1) models. Whereas neither increasing nor decreasing efficiency values are
observed for R, and R. for both AR(1) and MA(1) models. In the case of ARMA(1,1) model, neither

increasing nor decreasing efficiency values are observed for average variance and generalized
variance. The R, show decreasing efficiency values with p in the interval 0.1 to 0.4 for direct, left

and right neighbour effects for AR(1), MA(1) and ARMA(1,1) models. Finally, we have concluded
that, the efficiencies of NNBIBD using the three measures when the errors follow the first order
correlated models. The higher efficiency values are observed for direct, left and right neighbour
effects of treatments for AR(1) and MA(1) models for average variance. The lower efficiency values
are observed for direct, left and right neighbour effects of treatments for AR(1), MA(1) and
ARMA(1,1) models for min-max variance.
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