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Abstract 

In  this  article,  we  consider  a  three  parameter  extended  Burr-III  distribution  and  study  some 

distributional,  reliability  properties  and  parameter  estimation.  Performance of  estimation  technique 

used for model parameters estimation is numerically investigated employing Monte Carlo simulation 

with different sample sizes and parameter values. Efficacy of this distribution in modeling from two 

real life data is evaluated in comparison to some existing extensions of Burr-III distribution employing 

well  known  goodness  of  fit  tests  and  model  selection  criteria.  Our  findings  show  the  proposed 

distribution as the best among the all the other extensions of Burr-III distribution considered in this 

study. 

______________________________ 
Keywords: Log-logistic-X, stress-strength reliability, stochastic ordering, Akaike information criterion. 

1. Introduction 

Burr (1942) defined the cumulative distribution function (cdf) and probability density  function 

(pdf) (for    0x  ) of the Burr-III (BIII) distribution respectively by 
BIII ( ; , ) (1 ) ,G x x                                                              (1) 

BIII 1 1  ( ; , ) (1 )f x x x           ,                                                (2) 

where  0β  and  0   are both shape parameters. 

In 2006, Gleaton and Lynch developed a new family of distribution named as generalized log-

logistic  family  of  distribution.  Later  on,  this  family  was  called  as  odd  log-logistic  family  of 

distribution. The cdf of the odd log-logistic (OLL-X) family of distribution was given as  

 
( , )

( ; , ) ,
[ ( , ) (1 ( , )) ]

G x
F x

G x G x



 


 

 


 
                   (3) 

where  0   is  an  additional  shape  parameter.  ( )G x,ξ  is  the  cdf  of  the  parent  distribution  and   

denotes the parameters of the parent distribution. The corresponding pdf of the OLL-X family is given 

as 
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1 1

2

( , ) ( , ) (1 ( , ))
( ; , ) .

[ ( , ) (1 ( , )) ]

g x G x G x
f x

G x G x

 

 

   
 

 

 


 
                 (4) 

If the parent distribution has closed form cdf then the newly developed model also possess a closed 

form  cdf  and 
log[ ( ; , ) / ( ; , )]

.
log[ ( ; , ) / ( ; , )]

F x F x

G x G x

   


   
  Thus,   is  the  quotient  of  the  log-odds  ratio  of  the 

newly developed and parent distributions. 
A number of extensions of the Burr-III distribution are proposed to offer better modeling. Some 

notable  among  them  are  the  three-parameter  Burr-III  distribution  (Shao  et  al.  2008),  transmuted 

modified  Burr-III  (Ali  and  Ahmed  2015),  Marshall  Olkin  modified  Burr-III  (Ali  et  al.  2015), 

Kumaraswamy Burr-III (Behairy et al. 2016), Marshall-Olkin extended Burr-III distribution (Al-Saiari 

et al. 2016), extended Burr-III distribution (Cordeiro et al. 2017) and generalized Marshall-Olkin Burr-

III (Chakraborty et al. 2020) among others. 

We define new extended Burr-III ( NEBIII( , , )   ) model by using the odd log-logistic method 

for parameter induction. By inserting (1) in (3) we get the cdf of the  NEBIII( , , )    model as 

  NEBIII (1 )
( ; , , ) ,

(1 ) {1 (1 ) }

x
F x

x x

 

    
  

 

   




   
 for  0,x                 (5) 

where  0, > 0   and  0   are the shape parameters. The corresponding pdf is given as 

 
1 1 1

NEBIII

2

(1 ) {1 (1 ) }
( ; , , ) ,

[(1 ) {1 (1 ) } ]

x x x
f x

x x

     

    


  

       

   

  


   
 for  0.x                  (6) 

The  main  motivation  behind  the  proposed  family  is  to  obtain  an  extension  of  the  Burr-III 

distribution  with  one  additional  parameters  to  bring  in  more  flexibility  with  respect  to  skewness, 

kurtosis, tail weight and length; which encompasses number known distributions as special and related 

cases, also to ensure that it provides better alternative in the data modeling not only to its sub models 

including the BIII distribution, but to other recent extensions. 

The rest of this article is organized in five more sections. In Section 2, linear representation of the 

cdf  and  pdf  of  the  proposed  family.    In  Section,  3  we  discuss  some  mathematical  and  statistical 

properties  of  the  proposed  family.  In  Section  4,  maximum  likelihood  methods  of  estimation  of 

parameters is presented. The data fitting applications and simulation are presented in Section 5. The 

article ends with a conclusion in Section 6. 

 

2. Linear Representations 

The  cdf  and  pdf  of  the  NEBIII( , , )    can  be  expressed  as  infinite  linear  mixture  of  the 

corresponding functions of BIII distribution as follows. We know that   

 
0

1
(1 ) ( 1) ,n k k

k

n k
z z

k






  
    

 
                    (7) 

 
0

(1 ) ( 1)t i i

i

t
z z

i





 
    

 
  for  0.z                     (8) 

By using (7) the cdf of  NEBIII( , , )    can be written as 

  NEBIII BIII

0 0

( ; , , ) [ ( ; , )] ,
k

j k
jk

k j

F x G x


     




 

                   (9) 

where  ( 1) .j k
jk

k

j


   

   
 

 The corresponding pdf is given by 
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NEBIII BIII 1 BIII

0 0

( ; , , ) ( )[ ( ; , )] ( ; , )
k

j k
jk

k j

f x j k G x g x


        


 

 

   

  BIII BIII 1

0 0

( ; , )[ ( ; , )]
k

j k
jk

k j

g x G x


    


 

 

                               (10) 

  BIII

0 0

[ ( ; , )] ,
k

j k
jk

k j

d
G x

dt


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


 

                                                  (11) 

where  jk  is defined above and  ( ).jk jk j k      

Alternatively, density function of the proposed model can be expressed as by using (7) 

 
( 1) 1NEBIII 1 ( 1) 1

0

( ; , , ) ( 1) ( 1) 1 (1 ) (1 ) .
ii i

i

f x x i x x
       

        



       

By using (8) 

  NEBIII 1 ( 1) 1

, 0

( 1) 1
( ; , , ) ( 1) ( 1) (1 )i j i j

i j

i
f x x i x

j
   

   


      



  
    

 
  

  1 ( 1) 1
,

, 0

(1 ) ,i j
i j

i j

x x    


     



                                                (12) 

where  ,

( 1) 1
( 1) ( 1) .i j

i j

i
i

j


 

  
    

 
 Shapes  of  the  pdf  and  hazard  rate  function  (hrf)  of 

NEBIII( , , )   :  

     

       
Figure 1 Plot of the pdf and hrf of  NEBIII( , , )    
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3. Properties 

This section explores unambiguous expressions for some major properties of newly developed 

distribution. 

 

3.1. Quantile function and random sample generation 

From (5) the  thp  quantile  pt  for  NEBIII( , , )    distribution can be respectively obtained as 

 

1/1/1/
1

1 1 1 .pt
p




               
                 (13) 

As a result a random number  T  from  NEBIII( , , )    distribution can be easily generated starting 

with a uniform random number  ~Uniform(0,1).U  By using inversion method as 

1/1/1/
1

1 1 1 .T
p




               
 

We can also compute the first quartile, median and third quartile of the observed distribution by 

inserting  u  0.25, 0.5 and 0.75, respectively in (13). 

 

3.2. Moments and related measures 

By definition of moments using (7) 

1 ( 1) 1
,

00 0

( ) ( ; , , ) (1 ) .r r r i j
r i j

i j

E X x f x dx x x dx         
  

     

 

       

Let  x y   and 
1

x y 


  and 
1

11
,dx y dy


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   

( 1) 1
,

, 00

(1 ) .
r

i j
r i j

i j
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  

  



    

Put  ,
1 1

w y
y w

w y
 

 
  and 

2

1

(1 )
dy dw

w



 

( 1) 1

1

, 2
, 00

1 1

1 (1 )
(1 )

i jr

r i j r
i j

w
dw

w w
w

 





  

  






 
   

  


  

1
1 1 ( 1) 1

,
, 00

(1 ) .
r r

j i

i j
i j

w w dw
 

  
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

   

Hence  ,
, 0

1 , ( 1) ,r i j
i j

r r
B j i    

 





       
 

  for  ,r   where   , , 0, 0B m n m n  is the 

beta function. The moment generating function (mgf) is derived using the above relation as 

00 0

( ) ( ) ( ; , , ) ( ; , , )
!

r
tx tx r

x
r

t
M t E e e f x dx x f x dx

r
     

  



      

  ,
, 0 0

1 , ( 1)
!

r

i j
i j r

t r r
B j i

r
   

 

 

 

 
     

 
   for  .r   
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The  ths  cumulants  ( )sk  and central moments  ( )s of  the  NEBIII( , , )    distribution are obtained 

from above expression as 
1

1

1
,

1

s

s s k s k
k

s
k k

k
 






 
    

 
   1

0

( 1) ,
s

k k
s s k

k

s

k
   



 
    

 
   

where  1 .k   Thus, 

2
2 2 1( ) ,k       3

3 3 2 1 13 2( ) ,k            2 2 4
4 4 3 1 2 2 1 14 3( ) 12 ( ) 6( ) .k                   

The skewness and kurtosis of  the  NEBIII( , , )    distribution can be obtained  from third and 

fourth standardized cumulants by using formulae  3 / 2
1 3 2k k  and  2

2 4 2 ,k k   respectively. 

 

3.3. Rényi entropy 

If a random variable  X  follows  NEBIII( , , )    distribution, then its Rényi entropy is defined 

as  

 
1 1

( ) log{ ( )} log ( )
1 1

RI I f x dx 
 





 
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On simplification by using the expansions of (7) and (8) we get 
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1 1
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By inserting (15) in (14) we get the Rényi entropy of  NEBIII( , , )    distribution as 

 
log log

( ) log( )
1 1

RI
   
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             ,
, 0

1 1 1
log 1 , ( ) 1 .
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3.4. Moment generating function 

Using the result in (11) of Section 2 we can express the mgf of  NEBIII( , , )   as 
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)(sM EG
 being the mgf of exponentiated BIII distribution that is exponentiated  BIII ( ; , ).G x    

 

3.5. Distribution of order statistics 

Consider  a  random  sample  1 2, ,..., nX X X  from  any  NEBIII( , , )    distribution.  Let  :r nX  

denote the  thr  order statistic. The pdf of  :r nX  can be expressed as 
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The pdf of the  thr  order statistic for of the  NEBIII( , , )    can be derived on using the expansion of 

the pdf and cdf given in Section 2 as  
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where  jk  and  pq  defined above. 
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Therefore,  the  density  function  of  the  thr  order  statistics  of  NEBIII( , , )    distribution  can  be 

expressed as 
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3.6. Probability weighted moments 

The  probability  weighted  moments  (PWMs),  first  proposed  by  Greenwood  et  al.  (1979),  are 

expectations of certain functions of a random variable whose mean exists. The  th( , , )p q r  PWM of  X  

is defined by 
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The  ths  moment of  X  can be written as 
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the PWM of  BIII( , )   distribution. 

Proceeding  similarly  we  can  express  ths  moment of  the  thr   order  statistic  :r nX   in  a  random 

sample of size n from  NEBIII( , , )    on using (17) as 
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where  , , ,j k p q  is defined in Section 3.5. 

 

3.7. Stress-strength reliability 

If  1X  follows  the  strength  of  the  system  and  2X  follows  stress  on  that  system,  then  the 

1 2( )P X X  measure the chance that the system fails. Generally, the readers are referred to Kotz et al. 

(2003)  for  motivations  and  applications  of  stress-strength  reliability  analysis.  Let 
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1 1 1~NEBIII( , , )strengthX X     and  2 2 2~NEBIII( , , )stressX X     are two be independent random 

variables. The stress-strength reliability is defined as 

  1 2 2 1( ) ( ) ( ) .R P X X F x f x dx

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                     (18) 

Now the pdf of  1X  and cdf of  2X  can be obtained from (12) as 
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4. Estimation of Parameters 

Maximum Likelihood estimation is considered here to estimate the unknown parameters  ( ,   

and  )  of the  NEBIII( , , )    distribution.  

Let  1 2, ,..., nX X X  be a random sample of size  n  from the distribution then the sample likelihood 

function is given as 
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The log-likelihood function is 
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Now we have to maximize the log-likelihood function given in (19) to get the ML estimates of 

unknown parameters of the  NEBIII( , , )    distribution. For this purpose, we take the first derivative 

of the log-likelihood equation with respect to parameters. 
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  The exact solution of the derived ML estimator for unknown parameters in (19)-(22) is derived 

equating  the  above  first  derivatives  to  zero  which  is  genuinely  not  possible.  Therefore,  it  is  more 

appropriate  to  use  the  nonlinear  optimization  algorithms  such  as  a  Newton-Raphson  algorithm  for 

maximizing  the  likelihood  function  numerically.  We  can  use  R  (optimal  function  or  maxBFGS 

function) (R Core Team 2018), or MATHEMATICA (Maximize function) (Wolfram Research, Inc. 

2010). After application of large sample property of the ML Estimates, MLE  ̂  can be treated as being 

approximately normal with the mean   and the variance-covariance matrix equal to the inverse of the 

expected  information  matrix,  i.e.  ˆ( ) ~ (0, )k nn N V   where  1( ) ( ),n ij nV v I     )(I  is  the 

information matrix then its inverse of matrix is  1 ( )I   provide the variances and covariance’s. The 

variance-covariance matrix  ˆ( )I   is actually equal to the inverse of the expected information matrix 

1 ˆ( ).I   The elements of the variance-covariance information matrix can easily be obtained by taking 

the derivatives of the (19)-(22). 

  To inspect  the performance of the new extended Burr-III distribution, we conduct a simulation 

study by using the Monte Carlos simulation. The simulation is done as follows: 

 Data is generated from  ( ) ,F x u  where  u  is uniformly distributed (0, 1). 

 (1.5,0.5,0.2)  and  (3.5,1.5,2.5)  are taken as the true parameter values  ,   and  .  

 Simulation is conducted for the sample sizes n  10, 50, 100, 300 and 500. 

 The repetition of the experiment is 10,000 times for each sample size. 

Table 1 presents the outcomes of the Monte Carlos simulation study. We evaluate the average of 

estimated  (AE)  parameters,  bias  and  mean  square  errors  (MSE)  of  new  developed  model.  These 

findings based on the first order asymptotic theory show that the bias and the MSE’s decreases toward 

zero with the increase in sample size as expected. 

The  observations  in  Table  1  indicated  that  the  MSE  of  the  ML  estimators  of  ,   and   

decreases and their biases decay towards zero as sample size increases. While the increase in shape 

parameters, MSE of estimated parameters increases. 

 

5. Applications 

First data  set  is about  fracture  toughness  from material Alumina  2 3(Al O ).  The observations of 

data are available online at http://www.ceramics.nist.gov/srd/summary/ftmain.htm. The second data 

is about survival time of guinea pigs injected with different doses of tubercle bacilli (Bjerkedal 1960). 

In  this  study, we used  the data of animals  in  the  same cage  that under  the  same  regimen;  the  data 

includes 72 observations. 

To check  the shape of  the hazard  function of  the data sets we have used Aarset’s (1987) TTT 

(Total time on test) plot in Figure 2 indicate that the first and second data sets has increasing hazard 

rate. 
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Table 1 Summaries of the estimates for the  NEBIII( , , )    distribution 

 

                

                                                 (a)                                                           (b) 

Figure 2 TTT-plots for the (a) Data set I and (b) Data set II 

True parameters  Sample 
size 

Parameters 
Summaries of Parameters 

         AE   Bias  MSE   

1.50  0.50  0.20 

10 

  
  

  

1.76638 
0.70418 
0.25387 

0.26637 
0.20418 
0.05387 

0.78918 
13.9490 
1.22024 

 

50 

  
  

  

1.54674 
0.51900 
0.20693 

0.04673 
0.01899 
0.00694 

0.07661 
0.01150 
0.00156 

 

100 

  
  

  

1.52486 
0.51019 
0.20369 

0.02485 
0.01019 
0.00369 

0.03529 
0.00494 
0.00069 

 

300 

  
  

  

1.50707 
0.50293 
0.20105 

0.00707 
0.00293 
0.00105 

0.01100 
0.00152 
0.00022 

 

500 

  
  

  

1.50412 
0.50126 
0.20051 

0.00412 
0.00126 
0.00051 

0.00645 
0.00090 
0.00012 

 

0.50  1.50  0.90 

10 

  
  

  

0.58579 
1.57676 
1.06533 

0.08579 
0.07676 
0.16532 

0.08674 
0.12920 
0.31634 

 

50 

  
  

  

0.51377 
1.51619 
0.92592 

0.01377 
0.01619 
0.02592 

0.00812 
0.02902 
0.02758 

 

100 

  
  

  

0.50685 
1.50939 
0.91270 

0.00685 
0.00938 
0.01270 

0.00381 
0.01402 
0.01291 

 

300 

  
  

  

0.50279 
1.50344 
0.90521 

0.00279 
0.00344 
0.00521 

0.00123 
0.00473 
0.00416 

 

500 

  
  

  

0.50161 
1.50191 
0.90309 

0.00161 
0.00191 
0.00309 

0.00071 
0.00281 
0.00243 
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Descriptive statistics of the data sets are provided in Table 2. 

 

Table 2 Descriptive Statistics for Data I and Data II 

  Min Q1 Median Q3 Mean Max 

Data I 1.680 3.850 4.380 5.000 4.325 6.810 

Data II 12.000 54.500 70.000 109.500 96.420 376.000 

 

By  using  these  data  sets,  we  have  made  comparison  for  the  new  extended  Burr-III  (NEBIII) 

distribution  with  the  Kumaraswamy  Burr-III  (KBIII),  transmuted  modified  Burr-III  (TMBIII), 

Marshall Olkin Modified  Burr-III  (MOMBIII),  exponentiated modified Burr-III  (MBIII),  modified 

Burr-III (MBIII) and Burr-III (BIII) distribution. We use a number of   goodness of fit measures  to 

compare the new model with other existing models such as the log likelihood function  ( 2 ),   Akaike 

Information  Criterion  (AIC),  corrected  version  of  Akaike  Information  Criterion  (AICc),  Bayesian 

Information  Criterion  (BIC),  Consistent  Akaike  Information  Criterion  (CAIC),  Hanna-Quinn 

Information Criterion (HQIC), Kolmogrov-Smirnov (K-S), Anderson Darling  *(A )  and Cramer-Von 

Mises  *(W ).  The pdf of other existing models are stated below. 

 Kumaraswamy Burr-III distribution (Behairy et al. 2016) 
1 1 1( ; , , , ) (1 ) (1 (1 ) )g x x x x                      for  0x   

 Transmuted modified Burr-III distribution (Ali and Ahmed 2015) 

1
1( ; , , , ) (1 ) (1 2 (1 ) )g x x x x

 

           
  

         for  0x   

 Marshall Olkin modified Burr-III distribution (Haq et al. 2020) 

1
1

2

(1 )
( ; , , , )

(1 )(1 )

x x
g x

x



  



 

 
   

  

 
  






 

    

 for  0x   

 Exponentiated modified Burr-III distribution 

1
1( ; , , , ) (1 )g x x x

 

       
 

     for  0x   

 

 Modified Burr-III distribution (Ali et al. 2015) 

1
1( ; , , ) (1 )g x x x



      
 

     for  0x   

 

Tables 3-6 provide the estimated parameters and goodness of fit measures of two real life data 

sets. It is obvious from the tables that the goodness of fit measures such as AIC, BIC, AICc, CAIC, 

HQIC, K-S,  *A  and  *W  of the new developed NEBIII distribution are less  than that of the KBIII, 

TMBIII, MOMBIII, EMBIII, MBIII and BIII distribution, therefore, considered as a best fitted model. 

Figures 3 and 4 show the histogram of data and the estimated pdf curves and the estimated and the 

empirical cdf curves. It  is evident from the tables and figures that  the NEBIII distribution provides 

better fit as compared to other existing models considered here. 
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Table 3 ML estimates of the parameters for Data I 

Models   Estimates (Std. Error) 

NEBIII( , , )     45.4010 

(0.0001) 

1.1741 

(0.0148) 

0.1485 

(0.0110) 

          - 

KBIII( , , , )      6.5226 

(0.1158) 

585.3100 

(0.00002) 

0.8146 

(0.0484) 

3.8814 

(0.1947) 

TMBIII( , , , )      1030.500 

(4.6730) 

5.2171 

(0.2934) 

891.8400 

(4.7428) 

−0.6347 

(0.1894) 

MOMBIII( , , , )      115.0400 

(1.6542) 

7.0535 

(0.5064) 

475.7100 

(3.0509) 

267.8600 

(4.4859) 

EMBIII( , , , )      32.1110 

(0.5824) 

4.8543 

(0.2852) 

629.4200 

(3.2430) 

30.1120 

(1.3281) 

MBIII( , , )    816.0100 

(3.6708) 

4.4760 

(0.2750) 

531.9200 

(3.1541) 

         - 

BIII( , )    51.8940 

(1.1185) 

3.0581 

(0.1799) 

          - 

 

Table 4 Some goodness of fit measures for Data I 

Models 2   AIC BIC AICc CAIC HQIC K-S *A  *W  

NEBIII( , , )    356.8 362.8 371.1 362.9 366.9 366.2 0.081 1.912 0.185 

KBIII( , , , )     359.4 368.4 382.5 367.8 375.1 375.9 0.237 2.679 0.291 

TMBIII( , , , )     368.0 376.0 387.1 376.3 381.5 380.5 0.121 3.167 0.472 

MOMBIII( , , , )     359.2 368.2 382.3 367.5 374.7 375.7 0.230 2.666 0.283 

EMBIII( , , , )     374.7 382.7 389.1 382.9 385.9 384.1 0.133 3.916 0.607 

MBIII( , , )    375.2 381.2 389.5 381.5 385.3 384.5 0.143 4.173 0.680 

BIII( , )   419.5 423.5 429.1 423.6 426.3 425.7 0.196 6.110 1.429 

 

Table 5 ML estimates of the parameters for Data II 

Models   Estimates (Std. Error) 

NEBIII( , , )    4.9190 

(5.8294) 

4.5707 

(8.1284) 

0.4210 

(0.4473) 

                     - 

KBIII( , , , )     12.3010 

(0.4444) 

8.1828 

(7.2531) 

0.6587 

(0.1888) 

3.5953 

(1.5205) 

TMBIII( , , , )     379.6700 

(6.1881) 

1.7108 

(0.0481) 

198.6500 

(1.2265) 

−0.8171 

(0.2166) 

MOMBIII( , , , )     364.7100 

(1.0063) 

2.5819 

(0.2743) 

3.7090 

(2.0545) 

183.5900 

(1.6860) 

EMBIII( , , , )     40.9750 

(0.9458) 

1.7886 

(0.0791) 

514.8100 

(0.3059) 

39.8050 

(0.9188) 

MBIII( , , )    399.5600 

(2.5152) 

1.5239 

(0.1188) 

89.2210 

(0.9395) 

                      - 

BIII( , )   240.8500 

(1.0861) 

1.3956 

(0.1109) 

             - 
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Table 6 Some goodness of fit measures for Data II 

Models 2   AIC BIC AICc CAIC HQIC K-S *A  *W  

NEBIII( , , )    761.9 767.9 774.7 768.3 771.3 770.6 0.088 0.501 0.085 

KBIII( , , , )     763.1 771.1 780.2 771.7 775.6 774.7 0.109 0.983 0.136 

TMBIII( , , , )     765.9 773.9 782.9 774.5 778.4 777.5 0.128 1.125 0.196 

MOMBIII( , , , )     763.9 768.9 781.0 770.6 775.5 775.2 0.101 0.562 0.097 

EMBIII( , , , )     765.6 773.6 782.6 774.2 778.1 777.2 0.108 0.835 0.146 

MBIII( , , )    769.9 775.9 782.7 776.3 779.3 778.6 0.366 1.284 1.095 

BIII( , )   774.8 778.8 783.4 779.0 781.1 780.6 0.145 1.727 0.285 
 

     

 

Figure 3 The fitted pdf of NEBIII model and other models and cdf of NEBIII model on Data I 

    
 

Figure 4 The fitted pdf of NEBIII model and other models and cdf of NEBIII model on Data II 

 

6. Conclusions 

A new lifetime distribution is introduced and provided some of its mathematical and statistical 

properties  including  the  quantile  function,  entropy,  moments,  moment  generating  function,  order 

statistics, power moments and stress-strength reliability. The maximum likelihood method is used to 
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estimate  the  model  parameters.  For  different  parameter  and  sample  sizes,  a  simulation  study  is 

performed to evaluate  the performance of the MLEs of NEBIII parameters. Empirical results show 

that the two real data applications, that the NEBIII distribution can provide better fits than some other 

well-known other extended Burr-III models such as the BIII, KBIII, MBIII, EMBIII, MOMBIII and 

TMBIII distributions. 
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