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Abstract

In this article, we consider a three parameter extended Burr-1II distribution and study some
distributional, reliability properties and parameter estimation. Performance of estimation technique
used for model parameters estimation is numerically investigated employing Monte Carlo simulation
with different sample sizes and parameter values. Efficacy of this distribution in modeling from two
real life data is evaluated in comparison to some existing extensions of Burr-III distribution employing
well known goodness of fit tests and model selection criteria. Our findings show the proposed
distribution as the best among the all the other extensions of Burr-III distribution considered in this
study.
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1. Introduction
Burr (1942) defined the cumulative distribution function (cdf) and probability density function
(pdf) (for x > 0) of the Burr-III (BIII) distribution respectively by

GM(x;f.6)=(1+x7")", (6]
[ B,8) = pox—7 (142" 2
where >0 and & >0 are both shape parameters.

In 2006, Gleaton and Lynch developed a new family of distribution named as generalized log-
logistic family of distribution. Later on, this family was called as odd log-logistic family of
distribution. The cdf of the odd log-logistic (OLL-X) family of distribution was given as

G(x,8)"
[G(x,8)" +(1-G(x,8))"]

where « >0 is an additional shape parameter. G(x,¢) is the cdf of the parent distribution and &

F(xa,8)=

€)

denotes the parameters of the parent distribution. The corresponding pdf of the OLL-X family is given
as
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ag(x,§)G(x,&)" ' (1-G(x,5)"" @)
[G(x,&)" +(1-G(x,E)T
If the parent distribution has closed form cdf then the newly developed model also possess a closed
log[F (x;, &)/ F(x;, )]
log[G(x;,)/ G(x;0,6)]
newly developed and parent distributions.
A number of extensions of the Burr-III distribution are proposed to offer better modeling. Some

notable among them are the three-parameter Burr-1II distribution (Shao et al. 2008), transmuted
modified Burr-IIT (Ali and Ahmed 2015), Marshall Olkin modified Burr-III (Ali et al. 2015),
Kumaraswamy Burr-III (Behairy et al. 2016), Marshall-Olkin extended Burr-III distribution (Al-Saiari
etal. 2016), extended Burr-III distribution (Cordeiro et al. 2017) and generalized Marshall-Olkin Burr-
IIT (Chakraborty et al. 2020) among others.

We define new extended Burr-III ( NEBIII(«, £, 0) ) model by using the odd log-logistic method

for parameter induction. By inserting (1) in (3) we get the cdf of the NEBIIl(«, £,0) model as
(1+x°)y

A+x2)y P +{1-1+x) 7}

where @ >0, >0 and & >0 are the shape parameters. The corresponding pdf is given as

aBox " 1+ x70) T -1+ x70) !

[A+x°)Y? +{1-1+x°)"y T

The main motivation behind the proposed family is to obtain an extension of the Burr-III
distribution with one additional parameters to bring in more flexibility with respect to skewness,
kurtosis, tail weight and length; which encompasses number known distributions as special and related
cases, also to ensure that it provides better alternative in the data modeling not only to its sub models
including the BIII distribution, but to other recent extensions.

The rest of this article is organized in five more sections. In Section 2, linear representation of the
cdf and pdf of the proposed family. In Section, 3 we discuss some mathematical and statistical
properties of the proposed family. In Section 4, maximum likelihood methods of estimation of
parameters is presented. The data fitting applications and simulation are presented in Section 5. The
article ends with a conclusion in Section 6.

f(xa,8)=

form cdf and =qa. Thus, a is the quotient of the log-odds ratio of the

FNEB[II (x;a,ﬂ, é‘) —

for x>0, 5)

SN o B,5) = , for x> 0. (6)

2. Linear Representations
The cdf and pdf of the NEBIII(«, 5,0) can be expressed as infinite linear mixture of the
corresponding functions of BIII distribution as follows. We know that

(1+2)" =§(—1>k [“llj_ljzﬂ %)
(1-2) = 2(—1)" U] z' for || > 0. 8)
By using (7) the cdf of NEBIIl(e, S, 0) carllibe written as
FY(x;a, p,6) = izk: 9,[G™" (x; B,5)) ", ©)
k=0 70

[ ak
where 3, =(-1) Ik [ ) J The corresponding pdf is given by
J
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fNEBllI ()C;O.’,ﬂ, 5) — iaz'gjk (] + O.’k)[GBm ()C; ﬂ, é’)]jwz k—lgBlII ()C;ﬂ, 5)

i ]kgBIH (x ﬂ 5)[GBIH (x ﬂ 5)]]4—(1/{ -1 (10)
iaz [GBIII ;ﬂ’é)]j+ak, (1 1)

where 3, is defined above and ), = 9 (T + ak).
Alternatively, density function of the proposed model can be expressed as by using (7)

fNEBIII (v, B,5) = aﬂé‘xqs—li(_l)"(i +1) {l -1+ x"")iﬂ}

a(i+1)-1 _ o
(1+X §)aﬁ(1+l) 1‘

By using (8)
2 L +1)—-1 . )
fNEBIll (x;a,ﬁ’, 5) _ aﬂé»xﬂm Z (_1)l+, (i+ 1)[0!(1 ' ) j(l +x—§)aﬂ(l+l)fﬂj*l
i,j=0 J
_ aﬂé‘i ﬂi,jxfa‘*l(l-i-x*‘i )aﬂ(Hl)—ﬂj—l, (12)

i,j=0

o i +1)-1
where 7, =(=1)""(i +1)[a(l .) ] Shapes of the pdf and hazard rate function (hrf) of
. j
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Figure 1 Plot of the pdf and hrf of NEBIIl(e, S, 0)
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3. Properties
This section explores unambiguous expressions for some major properties of newly developed
distribution.

3.1. Quantile function and random sample generation
From (5) the p" quantile t, for NEBIll(e, $,6) distribution can be respectively obtained as

Ve 1p -1/6
l =H(i—1) +1} —1} . (13)
p

As aresult a random number 7 from NEBIII(«, £,6) distribution can be easily generated starting

with a uniform random number U~Uniform(0,1). By using inversion method as

SRR

We can also compute the first quartile, median and third quartile of the observed distribution by
inserting u =0.25, 0.5 and 0.75, respectively in (13).

3.2. Moments and related measures
By definition of moments using (7)

=E(X")= jx f(x;a, B,0)dx = jaﬁszﬁ X (xS @ P AI g
i=j=0
! 1

. 1 -
Let x° =y and x=y ¢ and dx:—gy s 1a’y,

=Iaﬂ2 o F (L) P g,

0 i,j=0
1
Put y :L, w=—2"and dy=———dw
1-w I+y (1-w)
B af(i+1)-fj-1

efas$m, (1) !

——dw
0 ij=0 (1- W)*g l-w (1- W)2

! L j—af(i+1)+=—
:I ﬁZ;r W ‘l(l—w)ﬂj P

0 i,j=0

Hence 4/ —a,BZ;r B(l—— Bji—-afi+1)+— ) for 6 > r, where B(m,n), m >0, n>0is the

i,j=0

beta function. The moment generating function (mgf) is derived using the above relation as

M (1) = E(") —j “fxa, B,S)dx = j Z;x f(x;a, B,8)dx

OrO

_aﬁazz —7, B( —.Bj-afi+1)+— jfor S>r.

IjOVO
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The s™ cumulants (k,) and central moments () of the NEBIII(a, f,9) distribution are obtained

from above expression as

, sis—1 , (S ' ’
k=~ Z[ i Jkkﬂ.v_ka = —Z{ k](—l)k s
k=1 k=0

where g = k. Thus,

by = g = () s ey = =3 +2(0)’ s ky = = Al = 3(a)" +1245 (1) = 6(4)*.
The skewness and kurtosis of the NEBIII(e, £,0) distribution can be obtained from third and

2

fourth standardized cumulants by using formulae y, = &, /k)> and y, =k, /k2,

respectively.

3.3. Rényi entropy
If a random variable X follows NEBIIl(«, f3,5) distribution, then its Rényi entropy is defined

as

IR(9)=$log{l(3)}:$10g j FP(x)dx for $>0 and 91, (14)

© © —o-1 —S\-ap-1 g1 _ ~5\-pya-17]?
where 1(9)= [ f*(x)dx. Now, 1(9) = {“ﬂ‘ﬁ H(lj;iiﬂj {1_({11+)(C1:)xﬂ}2]2} } dx.

—o0 0

On simplification by using the expansions of (7) and (8) we get

[(19) — (aﬂ5)3 Z (pi’j'[x -3 ((5+1)(1 +x—(§) af($+i)-Bj-9 dx,

where ¢, ; = M(—l)’” a(d +.l') -9 .
TQIG+1) ;

; -~ 1 -
Let x° =y and x=y ¢ and dx=—gy o 1dy, then

I1(9) = (afps)’ z %J_J'y 0T (14 ) SIS g,

i=j=0 0

. w y 1
Puttin =——,w=—and dy=——dw we get
8V TS T g
9 1 af($+i)-pj-9
R 1 1
1) =a’ 5"y q)l.,jjw—g,(—j —dw
520 O(I_W)ﬂ I-w 1-w)
®© . . g 1
_ a‘gﬁ‘g(s‘g*l Z ¢i’ij'wl+§—§—l (l _ W)—aﬂ(9+z)+ﬂ‘/+.9—g+g—l—ldw
ij=0 0
=a’p’s"! i o, .B(l-i—g—l ,Bj+19—aﬁ(19+i)—£+l—lj (15)
i 5 & 5 &

By inserting (15) in (14) we get the Rényi entropy of NEBIIl(«, £,6) distribution as

Sloga  Jlo
1) = T2 2 oo
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+—lo > l+—=——,Bj+3—af(F+i)——+—=-1]]|. 16

13 g{/o%( 5 5,3] P(I+1) 515 H (16)

3.4. Moment generating function
Using the result in (11) of Section 2 we can express the mgf of NEBIII(«, 3,0) as

M 0= B 1= [ 3 58, L6 wpe)] " d
k=0 j=0
o ak Ox ' BII Jrak o ak
=39, fe" d—[G 58,0 dx=>>" %M, (s).
k=0 j=0 0 X k=0 j=0

M ,.(s) being the mgf of exponentiated BIII distribution that is exponentiated G™" (x; 3,6).

3.5. Distribution of order statistics
Consider a random sample X, X,,..,X, from any NEBIll(e,f,0) distribution. Let X,

denote the »™ order statistic. The pdf of X

rin

can be expressed as

n ! NEBIIT NEBIIT r—1 _ NEBIIT n-r
S (X) = mf (X)F () {1-F7 (0)}

-r NEBllI NEBII m+ r=1
e r),Z( )[ j (O )y,

The pdf of the ™ order statistic for of the NEBIIl(e, f,0) can be derived on using the expansion of
the pdf and cdf given in Section 2 as

f,:,,(x) o 1)'( - ),Z( )m( jii kgBHI(xﬂ5)[GBHI(xﬂ5)]_1+ak1

m+r—1

X|:zzl9pq {GBIH (x; ,37 5)} qmp} ’

where 9 and 4, defined above.

Using power series raised for positive integer n (>1), (Za ,.uij =ZC"‘ u', where the
i=0 i=0
coefficient ¢,, for i=12,.. are easily obtained from the recurrence equation

c,; =(a,) - Z[m(n +1)- i]amcn’ifm, where ¢, ; = ay (see Gradshteyn and Ryzhik 2000).

m=1

ap m+r-1 »
Now, [ZZ' 9,,{G™" (x: B, 5)}“"”} ) R (e X
r=04=0 p=0g=0

Therefore, the density function of the »" order statistics of NEBIII(«, §,5) distribution can be

expressed as
ak

Z( l)m En;rji g;kgBm ()Gﬂ,5)|:GBm (x;ﬁ,é‘)] Jjrak-1

)'(” 1) Jowrs k=0 j=0

Soa(%) =
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ap

Xizdmﬂ L geap {GBIII (x ﬂ 5)}11 ap
p=0¢=0
© ak ap
mn B /.
(r 1)'(71 r)'mz(:)( D [ ]k;()jz;qz;‘g dyirorgrap8 (%5 5,0)
><|:G BIII (xﬂ 5)] Jrqtra(p+k)-1
n—r n—r © ak ap
" 9 d BII /.. S
(r 1)|(n_ )lmz;)( ) ( ]k;()]zo; Jjk m+r71,q+apg (xrﬂa )

y |:GB”I (x’ ﬂ’ 5):|j+q+0t(p+k)*1

0 ak ap

gBIll (x ,3 5) Z Zzﬂj o I:GBm (x ,3 5):| Jrgra(p+k)-1

k=p=0 j=0 ¢g=0

o ak ap d +q+a( +k)
BII Mg BIIl Jraralp
=g""(x; 8,0) A LT — (x; B,9) a7)
kzp“o;qz?ﬁwa(p%)d Lo ]
—r .
where 1, :(r 1)'(11 r)'Z( 1) [ jd,n+r_1, grap e

3.6. Probability weighted moments
The probability weighted moments (PWMs), first proposed by Greenwood et al. (1979), are

expectations of certain functions of a random variable whose mean exists. The (p,q,7)"™ PWM of X
is defined by

©

T, = [ [FOI1I-F@] f(x)dx.

The s™ moment of X can be written as

E(XS) izg J‘x [GBIIl(xﬂév)] Jak-1 Blll(xﬂ 5)dx zzgr F?ljliak Los

k=0 j=0 k=0 j=0

©

where &, define in Section 2 and T® = [x”{G ™" (x; 8,6)" {G ™" (x; 8,8)} [ ™" (x; 8, 8) Jdx is

p.q.r
0

the PWM of BIII(f,0) distribution.
Proceeding similarly we can express s" moment of the »" order statistic X, in a random

sample of size n from NEBIIl(ex, #,0) on using (17) as

© ak ap

E(X,,)= Z zzﬂ./,k,p,qFs,./+q+a(p+k>—1,0’

k,p=0 j=0 g=0

where y,, . is defined in Section 3.5.

3.7. Stress-strength reliability
If X, follows the strength of the system and X, follows stress on that system, then the

P(X, > X,) measure the chance that the system fails. Generally, the readers are referred to Kotz et al.

(2003) for motivations and applications of stress-strength reliability analysis. Let
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X, =X, .~NEBIll(c,,3,5) and X, = X

stress

~NEBIll(«,, 3,,0) are two be independent random

strength

variables. The stress-strength reliability is defined as
R=P(X, 2 X,)= [ F,(x)f,(x)dx. (18)
Now the pdf of X, and cdf of X, can be obtained from (12) as

[ =8 & x 7 (14+x ) WACDAIA

i=j=0

0

103 . o
and F,(x)= Z (Z ~2j(1+x"’)"2ﬁz’ﬁ” for ia, > j,
J

i=j=0

i [al(iﬂ)—l]
where ¢, . =(=1)"/(i+1) )
J

. By inserting the values of f|(x) and F,(x) in (18), we get

i=j=0 0
ia,
where p, ; = ; &

4. Estimation of Parameters
Maximum Likelihood estimation is considered here to estimate the unknown parameters («, S

and o) of the NEBIll(er, #,5) distribution.
Let X,,X,,...,X, be arandom sample of size n from the distribution then the sample likelihood

function is given as

ﬁf(x'a B.6)= (aﬂ5)”ﬁ LD {1—(1+x*5)7ﬁ}“*1.
A - [(”’Cﬂs)w +{1—(l+x’§)’ﬂ}aJ

The log-likelihood function is

L :nloga+n10gﬂ+nlog5—(5+1)210gx—(aﬂ+1)210g(1+x"5)

i=l1 i=1

Ha-DY{1=+x) 7 -2 log[(1+277) 7 + 1-(1+x7) 7} ] (19)

Now we have to maximize the log-likelihood function given in (19) to get the ML estimates of
unknown parameters of the NEBIIl(«, #,0) distribution. For this purpose, we take the first derivative

of the log-likelihood equation with respect to parameters.

L, :ﬁ—ﬂilog(l+x’5)+i{1—(1+x’5)’ﬂ}
a i=1 i=1

N 2i Blog(l+x ) 1+x°) % —log{1-(1+x ) ?}{1-(1+x )7} 20)

A+ +{ 1=(1+x7°) "} @

n 5 ] 1 = 1 -5\
L, =%—aglog(l+x’ )+(a—1); Og(ltz:)(c_;))_cﬂ )
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zzalog(l+x 1+ x°) 7 —alog(l+x )1+x ) {l-(+x?) 7} o
= A+x) P +{1-(1+x) 7}
_n_ logx e B logx(1+x70)
= Zlogx +(af+ I)Z 1); 1)
_22": afx log x(1+x70) " —afx ~ logx(1+x°) " {1-(1+x7)” }a_l @)

A+x0)y? +{1-+x7) "}

The exact solution of the derived ML estimator for unknown parameters in (19)-(22) is derived
equating the above first derivatives to zero which is genuinely not possible. Therefore, it is more
appropriate to use the nonlinear optimization algorithms such as a Newton-Raphson algorithm for
maximizing the likelihood function numerically. We can use R (optimal function or maxBFGS
function) (R Core Team 2018), or MATHEMATICA (Maximize function) (Wolfram Research, Inc.
2010). After application of large sample property of the ML Estimates, MLE 6 can be treated as being
approximately normal with the mean & and the variance-covariance matrix equal to the inverse of the
expected information matrix, i.e. Vn(—-6)~N,(0,V,) where V, = (v;,)=1,(0), 1(0) is the
information matrix then its inverse of matrix is 7~'(#) provide the variances and covariance’s. The

variance-covariance matrix / (é) is actually equal to the inverse of the expected information matrix

I (é). The elements of the variance-covariance information matrix can easily be obtained by taking

the derivatives of the (19)-(22).

To inspect the performance of the new extended Burr-III distribution, we conduct a simulation
study by using the Monte Carlos simulation. The simulation is done as follows:

e Data is generated from F(x)=u, where u is uniformly distributed (0, 1).

(1.5,0.5,0.2) and (3.5,1.5,2.5) are taken as the true parameter values «, f and J.

e Simulation is conducted for the sample sizes n = 10, 50, 100, 300 and 500.

e The repetition of the experiment is 10,000 times for each sample size.

Table 1 presents the outcomes of the Monte Carlos simulation study. We evaluate the average of
estimated (AE) parameters, bias and mean square errors (MSE) of new developed model. These
findings based on the first order asymptotic theory show that the bias and the MSE’s decreases toward
zero with the increase in sample size as expected.

The observations in Table 1 indicated that the MSE of the ML estimators of «,f and &

decreases and their biases decay towards zero as sample size increases. While the increase in shape
parameters, MSE of estimated parameters increases.

5. Applications
First data set is about fracture toughness from material Alumina (Al,O,). The observations of

data are available online at http://www.ceramics.nist.gov/srd/summary/ftmain.htm. The second data
is about survival time of guinea pigs injected with different doses of tubercle bacilli (Bjerkedal 1960).
In this study, we used the data of animals in the same cage that under the same regimen; the data
includes 72 observations.

To check the shape of the hazard function of the data sets we have used Aarset’s (1987) TTT
(Total time on test) plot in Figure 2 indicate that the first and second data sets has increasing hazard
rate.
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Table 1 Summaries of the estimates for the NEBIII(«, £,5) distribution

True parameters Sample p Summaries of Parameters
a B 5 size arameters AE Bias MSE
a 1.76638 0.26637  0.78918
10 s 0.70418 0.20418 13.9490
) 0.25387 0.05387 1.22024
o 1.54674 0.04673 0.07661
50 s 0.51900 0.01899  0.01150
o 0.20693 0.00694  0.00156
o 1.52486 0.02485 0.03529
1.50 0.50  0.20 100 p 0.51019 0.01019  0.00494
) 0.20369 0.00369  0.00069
a 1.50707 0.00707  0.01100
300 s 0.50293 0.00293 0.00152
0 0.20105 0.00105 0.00022
o 1.50412 0.00412  0.00645
500 B 0.50126 0.00126  0.00090
o 0.20051 0.00051 0.00012
a 0.58579 0.08579  0.08674
10 P 1.57676  0.07676  0.12920
S 1.06533 0.16532  0.31634
o 0.51377 0.01377  0.00812
50 B 1.51619 0.01619  0.02902
o 0.92592 0.02592  0.02758
o 0.50685 0.00685 0.00381
0.50 1.50  0.90 100 B 1.50939 0.00938  0.01402
o 0.91270 0.01270  0.01291
a 0.50279 0.00279  0.00123
300 s 1.50344 0.00344  0.00473
0 0.90521 0.00521 0.00416
o 0.50161 0.00161 0.00071
500 s 1.50191 0.00191 0.00281
o 0.90309 0.00309  0.00243

Tlifn)

il in

(a) (b)
Figure 2 TTT-plots for the (a) Data set [ and (b) Data set II
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Descriptive statistics of the data sets are provided in Table 2.

Table 2 Descriptive Statistics for Data I and Data II

Min Q Median Qs Mean Max
Data I 1.680 3.850 4.380 5.000 4.325 6.810
Datall 12.000 54.500 70.000 109.500 96.420 376.000

By using these data sets, we have made comparison for the new extended Burr-III (NEBIII)
distribution with the Kumaraswamy Burr-III (KBIII), transmuted modified Burr-III (TMBIII),
Marshall Olkin Modified Burr-1III (MOMBIII), exponentiated modified Burr-IIT (MBIII), modified
Burr-1IT (MBIII) and Burr-1IT (BIII) distribution. We use a number of goodness of fit measures to
compare the new model with other existing models such as the log likelihood function (-2¢), Akaike
Information Criterion (AIC), corrected version of Akaike Information Criterion (AICc), Bayesian
Information Criterion (BIC), Consistent Akaike Information Criterion (CAIC), Hanna-Quinn
Information Criterion (HQIC), Kolmogrov-Smirnov (K-S), Anderson Darling (A") and Cramer-Von

Mises (W"). The pdf of other existing models are stated below.

e  Kumaraswamy Burr-III distribution (Behairy et al. 2016)
g, By, A)=afdx7 A+ x7)y " A=A+ x7) ) for x>0
e  Transmuted modified Burr-III distribution (Ali and Ahmed 2015)

a a

1 £
gxa, By, ) =afx " A+yx )7 1+ A-220+yx") ") for x>0
e  Marshall Olkin modified Burr-IIT distribution (Haq et al. 2020)

a

afx" A+yx?y 7

g(X;asﬂaysﬂ): for x >0

[,1 +A=D)A+yx") 7

e Exponentiated modified Burr-III distribution

a i

gxa, By, A)=afix " 1+yx ") 7 for x>0

e  Modified Burr-III distribution (Ali et al. 2015)

a

1
g, By)=afx" ' A+yx”) 7 for x>0

Tables 3-6 provide the estimated parameters and goodness of fit measures of two real life data
sets. It is obvious from the tables that the goodness of fit measures such as AIC, BIC, AICc, CAIC,

HQIC, K-S, A" and W of the new developed NEBIII distribution are less than that of the KBIII,
TMBIII, MOMBIII, EMBIII, MBIII and BIII distribution, therefore, considered as a best fitted model.
Figures 3 and 4 show the histogram of data and the estimated pdf curves and the estimated and the
empirical cdf curves. It is evident from the tables and figures that the NEBIII distribution provides
better fit as compared to other existing models considered here.
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Table 3 ML estimates of the parameters for Data I

Models Estimates (Std. Error)
NEBIl(e, g,0) 45.4010 1.1741 0.1485 -
(0.0001) (0.0148) (0.0110)
KBlll(e, B,7,4) 6.5226 585.3100 0.8146 3.8814
(0.1158) (0.00002) (0.0484) (0.1947)
TMBIl(«, B,y,4) 1030.500 5.2171 891.8400 —0.6347
(4.6730) (0.2934) (4.7428) (0.1894)
MOMBIll(«, 3,7,4) 115.0400 7.0535 475.7100 267.8600
(1.6542) (0.5064) (3.0509) (4.4859)
EMBIl(«, B,y,4) 32.1110 4.8543 629.4200 30.1120
(0.5824) (0.2852) (3.2430) (1.3281)
MBIll(a, 5,7) 816.0100 4.4760 531.9200 -
(3.6708) (0.2750) (3.1541)
BIII(A,0) 51.8940 3.0581 -
(1.1185) (0.1799)
Table 4 Some goodness of fit measures for Data I
Models 20 AIC BIC AICc CAIC HQIC K-S A’ W
NEBIl(e, g,0) 356.8 362.8 371.1 3629 3669 366.2 0.081 1.912 0.185
KBlll(e, B,7,2) 3594 3684 3825 367.8 3751 3759 0.237 2.679 0.291
TMBIll(a, B,7,1) 368.0 376.0 387.1 376.3 381.5 380.5 0.121 3.167 0.472
MOMBIll(e, B,y,A) 3592 3682 3823 367.5 3747 3757 0230 2.666 0.283
EMBIl(«, B,7,4) 3747 3827 389.1 3829 3859 384.1 0.133 3916 0.607
MBIl(e, 8,7) 3752 381.2 389.5 381.5 3853 3845 0.143 4.173 0.680
BIII(S,6) 419.5 423.5 429.1 423.6 4263 4257 0.196 6.110 1.429
Table 5 ML estimates of the parameters for Data II
Models Estimates (Std. Error)
NEBIl(e, g, 0) 4.9190 4.5707 0.4210 -
(5.8294) (8.1284) (0.4473)
KBIll(a, B,7,4) 12.3010 8.1828 0.6587 3.5953
(0.4444) (7.2531) (0.1888) (1.5205)
TMBIl(«, B,y,4) 379.6700 1.7108 198.6500 -0.8171
(6.1881) (0.0481) (1.2265) (0.2166)
MOMBIll(e, B,7,4) 364.7100 2.5819 3.7090 183.5900
(1.0063) (0.2743) (2.0545) (1.6860)
EMBIl(«, B,7,4) 40.9750 1.7886 514.8100 39.8050
(0.9458) (0.0791) (0.3059) (0.9188)
MBIll(a, 5,7) 399.5600 1.5239 89.2210 -
(2.5152) (0.1188) (0.9395)
BIII(S3,0) 240.8500 1.3956 -
(1.0861) (0.1109)
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Table 6 Some goodness of fit measures for Data I1

*

5

Models -2/ AIC BIC AICc CAIC HQIC K-S A W
NEBIll(e, S,9) 7619 7679 7747 7683 7713 770.6 0.088 0.501 0.085
KBll(e, 8,7, 4) 763.1 771.1 780.2 771.7 775.6 77477 0.109 0.983 0.136
TMBIll(e, B,7,4) 7659 7739 7829 7745 7784 7775 0.128 1.125 0.196
MOMBIll(e, B,7,4)  763.9 768.9 781.0 770.6 7755 7752 0.101 0.562 0.097
EMBIll(e, B,7,1) 765.6 773.6 782.6 7742 778.1 7772 0.108 0.835 0.146
MBIl(e, 8,7) 769.9 7759 78277 7763 7793 778.6 0366 1.284 1.095
BIII(B,0) 774.8 778.8 783.4 779.0 781.1 780.6 0.145 1.727 0.285
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Figure 3 The fitted pdf of NEBIII model and other models and cdf of NEBIII model on Data I
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Figure 4 The fitted pdf of NEBIII model and other models and cdf of NEBIII model on Data I1

6. Conclusions

A new lifetime distribution is introduced and provided some of its mathematical and statistical
properties including the quantile function, entropy, moments, moment generating function, order
statistics, power moments and stress-strength reliability. The maximum likelihood method is used to
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estimate the model parameters. For different parameter and sample sizes, a simulation study is
performed to evaluate the performance of the MLEs of NEBIII parameters. Empirical results show
that the two real data applications, that the NEBIII distribution can provide better fits than some other
well-known other extended Burr-III models such as the BIII, KBIII, MBIII, EMBIII, MOMBIII and
TMBIII distributions.
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