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Abstract

In this paper, we propose an alternative method for estimating generalized exponential
distributions by applying plotting positions of modified percentile estimates. We compared its
efficiency with the classical maximum likelihood estimator and percentile estimator in terms of root
mean square errors. Simulation results show that the percentile estimator outperformed the others for
small sample sizes while the proposed estimator was most effective for medium to large sample sizes.
This finding was supported by applying the proposed estimator to deduce whether Thai rainy season
rainfall data followed a generalized exponential distribution from a rain gauging station in Fang
district, Chiang Mai Province, Thailand.

Keywords: Modified percentile method, maximum likelihood estimation, rainfall data, root mean square error,
simulation.

1. Introduction

For some time now, the study of lifetime data has been applied to research in various fields such
as engineering (failure of a mechanical system) and medical research (patient survival times, etc.)
These data can be arranged in a number of appropriate distribution such as exponential, Weibull, and
gamma, among others. Exponential distributions are used in the study of time left until an incident
occurs, such as the waiting period until the first customer comes into an office, the waiting period until
the first phone call, the duration of a lamp until the bulb fails, and so on. However, the properties of
an exponential distribution limit it to only one parameter: the scale parameter. Subsequently, Gupta
and Kundu (1999) proposed a distribution that resolves this limitation: the generalized exponential
(GE) distribution consisting of an additional parameter representing the shape as well as the original
scale parameter, which is more appropriate for real world situations.

Later, Gupta and Kundu (2001) reported on parameter estimation methods for the GE distribution
and compared their performances. They found that the percentile estimator (PCE) method was
appropriate for small sample sizes whereas the maximum likelihood estimator (MLE) method was
better for medium to large sample sizes. Although the PCE is more efficient than the MLE method
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with small sample sizes, medium to large sample sizes caused a problem. Therefore, our interest is in
modifying the PCE method based on an appropriate plotting position estimator to overcome this by
following the guidelines selecting a suitable parametric estimation method for a generalized
exponential distribution. Furthermore, the proposed estimator was applied to estimate whether Thai
rainy season rainfall data from Fang, Chiang Mai province, Thailand follows a GE distribution.

2. Generalized Exponential Distribution
Suppose that a random variable X has an exponential distribution with scale parameter 4 and a

cumulative distribution function (cdf) as following
F(x) = 1-e™, x>0,A>0. (1)

A generalization of the exponential distribution can be obtained by introducing a shape parameter
a. Thus, X is said to have a generalized exponential distribution with parameters (¢, 1), or X is

distributed as GE(«,A), if it has the cdf
Fxia,d) = (1-e™)", x>0,a,4>0, ©)
and a probability density function (pdf)
foia) = arli—e ™) e xs0.a.250, 3)

The mean and variance of the GE distribution are given by
1 1, , ,
E(X)= I("’(“ +1)=w (1)) and Var(X)= 7(@# ) -y'(a+1)),

where y(x) = d In (F(x)) :%x)) and y'(x) denotes the derivative of w (x).
X

dx

However, it is often difficult to fit an appropriate distribution to observed data. In particular, many

authors have studied the goodness of fit to select an appropriate model. Stephens (1974) found that

the Anderson-Darling (AD) test statistic as the power of a test was better than other tests and

recommended its use when selecting models. AD is a test statistic that uses the goodness of fit for data

on an ordinal scale when the distribution of information is continuous. The Anderson and Darling
(1954) test is derived as

AD = —n-1% Qj-D[InF(x)+In(1-F(x, )], @)
n j=1 ’

where F(.) is the expected cdf, x; are the ordered data and »n is the sample size.

3. Methods of Estimation
3.1. The maximum likelihood estimate (MLE) method
Let X,,X,,...,X, be arandom sample of size n froma GE(«,A) distribution with pdfas (3). The
likelihood function of the GE(ex,A) distribution is given by
L) = [laa(l-e™) e, (5)
i=l
Subsequently, the log-likelihood function can be written as

InL(a,A) = nln(@)+nln(d)+(a- 1)2 In(1—e %) — i Ax,. 6)

i=1
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The MLE estimates for the GE parameters are obtained by taking the partial derivatives of the
log-likelihood function with respect to & and A, respectively. Subsequently, the MLE estimators of

a and A are obtained by equating the resulting expressions to zero as follows:

0 no<
—InLla,l) = —+ n(l—e*) = 0 7
Y (@, ) o ; e (7

a —Ax;
a1nL(a,/1) = +(a 1)2 _M) Zx = 0. (®)

In the paper by Gupta and Kundu (2001), the MLE of A by applying the fixed point solution and
obtained by using an iterative procedure is obtained as

-
= — e 1 xe*lm,ﬂv 1
MLE n 1(1 . . ) T l i T—2.% ©
zln(l_e_lw_g»’ﬁ ) nio (l_e’ MLEX, ) nig
i1

and the MLE with respect to o can be written as

= —r (10)

aMLE

3.2. The percentile (PCE) method
Suppose that X, X,,..., X, are a random sample from a GE distribution population, then the p®

quantile of X is given by

1 1/ a)
X, :—Iln(l—p ). (11)
Furthermore, the plotting position has the following formula (Gringorten 1963) as
i—a
B 12
" n+l1-2a (12)

where p, is the plotting probability of the i™ order statistic, n is the sample size and parameter a of
the plotting position is a constant depending on the distribution. p, is an approximation of

F(x,;a,A) where i=1,2,...,n, thus PCE uses p, in the case where a =0 (Weibull 1939) so that

i
n+l

(13)

Pipce =

The PCE estimator of 4 and « is derived by minimizing
Z[ 3o+ A4 (1= p%2) ] (14)
Subsequently, the estimate of the I;arameter A becomes
) S [n(1- plie) T
Apcy =7 ; (15)

n

Z X In (1 - pi(:lp/g.ep'w) )
i1

and with respect to parameter ¢, becomes
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n

Zln(Pi:PCE )hl(l —e )
i[ln(l—e""‘” )T

Gu and Yue (2013) proposed a method for estimating GE distribution by the inverse moment
estimator (IME) method and comparing the MLE method. For small sample size, the IME method is
more appropriate than the MLE method, while the PCE estimator outperformed the others for small
sample size.

Although the PCE and IME methods were appropriate for small sample size, but the IME
methodology has a more complex and complicated procedure than the PCE method. Thus, our interest
is in modifying the PCE estimator based on the plotting position.

(16)

Apcg =

3.3. Proposed method: the modified percentile (MPE) method
The MPE estimator is developed by changing plotting position estimator p, in the PCE estimator

from case a =0 to a =0.25 (Adamowski 1981), i.e.
i—0.25

oy = —————. 17
Pree =505 (17
Consequently, the estimate of the parameter 4 becomes
n 2
(- ple)]
Aips = l:l - ) (18)
Z X In (1 - pf(:lz\i[;}gff) )
i=l1
and with respect to parameter ¢, becomes
Z In(p;.pr ) In (l —e )
Ay = (19)

i=1
S (1-¢ )]
i=1

4. Numerical Analysis
4.1. Simulated data

To assess the performance of the estimators: MLE, PCE, and the proposed MPE, a simulation
study to generate random samples from a GE(a,A) distribution with different parameter values

(a,A4)={(0.5,1),(1.0,1),(1.5,1),(2.0,1)} was conducted using the R statistical program (R Core Team

2016). All of the experiments were performed for several sample sizes (n = 10, 20, 30, 50, and 100)
based on 10,000 replications. The criteria for comparing the performance of the estimators was the
sample root mean square error (RMSE) and absolute bias (|BIAS|), with the smallest RMSE and

IBIAS| indicating the best performance. We calculated RMSE and |BIAS| as

1 10,000

_ PRy Ry
RMSE—\/IO’OOO Z; [(@,~a)* +(4 - 4)* ], (20)
BIAS =3 (|a - +}4, - &) @D

10,000 &V T T

The results from Table 1 and Figure 1 show an efficiency comparison of the parameter estimation
methods for a GE distribution. In all of the cases for the same sample size, the RMSE value increased
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as « increased. For small sample sizes (n = 10, 20), the PCE estimator outperformed the others. The
MPE performed the best for medium and large sample sizes (n = 30, 50, 100), which is consistent
with Gupta and Kundu (2001).

Moreover, when estimating the parameters of GE(a,4), the MLE estimator overestimated the

actual parameters, PCE underestimated them, and MPE overestimated & and underestimated A.

Table 1 Simulation results of the parameter estimation of GE(«, 1)

Method
n A o« MLE PCE MPE
p) a RMSE i a RMSE i é RMSE

10 1 05 1.453  0.665 48.213 1.017  0.567 6.950" 1.207  0.656 25.944
1.0 1.299 1.457 54.622  0.946 1.090 10.517 1.090 1.295 30.871
1.5 1.255 2374 90.999  0.931 1.637 15.295° 1.059 1.984 48.796
2.0 1.234 3423 144.181 0.927 2211 22.311° 1.047  2.732 73.303
20 1 05 1.191 0.567 20.198  0.927  0.506 7.333" 1.053  0.564 8.341
1.0 1.132 1.171 21.564 0915  0.984 8.612° 1.013 1.107 10.740
1.5 1.113 1.802 32287 0917 1.469 8.845 1.003 1.663 16.346
2.0 1.104  2.457 46.886 0919 1.959 9.041" 0999 2235 23.527

30 1 05 1.120  0.541 12.651 0913  0.488 8.754 1.015  0.536 3.913"
1.0 1.084 1.102 13.207 0918  0.961 9.112  0.995 1.057 5718
1.5 1.072 1.678 19.238  0.923 1.438 9.882  0.991 1.587 8.701°
2.0 1.066  2.267 27455  0.927 1.926 10.450°  0.990  2.126 12.657
50 1 05 1.067  0.523 7.017 0914  0.476 8978 0990  0.513 1.6197
1.0 1.047 1.056 7316 0925  0.946 9.224 0983 1.017 2.403"

1.5 1.040 1.598 10.548  0.932 1.417 10.756  0.983 1.526 3.095
2.0 1.037  2.145 14.932  0.936 1.892 12.504  0.983  2.045 4.761"

100 1 05 1.031 0.510 3252 0928 0472 7.713 0980  0.498 1.982"
1.0 1.022 1.025 3.311 0942 0.945 7.985  0.981 0.994 2.026"
1.5 1.019 1.543 4.715  0.949 1.418 9.645  0.982 1.491 2.028"

2.0 1.017 2.064 6.649 0.952 1.893 11.718 0.983 1.989 2.042"
Note: “The RMSE value was the smallest in this case.

4.2. Rainfall data

Thai rainy season rainfall data (in mm) for four months (February to May) from 1957 to 2015 (n
= 59) were obtained from the Bureau of Water Management and Hydrology Royal Irrigation
Department Thailand (2016). This real-life dataset was employed to compare the point estimates of
the GE distribution parameters mentioned in the previous sections. The AD test statistic and
corresponding p-values were used as criteria to fit the models and compare the performance of the
estimators. The method of estimating GE(«,4) parameters in this way indicates that the method with

the smallest AD value and highest p-value performed the best (Ghitany et al. 2017, Hussain et al.
2017).

Table 2 Comparison results of GE(«, A1) parameter estimation from rainy season rainfall data, Fang

district, Chiang Mai province

n Method AD p-value a )
59 MLE 0.5639 0.6821 204.3866 0.0069
PCE 0.5672 0.6789 203.0811 0.0069

MPE 0.5348 0.7109 243.7547 0.0071
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Figure 1 Absolute bias of the parameter estimation of GE(ex, 1)

We report the AD test statistic at 0.05 significance level for three methods: MLE, PCE and MPE
and found that the GE distribution was appropriate for the Thai rainy season rainfall data in Table 2
and Figure 2. Furthermore, the MPE estimator had the lowest AD value (0.5348) and the highest p-

value (0.7109) with ¢ = 243.7547 mm and A =0.0071 mm.

5. Conclusions

The classical PCE and the MLE methods are usually used to estimate the parameters from a GE
distribution with small sample size and medium to large sample size, respectively. In this study, a new
parameter estimation method for a GE distribution was derived and compared in a variety of ways.
The proposed MPE estimator is a modification of the PCE method based on an appropriate plotting
position estimator. In simulation studies, it outperformed the other methods for medium to large
sample sizes and the parameter estimates & and A were closer to the actual parameter values than
the MLE method in all situations. In addition, parameter estimation of a GE(«, ) distribution using

the rainy season rainfall data from the Fang district, Chiang Mai Province, Thailand supported these
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findings. We recommend the proposed MPE estimator as a useful tool for determining GE distribution
parameters using medium to large sample size.

Fang, Chiang Mai,Thailand
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Figure 2 Comparison of histogram and theoretical densities of GE(a, 1) parameter estimation
from rainy season rainfall data, Fang district, Chiang Mai province
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