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Abstract 

In this paper, we propose an alternative method for estimating generalized exponential 

distributions by applying plotting positions of modified percentile estimates. We compared its 

efficiency with the classical maximum likelihood estimator and percentile estimator in terms of root 

mean square errors. Simulation results show that the percentile estimator outperformed the others for 

small sample sizes while the proposed estimator was most effective for medium to large sample sizes. 

This finding was supported by applying the proposed estimator to deduce whether Thai rainy season 

rainfall data followed a generalized exponential distribution from a rain gauging station in Fang 

district, Chiang Mai Province, Thailand. 

______________________________ 
Keywords:  Modified percentile method, maximum likelihood estimation, rainfall data, root mean square error, 

simulation. 

 

1. Introduction 

For some time now, the study of lifetime data has been applied to research in various fields such 

as engineering (failure of a mechanical system) and medical research (patient survival times, etc.) 

These data can be arranged in a number of appropriate distribution such as exponential, Weibull, and 

gamma, among others. Exponential distributions are used in the study of time left until an incident 

occurs, such as the waiting period until the first customer comes into an office, the waiting period until 

the first phone call, the duration of a lamp until the bulb fails, and so on. However, the properties of 

an exponential distribution limit it to only one parameter: the scale parameter. Subsequently, Gupta 

and Kundu (1999) proposed a distribution that resolves this limitation: the generalized exponential 

(GE) distribution consisting of an additional parameter representing the shape as well as the original 

scale parameter, which is more appropriate for real world situations. 

Later, Gupta and Kundu (2001) reported on parameter estimation methods for the GE distribution 

and compared their performances. They found that the percentile estimator (PCE) method was 

appropriate for small sample sizes whereas the maximum likelihood estimator (MLE) method was 

better for medium to large sample sizes. Although the PCE is more efficient than the MLE method 
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with small sample sizes, medium to large sample sizes caused a problem. Therefore, our interest is in 

modifying the PCE method based on an appropriate plotting position estimator to overcome this by 

following the guidelines selecting a suitable parametric estimation method for a generalized 

exponential distribution. Furthermore, the proposed estimator was applied to estimate whether Thai 

rainy season rainfall data from Fang, Chiang Mai province, Thailand follows a GE distribution. 

 

2. Generalized Exponential Distribution 

Suppose that a random variable X has an exponential distribution with scale parameter   and a 

cumulative distribution function (cdf) as following 

 ( ) 1 , 0, 0.xF x e x                   (1) 

A generalization of the exponential distribution can be obtained by introducing a shape parameter 
.  Thus, X  is said to have a generalized exponential distribution with parameters ( , ),   or X  is 

distributed as GE( , ),   if it has the cdf  

  ( ; , ) 1 , 0, , 0,xF x e x
                      (2) 

and a probability density function (pdf) 
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The mean and variance of the GE distribution are given by  
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and ( )x   denotes the derivative of ( ).x  

However, it is often difficult to fit an appropriate distribution to observed data. In particular, many 

authors have studied the goodness of fit to select an appropriate model. Stephens (1974) found that 

the Anderson-Darling (AD) test statistic as the power of a test was better than other tests and 

recommended its use when selecting models. AD is a test statistic that uses the goodness of fit for data 

on an ordinal scale when the distribution of information is continuous. The Anderson and Darling 

(1954) test is derived as 

 1
1

1
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where (.)F  is the expected cdf, jx  are the ordered data and n  is the sample size. 

 

3. Methods of Estimation 

3.1. The maximum likelihood estimate (MLE) method 

Let 1 2, ,..., nX X X  be a random sample of size n from a GE( , )   distribution with pdf as (3). The 

likelihood function of the GE( , )   distribution is given by 
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Subsequently, the log-likelihood function can be written as 
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The MLE estimates for the GE parameters are obtained by taking the partial derivatives of the 

log-likelihood function with respect to   and ,  respectively. Subsequently, the MLE estimators of 

  and   are obtained by equating the resulting expressions to zero as follows: 
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In the paper by Gupta and Kundu (2001), the MLE of   by applying the fixed point solution and 

obtained by using an iterative procedure is obtained as 
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and the MLE with respect to   can be written as  
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3.2. The percentile (PCE) method 

Suppose that 1 2, ,..., nX X X  are a random sample from a GE distribution population, then the thp  

quantile of X  is given by 

  (1/ )1
ln 1 .px p 


                  (11) 

Furthermore, the plotting position has the following formula (Gringorten 1963) as 
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where ip  is the plotting probability of the thi  order statistic, n  is the sample size and parameter a  of 

the plotting position is a constant depending on the distribution. ip  is an approximation of  

( )( ; , )iF x    where 1,2,..., ,i n  thus PCE uses ip  in the case where 0a   (Weibull 1939) so that 
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The PCE estimator of   and   is derived by minimizing 
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Subsequently, the estimate of the parameter   becomes 
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and with respect to parameter ,  becomes 
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Gu and Yue (2013) proposed a method for estimating GE distribution by the inverse moment 

estimator (IME) method and comparing the MLE method. For small sample size, the IME method is 

more appropriate than the MLE method, while the PCE estimator outperformed the others for small 

sample size. 

Although the PCE and IME methods were appropriate for small sample size, but the IME 

methodology has a more complex and complicated procedure than the PCE method. Thus, our interest 

is in modifying the PCE estimator based on the plotting position. 

 

3.3. Proposed method: the modified percentile (MPE) method 

The MPE estimator is developed by changing plotting position estimator ip  in the PCE estimator 

from case 0a   to 0.25a  (Adamowski 1981), i.e. 
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Consequently, the estimate of the parameter   becomes 
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and with respect to parameter ,  becomes 
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4. Numerical Analysis 

4.1. Simulated data 

To assess the performance of the estimators: MLE, PCE, and the proposed MPE, a simulation 

study to generate random samples from a GE( , )   distribution with different parameter values 

( , ) {(0.5,1), (1.0,1), (1.5,1), (2.0,1)}    was conducted using the R statistical program (R Core Team 

2016). All of the experiments were performed for several sample sizes ( n = 10, 20, 30, 50, and 100) 

based on 10,000 replications. The criteria for comparing the performance of the estimators was the 

sample root mean square error (RMSE) and absolute bias ( BIAS ), with the smallest RMSE and 

|BIAS| indicating the best performance. We calculated RMSE and BIAS  as 
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The results from Table 1 and Figure 1 show an efficiency comparison of the parameter estimation 

methods for a GE distribution. In all of the cases for the same sample size, the RMSE value increased 
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as   increased. For small sample sizes ( n  = 10, 20), the PCE estimator outperformed the others. The 

MPE performed the best for medium and large sample sizes ( n  = 30, 50, 100), which is consistent 

with Gupta and Kundu (2001). 

Moreover, when estimating the parameters of GE( , ),   the MLE estimator overestimated the 

actual parameters, PCE underestimated them, and MPE overestimated   and underestimated .  

 

Table 1 Simulation results of the parameter estimation of GE( , )   

 

n  

 


 

 

  

Method 
MLE PCE MPE 

̂  ̂  RMSE ̂  ̂  RMSE ̂  ̂  RMSE 

10 1 0.5 1.453 0.665 48.213 1.017 0.567 6.950* 1.207 0.656 25.944 
  1.0 1.299 1.457 54.622 0.946 1.090 10.517* 1.090 1.295 30.871 
  1.5 1.255 2.374 90.999 0.931 1.637 15.295* 1.059 1.984 48.796 
  2.0 1.234 3.423 144.181 0.927 2.211 22.311* 1.047 2.732 73.303 

20 1 0.5 1.191 0.567 20.198 0.927 0.506 7.333* 1.053 0.564 8.341 
  1.0 1.132 1.171 21.564 0.915 0.984 8.612* 1.013 1.107 10.740 
  1.5 1.113 1.802 32.287 0.917 1.469 8.845* 1.003 1.663 16.346 
  2.0 1.104 2.457 46.886 0.919 1.959 9.041* 0.999 2.235 23.527 

30 1 0.5 1.120 0.541 12.651 0.913 0.488 8.754 1.015 0.536 3.913* 
  1.0 1.084 1.102 13.207 0.918 0.961 9.112 0.995 1.057 5.718* 
  1.5 1.072 1.678 19.238 0.923 1.438 9.882 0.991 1.587 8.701* 
  2.0 1.066 2.267 27.455 0.927 1.926 10.450* 0.990 2.126 12.657 

50 1 0.5 1.067 0.523 7.017 0.914 0.476 8.978 0.990 0.513 1.619* 
  1.0 1.047 1.056 7.316 0.925 0.946 9.224 0.983 1.017 2.403* 
  1.5 1.040 1.598 10.548 0.932 1.417 10.756 0.983 1.526 3.095* 
  2.0 1.037 2.145 14.932 0.936 1.892 12.504 0.983 2.045 4.761* 

100 1 0.5 1.031 0.510 3.252 0.928 0.472 7.713 0.980 0.498 1.982* 
  1.0 1.022 1.025 3.311 0.942 0.945 7.985 0.981 0.994 2.026* 
  1.5 1.019 1.543 4.715 0.949 1.418 9.645 0.982 1.491 2.028* 
  2.0 1.017 2.064 6.649 0.952 1.893 11.718 0.983 1.989 2.042* 

       Note: *The RMSE value was the smallest in this case. 

 

4.2. Rainfall data 

Thai rainy season rainfall data (in mm) for four months (February to May) from 1957 to 2015 (n 

= 59) were obtained from the Bureau of Water Management and Hydrology Royal Irrigation 

Department Thailand (2016). This real-life dataset was employed to compare the point estimates of 

the GE distribution parameters mentioned in the previous sections. The AD test statistic and 

corresponding p-values were used as criteria to fit the models and compare the performance of the 

estimators. The method of estimating GE( , )   parameters in this way indicates that the method with 

the smallest AD value and highest p-value performed the best (Ghitany et al. 2017, Hussain et al. 

2017). 

 

Table 2 Comparison results of GE( , )   parameter estimation from rainy season rainfall data, Fang 

district, Chiang Mai province 

n Method AD p-value ̂  ̂  

59 MLE 0.5639 0.6821 204.3866 0.0069 
 PCE 0.5672 0.6789 203.0811 0.0069 
 MPE 0.5348 0.7109 243.7547 0.0071 
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Figure 1 Absolute bias of the parameter estimation of GE( , )   

 
We report the AD test statistic at 0.05 significance level for three methods: MLE, PCE and MPE 

and found that the GE distribution was appropriate for the Thai rainy season rainfall data in Table 2 

and Figure 2. Furthermore, the MPE estimator had the lowest AD value (0.5348) and the highest p-

value (0.7109) with ̂  = 243.7547 mm and ̂  = 0.0071 mm. 

 

5. Conclusions 

The classical PCE and the MLE methods are usually used to estimate the parameters from a GE 

distribution with small sample size and medium to large sample size, respectively. In this study, a new 

parameter estimation method for a GE distribution was derived and compared in a variety of ways. 

The proposed MPE estimator is a modification of the PCE method based on an appropriate plotting 

position estimator. In simulation studies, it outperformed the other methods for medium to large 

sample sizes and the parameter estimates   and    were closer to the actual parameter values than 

the MLE method in all situations. In addition, parameter estimation of a GE( , )  distribution using 

the rainy season rainfall data from the Fang district, Chiang Mai Province, Thailand supported these 
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findings. We recommend the proposed MPE estimator as a useful tool for determining GE distribution 

parameters using medium to large sample size. 

 

 

Figure 2 Comparison of histogram and theoretical densities of GE( , )  parameter estimation 

from rainy season rainfall data, Fang district, Chiang Mai province 
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