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Abstract 

 The method of variance of estimate recovery (MOVER) has been widely used to construct the 

confidence interval for the function of parameters. This method is based on estimating the variance 

of the related estimators and recovering them to the confidence interval for the parameter of interest. 

However, only confidence intervals for one- or two-sample in the gamma distribution have been 

reported, whereas in many research areas, more than two samples must be studied.  In this paper, we 

therefore introduce three confidence intervals for the common coefficient of variation (CV) of 

multiple gamma distributions. The traditional MOVER is extended as the adjusted MOVER. The first 

two proposed confidence intervals are constructed using the adjusted MOVER with existing 

confidence limits obtained from the score and Wald methods. The third is formulated using normal 

approximation. The performance of these estimators was investigated using simulations. The results 

showed that the confidence interval derived by the adjusted MOVER with the Wald method satisfied 

the criteria for coverage probability in the general cases. Two real-world datasets were analyzed to 

confirm the practical application of these estimators. 

______________________________ 
Keywords: Adjusted method of variance of estimate recovery, asymptotic confidence interval, several 

populations. 

 

1.  Introduction 

The coefficient of variation (CV) is widely used in many fields of research to measure the 

dispersion of a variable of interest. It is expressed by the ratio of the standard deviation (SD) to the 

mean. Since the CV is a unit-free measure, it can be used to compare several variables in terms of 

homogeneity expressed at different scales (Rice 2006). This is an important reason for preferring the 

CV over the variance or SD, as, when the latter is used to report the variation, all variables must have 

the same means and be expressed in the same units (Banik and Kibria 2011). In one application, the 

CV is used to measure uncertainty about the amount of a certain chemical in the urine or blood of a 

patient (Chadban et al. 2003). It is elsewhere used to monitor the physical properties of products in 
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quality control (Castagliola et al. 2013). In environmental studies, the CV has been used to measure 

the spatial and temporal correlation of solar radiation at two sites in Guadeloupe, and to index the air 

pollution level in Rome (Battista et al. 2016, Calif and Soubdhan 2016). In medical studies, the CV 

has been used to investigate the expression level of proteins in mRNA (Popadin et al. 2014). More 

recent applications have appeared in papers, including Shiina et al. (2012), Kenig et al. (2014), Zou 

et al. (2015), and Bakowski et al. (2017). 

The CV has therefore been widely studied in statistical inference, especially in interval 

estimation of a single sample. For example, confidence intervals for the CV in the normal and non-

normal distributions have been investigated by Wong and Wu (2002), Verrill (2003), Mahmoudvand 

and Hassani (2009), Niwitpong and Wongkhao (2015) and Sangnawakij and Niwitpong (2016). In 

the lognormal and delta-lognormal distributions, confidence intervals have been addressed by 

Koopmans et al. (1964), Chen and Zhou (2006) and Niwitpong (2015). From the previous reviews, 

many studies have investigated confidence intervals for the single parameter in the distribution which 

are related to the normal distribution. However, skewed distributions are often encountered. The 

application of statistical inference in non-symmetric distributions is therefore an important question. 

Sangnawakij and Niwitpong (2017) introduced confidence intervals for the CV in a gamma 

distribution. They used two methods based on the likelihood function: the score and Wald methods.  

In practice, however, parameter estimation often has to be applied to samples drawn from multiple 

populations, especially in experimental studies. To estimate the parameter of interest, many studies 

have derived the confidence interval for the common parameter across several distributions. 

Established approaches are as follows. Lin and Lee (2005) constructed the confidence interval for the 

common mean of several normal populations using the concept of generalized variables, as did 

Krishnamoorthy and Lu (2003). Using the same method, Ng (2014) and Tian (2005) proposed 

confidence intervals for the common CV in lognormal and normal populations. Tian and Wu (2007) 

introduced confidence intervals for the common mean of several lognormal populations, as did 

Krishnamoorthy and Mathew (2003), Behboodian and Jafari (2006), and Krishnamoorthy and Oral 

(2017). Furthermore, the confidence intervals for several populations in two-parameter exponential 

distributions were presented in Thangjai and Niwitpong (2017). 

In this study, we focus on the gamma distribution. This is a right-skewed continuous probability 

model often used in reliability studies and life experiments. Suppose that X  be a random sample 

from a gamma distribution, denoted as Gamma  ,  , the probability density function of X  is given 

by  
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where 0, 0x   and 0.   The mean and variance of X  are   and 2 ,  respectively. This 

model plays a role of importance in representing the time to failure or point at which the th  event 

occurs (Gupta and Guttman 2013). It is widely used in applications that take positive values, 

especially in engineering, science, business, and environmental pollutant studies (Husak et al. 2007, 

Rohan et al. 2015, Xie and Wu 2017). Note that the CV in the gamma distribution depends on only a 

single parameter ,  in contrast with the variance, which depends on two unknown parameters. The 

confidence intervals for a single CV have reviewed above. However, when it is known that k  

independent gamma populations, for 2,k   have equal coefficients of variation, a key question 

arises: how to summarize the statistics of all k  samples. No previous studies have investigated the 
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confidence interval for the common CV of gamma distributions. This problem is therefore addressed 

here.  

Our approach is based on an adjustment to the method of variance of estimate recovery 

(MOVER) introduced by Zou and Donner (2008). It is applied in this study to construct the 

confidence interval for the common CV across two or more gamma distributions. Since this method 

is derived from the confidence limits for each individual CV, the confidence intervals obtained from 

the score and Wald methods, which have a good performance in terms of coverage probability and 

expected length are used (Sangnawakij and Niwitpong 2017). The methodologies for deriving the 

confidence intervals for the common CV of several gamma populations are described in Section 2. 

That section also includes a review of the existing confidence intervals for a single CV. Simulations 

are used to evaluate the performance of the proposed confidence intervals in terms of coverage 

probability and expected length. The results are presented in Section 3. Section 4 illustrates the use 

of these confidence intervals using two real data examples: the time in hours of successive failures 

of the air conditioning system of a military plane, and air pollution incidents in Bangkok. Finally, 

Section 5 reports our conclusions. 

 

2.  Statistical Methodologies 

Let 
111 12 1( , ,..., ),nX X X

221 22 2( , ,..., ),nX X X …, 1 2( , ,..., )
kk k knX X X  be k  random samples, each 

drawn from population i  which has a gamma distribution, denoted as ijX ~ Gamma ( , ),i i   for i 

1,2,...,k  and 1 2 ikj , ,...,n .  The mean and variance of ijX  are given by i i   and 2 ,i i   

respectively. Assume that 1/i i   is the coefficient of variation (CV) of the thi  sample. In the 

case where ,i   for all ,i  corresponds to the common CV of the gamma distributions.  

From the thi  sample, the maximum likelihood estimator for parameter i  is approximated by 

ˆˆ 1/ ,i i   where 
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   It can be seen that i̂  is 

in the complex function. The approximate approach, based on Taylor series expansion, is known as 

the delta method (Casella and Berger 2002) and is applied to estimate the variance of ˆ .i  Since we 

derive that the approximate variance of ˆ
i  is given by ˆ( )iVar   22 / ,i in  the variance estimate of 

i̂  based on the delta method is given as 
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In Sangnawakij and Niwitpong (2017), interval estimators for a single CV, ,i  were introduced 

based on the score and Wald methods, denoted as siCI  and ,wiCI  respectively. They derived these 

confidence intervals for i  as follows: 
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and 
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where 1

1

ln ln
in

i i i ij

j

T n X X


   and 2/z  is the th( / 2)100  percentile of the standard normal 

distribution. Note that this is used for a single sample in a gamma distribution only. Our novel 

methods for deriving the confidence interval for the common CV of several gamma populations are 

presented in the following sections. 

 

2.1. Approximate confidence interval 

We first consider the point estimator for the overall or common CV of gamma distributions,The 

estimator is derived using the weighted average method to minimize the variance (Finkelstein and 

Levin 2001, Hartung et al. 2008). Here, the weight of the individual CV is given by 
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Therefore, the estimated common CV for ,  which is the parameter of interest, is of the form 
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with mean ˆ( )E    and variance 
1

ˆ ˆ( ) 1/ 1/ ( ).
k

i
i

Var Var 


   Note that this point estimator 

corresponds to the CV and variance estimates for each sample .i  Moreover, ̂  is the unbiased 

estimator for .  

Using this approach and the normal approximation, the pivotal quantity of   is derived by
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where ˆ( )iVar   is obtained from (2). The pivot Z  converges to the standard normal distribution, and 

can be used to build the confidence interval for the parametric function. From the general probability 

statement 
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where 1   is the confidence level probability. Thus, the (1 )100%  two-sided approximate 

confidence interval for   is given by 
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where ̂  is obtained from (3). 

 

2.2.  Confidence intervals based on the adjusted MOVER 

The method based on the recovering variance or method of variance of estimate recovery 

(MOVER) (Zou and Donner 2008, Zou et al. 2009, Donner and Zou 2010) is used to construct the 

confidence interval for the common CV. Our approach extends from this method. The original 

MOVER is based on finding the confidence intervals for two single parameters, recovering variance 

estimates from those confidence intervals, then deriving the confidence interval for the function of 

the parameter of interest based on the central limit theorem (CLT). Since the common CV shown in 

(3) is the sum of product between the CV of sample i  and the inverse of its variance estimate, variance 

estimation from a part of the MOVER is applied for the new interval estimator. 

The motivation for the MOVER is now given for 2k   samples. Following Zou et al. (2009), 

let 1  and 2  be two generic parameters with point estimators 1̂  and 2
ˆ ,  respectively. Suppose that 

the parameter of interest is in terms of 1 2 .   From the CLT, we have  

    1 2 / 2 1 2
ˆ ˆ ˆ ˆ, ( ) ( ) ( ) ,L U z V V        (5) 

where 1
ˆ( )V   and 2

ˆ( )V   are the unknown variances of 1̂  and 2
ˆ ,  respectively. This form assumes 

the independence of the two estimators. The confidence intervals for parameters 1  and 2  are 

respectively given by 

    1 1 1 / 2 1
ˆ ˆ, ( )l u z V       and     2 2 2 / 2 2

ˆ ˆ, ( ) .l u z V      

Zou et al. (2009) showed that 1 2l l   is closer to the lower limit L  than is 1 2
ˆ ˆ ,   and that 1 2u u   

is closer to the upper limit U  than is 1 2
ˆ ˆ .   By assuming 1 1l   and 2 2 ,l   the variances used 

to compute L  are estimated as 
2
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Similarly, if 1 1u   and 2 2 ,u  the variance estimates used to compute U  are given by  
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The variances used to compute L  and U  are then substituted into (5) to obtain the (1 )100%  

confidence interval for 1 2 .   A discussion of the other parameter functions, including 1 2   and 

1 2 ,/   can be found in Donner and Zou (2011). 

To consider k  random samples, where 2,k   the adjusted MOVER is applied. Here, the 

variance estimates of ˆ
i  at i il   and ,i iu   for 1,2,..., ,i k  are respectively given by  
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Since we have the score confidence interval for ,i   , ,si si siCI l u  the estimators ˆ ,i  ,sil  and 

siu  are substituted into ˆ ,i  ,il  and ,iu  respectively, of (6). It follows that the variance estimate of i̂  

is given by 
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To perform interval estimation for ,  the large sample approach is used. Hence, the (1 )100%  

two-sided confidence interval for   using the adjusted MOVER with the score confidence limits is 

derived as follows 
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where ̂  is the overall CV estimate obtained from (3) and ˆ( )iVar   derived from (7).   

Similarly, we have the Wald confidence interval for ,i  ( , ).wi wi wiCI l u  Again, we substitute 

ˆ ,i  wil  and wiu  into ˆ ,i  ,il  and ,iu  respectively, of (6). The average variance of î  is given by 
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The (1 )100%  two-sided confidence interval for   using the adjusted MOVER with the Wald 

confidence limits is therefore given as 
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where ̂  is the overall CV estimate with the its corresponded variance in (9). 
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3. Simulation Studies 

The proposed confidence intervals, ,ACI AdMSCI  and ,AdMWCI  were evaluated through 

simulations using the R statistical package (R Core Team 2018). The performance was scored in 

terms of the coverage probability (CP) and expected length (EL). These were computed as 

CP 
( )c L U

M

 
   and  EL 1

( )

,

M

h h

h

U L

M







 

where ( )c L U   is the number of simulation runs for a parameter   that lies within the confidence 

interval and M  is total runs. In the simulations, the data were randomly sampled from independent 

gamma distributions, where 2i   and 21 ,i /   for 1 2i , , ..., k.  The true common CVs were 

set as  0.05, 0.10, 0.20, 0.33, and 0.50. We considered cases in which the number of groups k 

3, 4 and 5 with equal sample sizes in n  30, 50, 100, and 200. We performed M  10,000 

simulation runs on the generated dataset, and then calculated the 95% confidence intervals for   

based on all combinations of the different settings. From the simulation, a preferred 95% confidence 

interval of   would have the coverage probability in the interval 
 0 0

0 /2

1
,

c c
c z

M



  with the short 

expected length. Here, 0c  is the value of the given confidence level, which is given as 0.95. Thus, 

the 95% confidence interval for the nominal coverage level is [0.9457, 0.9543]. This criteria confirms 

that the coverage probability is similar to the given confidence level, or a good confidence interval is 

obtained. The full simulation results are presented in Tables 1-3, but the key findings were given as 

follows. 

As can be seen in Table 1, for all sample sizes, ACI  and AdMSCI  produced coverage probabilities 

below the 0.95 threshold. The coverage probabilities of these two confidence intervals did not meet 

the criteria. In contrast, the coverage probabilities of AdMWCI  satisfied the nominal coverage level in 

many cases, especially when 50.n   Only the case n = 200 and   = 0.50, coverage probabilities of 

AdMWCI  were slightly lower than the criteria. The expected lengths of ACI  and AdMSCI  were slightly 

smaller than those of ,AdMWCI  and those of ACI  smaller than .AdMSCI  However, when 100,n   no 

significant differences were found in the value of the expected length. In all cases, the expected length 

decreased as the sample size increased.   

In summary, the simulation results suggest that AdMWCI  is generally superior to AdMSCI  and 

,ACI  reflecting its stable coverage probability across sample sizes and desirable the nominal 

coverage level with acceptable expected length in many situations. The results are shown graphically 

in Figure 1. Furthermore, varying k  had little effect on the results (see Tables 2 and 3). We therefore 

conclude that the method of variance of estimate recovery with the Wald confidence limits proposed 

to derive the confidence intervals in this work are appropriate for estimating the common CV of 

multiple gamma populations.  
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Table 1 The results of the 95% confidence intervals for the common CV of gamma distributions  

(3 sample cases) 

k  n    
Coverage Probability 

 
Expected Length 

ACI  
AdMSCI  

AdMWCI  
ACI  

AdMSCI  
AdMWCI  

3 30 0.05 0.8450 0.8078 0.9615  0.0140 0.0145 0.0168 
  0.10 0.8530 0.8179 0.9591  0.0280 0.0290 0.0337 
  0.20 0.8601 0.8243 0.9550  0.0562 0.0582 0.0675 
  0.33 0.8672 0.8346 0.9615  0.0932 0.0965 0.1119 
  0.50 0.8929 0.8702 0.9522  0.1428 0.1480 0.1716 
 50 0.05 0.8909 0.8687 0.9539  0.0110 0.0113 0.0122 
  0.10 0.8963 0.8729 0.9538  0.0221 0.0225 0.0245 
  0.20 0.8975 0.8788 0.9518  0.0443 0.0452 0.0491 
  0.33 0.9096 0.8931 0.9528  0.0734 0.0800 0.0815 
  0.50 0.9333 0.9260 0.9501  0.1126 0.1149 0.1249 
 100 0.05 0.9241 0.9111 0.9534  0.0079 0.0080 0.0083 
  0.10 0.9211 0.9086 0.9503  0.0158 0.0160 0.0166 
  0.20 0.9249 0.9149 0.9495  0.0317 0.0320 0.0333 
  0.33 0.9378 0.9314 0.9493  0.0526 0.0531 0.0553 
  0.50 0.9446 0.9474 0.9468  0.0806 0.0814 0.0847 
 200 0.05 0.9338 0.9274 0.9504  0.0056 0.0057 0.0058 
  0.10 0.9358 0.9317 0.9508  0.0113 0.0113 0.0115 
  0.20 0.9447 0.9420 0.9503  0.0226 0.0227 0.0231 
  0.33 0.9462 0.9460 0.9481  0.0375 0.0377 0.0384 
  0.50 0.9302 0.9376 0.9438  0.0574 0.0576 0.0588 

 

Table 2 The results of the 95% confidence intervals for the common CV of gamma distributions  

(4 sample cases) 

k  n    
Coverage Probability 

 
Expected Length 

ACI  
AdMSCI  

AdMWCI  
ACI  

AdMSCI  
AdMWCI  

4 30 0.05 0.8241 0.7831 0.9571  0.0121 0.0125 0.0145 
  0.10 0.8266 0.7811 0.9578  0.0242 0.0251 0.0291 
  0.20 0.8369 0.8006 0.9527  0.0486 0.0503 0.0584 
  0.33 0.8504 0.8125 0.9595  0.0805 0.0835 0.0968 
  0.50 0.8781 0.8491 0.9577  0.1234 0.1279 0.1483 
 50 0.05 0.8751 0.8505 0.9525  0.0095 0.0097 0.0106 
  0.10 0.8717 0.8457 0.9517  0.0191 0.0195 0.0212 
  0.20 0.8864 0.8613 0.9543  0.0383 0.0391 0.0425 
  0.33 0.8999 0.8795 0.9543  0.0635 0.0649 0.0705 
  0.50 0.9214 0.9090 0.9570  0.0973 0.0993 0.1080 
 100 0.05 0.9106 0.8961 0.9502  0.0068 0.0069 0.0072 
  0.10 0.9156 0.8998 0.9530  0.0137 0.0138 0.0144 
  0.20 0.9299 0.9209 0.9571  0.0275 0.0277 0.0289 
  0.33 0.9302 0.9219 0.9505  0.0455 0.0460 0.0478 
  0.50 0.9395 0.9444 0.9494  0.0698 0.0705 0.0734 
 200 0.05 0.9340 0.9236 0.9510  0.0049 0.0049 0.0050 
  0.10 0.9353 0.9309 0.9522  0.0097 0.0098 0.0100 
  0.20 0.9397 0.9348 0.9507  0.0195 0.0196 0.0200 
  0.33 0.9470 0.9471 0.9437  0.0324 0.0326 0.0332 
  0.50 0.9274 0.9381 0.9441  0.0497 0.0499 0.0509 
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Table 3 The results of the 95% confidence intervals for the common CV of gamma distributions  

(5 sample cases) 

k  n    
Coverage Probability 

 
Expected Length 

ACI  
AdMSCI  

AdMWCI  
ACI  

AdMSCI  
AdMWCI  

5 30 0.05 0.8660 0.7410 0.9596  0.0108 0.0112 0.0130 
  0.10 0.8116 0.7581 0.9554  0.0216 0.0224 0.0260 
  0.20 0.8153 0.7579 0.9576  0.0433 0.0449 0.0520 
  0.33 0.8332 0.7910 0.9599  0.0720 0.0746 0.0865 
  0.50 0.8691 0.8371 0.9560  0.1103 0.1143 0.1325 
 50 0.05 0.8579 0.8276 0.9587  0.0085 0.0087 0.0095 
  0.10 0.8575 0.8261 0.9498  0.0171 0.0174 0.0189 
  0.20 0.8724 0.8457 0.9530  0.0342 0.0349 0.0380 
  0.33 0.8895 0.8669 0.9545  0.0568 0.0580 0.0630 
  0.50 0.9219 0.9102 0.9527  0.0871 0.0888 0.0966 
 100 0.05 0.9021 0.8875 0.9534  0.0061 0.0062 0.0064 
  0.10 0.9076 0.8903 0.9524  0.0122 0.0124 0.0129 
  0.20 0.9196 0.9066 0.9504  0.0245 0.0248 0.0258 
  0.33 0.9312 0.9233 0.9505  0.0407 0.0411 0.0428 
  0.50 0.9433 0.9488 0.9479  0.0624 0.0630 0.0656 
 200 0.05 0.9301 0.9216 0.9516  0.0044 0.0044 0.0045 
  0.10 0.9317 0.9229 0.9505  0.0087 0.0088 0.0089 
  0.20 0.9359 0.9296 0.9442  0.0175 0.0176 0.0179 
  0.33 0.9487 0.9478 0.9436  0.0290 0.0291 0.0297 
  0.50 0.9193 0.9332 0.9312  0.0444 0.0446 0.0455 
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Figure 1 Coverage probability (left) and expected length (right) of the 95% confidence intervals for 

the common CV for 3 sample cases  

 

4.  Applications to Real Data 

We illustrated the use of confidence intervals using two real data examples: 1) the time in hours 

of successive failures of the air conditioning system of a military plane and 2) air pollution incidents 

in Bangkok. 
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4.1.  Example 1 

Proschan (1963) provided the time in hours of successive failures of the air conditioning system 

of each member of a fleet of 720 Boeing aircraft. We used the data from the four groups with plan 

numbers 7908, 7909, 7912, and 7913. The sample sizes were reasonably consistent across groups. 

The distribution of the data was verified using the Anderson-Darling (AD) test and the graphical plot 

for each group is shown in Figure 2. All samples had a gamma distribution, so that these data were 

appropriate for computing the confidence intervals in our approach. In computation, the basic 

statistics of these data are shown in Table 4.  

 

Table 4 Mean and CV for the data on time to failure of the air conditioning system for four planes 

Plane number in  ix  i̂  

7908 23 95.70 1.10 

7909 29 83.52 0.81 

7912 30 59.60 1.21 

7913 27 76.80 1.00 
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Figure 2 Probability plots of the successive time to failure by group 

 

The estimated common CV of time to failure was 0.98. The 95% confidence intervals for the 

common CV were then computed. The approximate confidence interval was ACI = (0.85, 1.11), the 

adjusted MOVER with the score confidence limits was AdMSCI = (0.82, 1.10), and the adjusted 

MOVER with the Wald confidence limits was AdMWCI = (0.88, 1.20). The interval lengths of ,ACI  

,AdMSCI  and AdMWCI  were 0.26, 0.27, and 0.32, respectively. From the results, little difference was 

evident in the time to failure of the different groups. AC I  provided the smallest length. The numerical 

results therefore matched those from the simulations. 
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4.2. Example 2 

The real data on air pollution used in this section were obtained from Thailand’s Pollution 

Control Department (http://www.aqmthai.com). They reported airborne particulate matter 2.5 (PM 

2.5: g/m3.) in central Bangkok, Thailand, between 23 December 2018 and 22 January 2019. The 

data were reported from Pha Ya Thai, Din Dang, and Lat Phrao air monitoring quality stations. The 

distributions of the data are presented in Figure 3.  By the Anderson-Darling (AD) test, PM 2.5 from 

all stations had a gamma distribution. The statistics are given in Table 5.  

 

Table 5 Mean and CV for the data on air pollution from three stations in Bangkok 

Station in  
ix  i̂  

Pha Ya Thai 31 40.10 0.39 

Din Dang 31 56.10 0.34 

Lat Phrao 31 51.65 0.34 
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Figure 3 Probability plots of PM 2.5 from three air monitoring quality stations in Bangkok 

 

 On average, health effects would be expected from these PM 2.5 levels, as this reported 

unhealthy. From the dispersion, the estimated common CV in the three areas was 0.35. The 95% 

confidence intervals for the common CV were ACI = (0.30, 0.40), AdMSCI = (0.29, 0.40), and AdMWCI

= (0.32, 0.44) with interval lengths of 0.10, 0.11, and 0.12, respectively. Again, ACI  gave the smallest 

interval length, and the real data confirmed the simulation results. 

 

5.  Conclusions 

A basic approach to constructing the confidence interval for a parameter of interest involves 

finding the mean and variance of the parameter estimates. In cases where the exact mean and variance 

are difficult to determine, the delta method or generalized variable approach has been applied to 
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construct the confidence interval. However, in the case of CV in the gamma distribution, the 

generalized pivotal quantity cannot be derived, because the generalized function depends on the 

parameters. Since its introduction, the method of variance of estimate recovery (MOVER) has been 

used to construct the confidence interval. Since the common CV in which we are interested is related 

to the CV for each sample together with its variances, variance estimation conducted using an 

extended version of the MOVER is applied. This approach is called the adjusted MOVER.  

In this study, the performance of the proposed confidence intervals based on normal 

approximation ( ),ACI  the adjusted MOVER with the score method ( ),AdMSCI  and the adjusted 

MOVER with the Wald method ( )AdMWCI  was evaluated using simulations. For 3, 4, and 5 

populations, AdMWCI  performed well in terms of coverage probability. It had coverage probabilities 

satisfied the nominal coverage level in many cases. The expected lengths of our estimator were found 

to be small. Our interval estimator also provides the explicit close forms, which are expedient in 

practical computations. The findings confirm that the adjusted MOVER can be used to estimate the 

common CV of multiple gamma distributions, and are satisfied for many sample cases. Based on the 

numerical results, we suggest AdMWCI  as an alternative confidence interval for the common 

coefficient of variation of gamma distributions. 
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