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Abstract

In this study, Bayesian parameter estimation for the shifted exponential mixture model is
conducted by using informative priors under squared error loss function (SELF), weighted loss
function (WLF) and quadratic loss function (QLF). Properties of the proposed Bayes estimators
(BEs) are highlighted through simulation study. One and two sample prediction bounds are
obtained. Proposed mixture model is applied to a real life example.
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1. Introduction

Exponential failure distributions occur frequently in practice and are widely used in mixed
population problems where data arise from times to failure of units (e.g. patients, machines,
components etc.). The exponential distribution finds applications in queuing theory and
reliability studies. In queuing theory, it is used to model the time elapsed between customer
arrivals at the terminal and in reliability it is being used to model the failure time of electronic
components. In many life testing problems, shifted exponential (two parameters exponential)
distribution is considered more appropriate for fitting life test data than one parameter
distribution. In real life, failure does not always occur at its initial point. Hence such situations
are best represented by shifted exponential distribution which contains a location parameter. So
in life testing shifted exponential distribution is often required to provide an adequate
representation of the observed results.

The shifted exponential distribution for a random variable X is formulated as

foA )= x>pu and A>0, (1)
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where A is the scale parameter and x is the location parameter. The location parameter is

referred as a threshold or guarantee time parameter before which no failure occurs and the scale
parameter represents the mean life time of an object.

A number of authors have considered shifted exponential distribution in their work. Epstein
(1960) has addressed the problem of estimation of shifted exponential distribution from censored
samples. Wu and Yu (2008) proposed a simultaneous inferences of extreme populations for
shifted exponential distribution based on doubly type-II censored samples. Krishnamoorthy et al.
(2007) took into account the problem of hypothesis testing and interval estimation of the
reliability parameter in stress-strength model for shifted exponential distribution. Balakrishnan
and Basu (1995) had given excellent review on the properties, genesis and characterization of
the distribution in their book “The exponential distribution: theory, methods and applications”.
Sae-ung and Lertprapai (2010) made comparison of the scale parameter of a shifted exponential
distribution based on multiple criteria decision making. Jewell (1982) provided maximum
likelihood estimates of mixture of exponential distributions using EM algorithm. Raqab and Madi
(2005) had taken into account two parameter generalized exponential distribution and importance
sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and
Metropolis samplers data sets are used to predict the behavior of further observations from the
distribution. Mohamed et al. (2014) used heterogeneous population which is represented by a
mixture of two generalized exponential distributions. Mohamed and Leonard (1996) had
discussed the Bayesian estimation for the shifted exponential distributions.

In this paper Bayesian analysis of the shifted exponential mixture model is conducted using
type-I censoring scheme assuming informative priors. The shifted exponential mixture model is
described in Section 2. Likelihood function is constructed in Section 3. Section 4 consists of
Bayes estimators and posterior risks under squared error loss function (SELF), weighted loss
function (WLF) and quadratic loss function (QLF) using informative priors. Bayesian prediction
is conducted in Section 5. Simulation analysis is provided in Section 6. A real data application is
presented in Section 7. Finally in Section 8, conclusion is presented.

2. The Shifted Exponential Mixture Model
Suppose that a random variable X takes »n independent values in a sample space Q, and

X is said to have a finite £ component mixture distribution with known specified functional
form but varying unknown parameters and mixing weights if its distribution can be represented
by a following probability density function (pdf)

F@ =X pf(x10), p, e, jelh. Dp, =1, @

where ® is a complete set of parameters of the mixture model. The mixture model and its
corresponding survival function, when shifted exponential distribution is assumed for the two-
component of the mixture model are as under

2
[, ()= p,Ae 7, 3)
Jj=1

2
F,(x) =Y p e, )
=1
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3. Sampling and Likelihood Function

It is assumed that lifetime of an object is independently and identically distributed as shifted
exponential random variable. It is common practice in the Bayesian analysis to consider location
parameter known. Dozen of references exist on the subject. Some examples include Soland
(1968), Zanakis (1979), Al-Hussaini et al. (2001), Panaitescu et al. (2010), Kundu and Howlader
(2010) etc. For simplicity it is assumed here that location parameter 4, is known and equal, thus

== H

Experimenter frequently ends up experiments due to restrictions on available time or cost on
reaching a predetermined length of time or predetermined number of failures. Censored sampling
with fixed test termination time is known as type-I right censoring. The Likelihood function for
mixture model under type-I censoring given by Mendenhall and Hader (1958), there are many
practical situations in which the failed objects can be pointed out easily as subset of

)

subpopulation-I or subpopulation-II. Out of ‘ » * units, suppose 7 and 7 units belong to

subpopulation-I or subpopulation-II respectively and such that » =7, +7,.
ol [Ta b [ Trs o) L60)T
j=1 j=1
oc (1’_][ plﬂle"' (x=u) J(ﬁ pzﬂze’”-“”’](ple“””) 4 pze”"“T’”’ )””
J=l

Jj=1

k

k=0

n
Sl A T 2y (v -k (T
OCZ D P, e Ae s (5)

where X =(x,,x, X, X515 X95,--X,, ) are the observed failure times for the uncensored
1 2

29 eees
observations, © = (4,4,,p,), R(t))=1-F(t), p,+p,=1and T is the fixed test termination

time under type-1 right censoring.

4. Bayesian Estimation Assuming Informative Priors
Exponential prior which is also a conjugate prior and squared Rayleigh (SR) prior are taken
as informative priors for the Bayesian estimation of the parameters of the mixture model.

4.1. The posterior distribution assuming exponential prior
The parameters A4, and p, are assumed to be independent. The parameters 4, assume

exponential distribution as a prior with hyperparameter «, and its pdf may be written as
gA)=K e, 2,>0,i=12, (6)
and p, assumes an uniform priori.e. g(p,)=1.The joint posterior distribution of the parameters

A, and p, is

n—r — 2
2O x) = A-IZ(" . r]pf"’z“p;*k]‘[/lf e 0< A <o, i=12, 0<p <1, (7)
k=0 i=1
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where 7, :Z(xlj_ﬂ)+(n_r_k)(T_ﬂ)+K1: V2 :Z(ij_ﬂ)+k(T_ﬂ)+Kzsand
Jj=1 j=1

Azz_;[n;r}ﬁ(n—k—rz il k)G DIGEAD oAy,

n+A4 rn+A

e vy
Marginal posterior distributions of 4, and p, can be derived by integrating the nuisance
parameters, such that

p(ﬂi|x):A'li[ jB(n r,— k+1r2+k+l){H

Yy

I'(r.+4
(r—)}ﬂ,’ N 0< A <o, i=1,2,

(®)
2 T(r, + A)

p(p | x)=A" Z[ j kpi”k{ﬂﬁ}» 0<p <l. ©)

i=1 |

1) Bayes estimators and their posterior risks under “SELF”
The squared error loss function (SELF) is suggested by Legendre (1806) and is defined as

L(A,A) =(A—A)*. The Bayes estimator and posterior risk under SELF are A= E,.(4) and

p(A)=E E,, (A*)- [ s (/1):|2 , respectively.
Following BEs of A, and p, are obtained under SELF.

I A+1 T'(r.+A
Ay = A Z[ jB(n k—ry+ 1 +k+1) (;+A1+ ){H (7»’,‘/% )}, i=1,2, (10)
i i#] J

. LR 2 T(n+A
pl(s):AIZ( . ]B(n—k—r2+2,r2+k+l){HT)}, (11)
k=0

i=1 i

and the expressions for Bayes PRs for A, and p, are

ot C(rn+A+2 L(r, +A) PN
Py ) =N Z[ . ]B(n—k—r2+l,r2+k+1) (7"‘*“2 ){H L }_[ﬂw} ,

i#j j

(12)
p(ﬁl(s)):A‘lg[n;er(n—k—rz+3,r2+k+l){ F(HA)} (b ] (13)

-1 .

2) Bayes estimators and their posterior risks under “WLF”

Bayes estimators under weighted loss function (WLF) can be evaluated from
-1

A= [E (/1)_1] and posterior risk is the difference of BEs obtained under SELF and WLF

,(W)—[A Z( jﬁ(n k—r +1,r +k+1)r(r+¢¢){Hr(rf;fAA)H L i=1,2,(14)
}/ J

i i#] j
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-1
R s (n-r 2T +A
pl(W):{A IZ[ ‘ jﬂ(n—k—rz,r2+k+l){H(’n—+A)H ,A=1,¢=0. (15)
k=0 i=1 i

Posterior risks can be attained from the following expressions

p(ﬂi(W)) = ﬂ,l.(s) _/L(W), i=12 and p(i’l(W)) = 131(5‘) _l’}l(W)'

3) Bayes estimators and their posterior risks under “QLF”

-1
Under quadratic loss function (QLF), Bayes estimators can be attained from A= géj_zi
. EANT
and posterior risks can be evaluated from p(1) =1 —M,
E(ﬂ( ))
nr (g — r'(r,+A
A']Z(nkrjﬁ(n k—r,rn+k+1) (r+¢){H (jHA )}
A = 7/,' i#] J
i0) = - d : > i=1’2a (16)
nr(p— -+ h— r'er,+A
o\ k Vi ivi V)
AIZ( jB(n k- rz,rz+k+1){Hr(r+A)}
Puo = - - (17)

i=1 i

lz( r]ﬂ(n—k—rz—l,rz+k+1){HW}

The expressions for the Bayes posterior risks are given by

[Alg(n ]B(n k- rz,rz+k+1)r(}f+¢){HF(ZTAA)H

i i#]

p(i[(g)) =1- 1_;/ A . (18)
( }B(n k- rz,rz+k+1)r(’"if1 D{H ('ﬂrfA )}
i#j }/]
{A 1n ’(n r]B(n k—r,r, +k+1){H Ay +AA)H
p(i’ug)):l_ = E (19)

AIH[” rjﬁ(n k—r, - 1r2+k+1){Hr(r+AA)}

k=0 i=1 i

4.2. The posterior distribution using squared Rayleigh (SR) prior
It is assumed that parameters A,,4, follow a squared Rayleigh (SR) prior with pdf
22
g4, A, | m,my) oce ™ ™/ and p, follows a uniform prior. Assuming independence of the

priors, posterior distribution of 4,,4, and p, is obtained as

n(@|x)=Alz(”;rj (n-1 ) *z*’f]‘[z' Wi0<d <, i=1,2,0<p <1, (20)
k=0
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1
where , = Z(xl, W+ (n=r =T =)+ gl O Z(xzj )+ k(T =)+ —— and
J=1 2
A= z(" er(n k—r 4L k4 DIG D
n 7y
Marginal posterior distributions of 4, and p, can be obtained as
n-r — I'(r. +1
e |x):A'IZ(nkr]B(n—rz —k+lr, +k+1){H (Q _ )}zfe% 0<A <o, i=1,2,
k=0 I
e2y)

i=1 )

< n—r, ”+ - F(r +1)
p(p [ x)=A" Z[ ] s "{H#} 0<p <l (22)

1) Bayes estimators and their posterior risks under “SELF”
Bayes estimators of A, and p, under squared error loss function (SELF) are

sy = A 2[ ]B(n - r2+1r2+k+1)r(rrf22){Hr(r{:l)},i:l,z, 23)

Vi iz Y

n—r _ 2
Puis, = A“Z(nk r]B(n —k—r+2,n +k+1){H 1"(;:1)} 24)
k=0

i=1 i

and the expressions for Bayes posterior risks for 4, and p, are

p(/i,.(s))=A-‘"z( jB(n - r2+1r2+k+1)r(r+3){1‘[r(r{:1) }—[/@(S)T, (25)
k=0 Vi /

i) ;

i

p(ﬁu”):A“"Z( ]B(n k- r2+3r2+k+1){HmI”} (bl @9

i=1 i

2) Bayes estimators and their posterior risks under “WLF”
Bayes estimators under weighted loss function (WLF) can be obtained as

Ao, [A Z(" r}ﬁ(n - @+1rz+k+1)r(r){]‘[r(”{:1)H =12, (7

Vi =iy

P, {A Z( jﬁ(n k- r2,r2+k+1){HF(rr:1)H , (28)

i=1 i

and posterior risks can be attained from the following expressions

P(&(W)) z(S) ;Lz(W) and p(lal(W)):i)I(S)_i)l(W)'

3) Bayes estimators and their posterior risks under “QLF”
Bayes estimators are obtained under the quadratic loss function (QLF) as
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i r[nkr)ﬂ(n o +k+1)1"(r){1_[1"(7’_;:1)}

i i#] j

A = =12, (29)
nr I'(r, +1
A [" rJB(n k—ryor, +k+ D) DI ¢, +1
o\ k v =i V)
Ay (nkrjﬁ(n k- rz,r2+k+1){HF(r+l)}
=0 i=1 i
Puoy = . (30)
A ( r]B(n k—r, - 1rz+k+1){1‘[r(€jl)}
= -1 Vi
The expressions for the Bayes posterior risks are given by
2
nr(p— r'(r +1
Alz(" rjﬁ(n—k— ke R
~ k=0 k 7/1- i%j 7/1-1
P (A =1 - e an] GD
nr - 7+
A Z( }B(n—k— oy +k+1) (r; 1) 12
Ve i#j jj
" Sfn—r 2 T(r+1) ’
{ ( ]B(n - rz,r2+k+1){1‘[r; H
=1 Vi (32)

p(ﬁug)):l _ 2
A'lkz(;{ . jB(n—k—rz—l,r2+k+l){1:[ (fjl)}

l

5. Bayesian Prediction Using Exponential Prior
It is often desirable to predict future sample based on the current sample. Problem of

prediction is being widely applied due to its increasing importance in analysis.

5.1. Bayesian one-sample predictions
Let x, <...<x, be the informative sample and x,,, <...<x, represent the future sample. It

is assumed that the both samples are from the mixture model given in (2). Let

Y =x_.,s=1,.,n—r. The conditional density function of the Y, s=1,..,n—r, given by
David (1981) is

f(,10)=D()[R(x,) - R [ROO] ™ [REH] " ()
-1
—D@)Z( 1y’ ( j[R(y )[R £(0)

=0
s—1 iy it ' ;
= D(S)ZZ Z =’ ( / ][5][ ¢ jpf AR it @ A S0 G Ta0]
i I\ J2
g AR TI [ g g0 4 p ] e RO ] (33)

where £ =n—r—s+j, §=s—1— j—n+r. The Bayesian predictive density function is defined

by
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1 0w

S0 =[[[ 10 10)7@10de, y, >x, (34)

where 7(0|x), f(y,|O®) are given in (7) and (32), respectively.

* ! 'y v KR / _1 n-r,—k _r+k &—j+ i+
ICAERSET) %% ) el ]ﬂ(] j[ L

=0 j;=0 j,=0 k=0 Ji

e*/h[(«f*jl )(."s’/‘)*(4”’]‘2)(7-*#)*71]e’AQ[‘/'l(}’;’l’)*]‘z(T*#)*}/z [Plﬂqe%' (y=4) + pzlze*ﬂq(yru)}

=A-ID(S)§§ fi(—l)f [S;lj[?)[ﬂ(":j[m@ F 8, 48,42+, 46, +1)

7=0 ;=0 j,=0 k=0 J1)\J2
xW+ B(¢o, +52+§3+1,j1+j2+54+2)W}
&g e
—AD(s )Zk {(5 +3,+ 5, +1)(r, +1) (jl+jz+5 +1)(r, +1)}

*n+ r+ R+l g*n+ (35)
&g &g

where A is the normalizing constant satisfying j O, |x)dyS =1,
0

Z ZZZ( 1/ (S lj[f](f]a 6,=8—J),0,=¢—)y,0,=n—n—k, 6, =r,+k,

J=0 ;=0 j,=0 1 2

K= ', +0,+0,+DI'(0, + j,+j, +DI'(5 +DI'(r, +1)
(6, +8,+6,+5, + j + j, +3) ’
=6, —+8(T-wW+y, & =010+6)y, —m+(P=i)T -+,
&=, —+ ), T—w)+7,, éz* =1+, -+ LT -+,
Predictive survival function thus may be obtained as

P(Y, 2v|x)=[ /" (3, | x)dy,. (36)

A 1007% prediction interval for Y, is then given by
P[L(x)<Y, <U(x)]=r7,
where L(x) and U(x) are obtained by solving the following two equations, respectively.

P(Y. > L(x))= HTT and P(Y, >U(x))= 1_7’

5.2. Bayesian two-sample prediction
Suppose a sample of size n is taken from a population whose density function is defined in
(2) for life testing experiment. Now a future sample of size m, independent of past sample of

size n is obtained from the same population. Let Y, be the ordered lifetime of a s"™ component

to fail in a future sample of size m, 1<s<m. The s" order statistic represents the life length

ofa (m—s+1) out of m components. Then density function of Y, is

h(y, |©)oc[1-R)] " [ROD]" f(,)



362 Thailand Statistician, 2020; 18(3): 354-372

—2( 1)/2{ ][R(ys " £ )

Jj2=0
o mEh m—=s+j,\ 5 ; )

— Z z (- 1)12( J[ ; J2 prxp;xe-/h[(.vc—#)bz]e—/lz[(y\—#)Jz]f(yS)_ (37)
Jj2=0 jz3= 3

The Bayesian predictive density function of Y, given x suggested by Aitchison and Dunsmore
(1975) is defined by

K, 0= [[ i, |0m@ e, (38)

where 7(© | x) is the posterior density given by (7) and A(y, | ®) is the pdf of s"™ component

in a future sample given by (36)

B (y, |x)= A’likk* [

(8,+8, + D0 +D) (3, +/, 17, +1>} 59)

§1*4+2§2r2+1 §1q+1§;rz+2

where A is the normalizing constant satisfying f O, |x)dyl\, =1,
0
&=~ 8+ )& =, ~ U+ + B, &=, — 1) s+ B,
ach sl mShh (n—=r\[s-1\(m—-s+]
ERTRC OIS 530 35 MRVEIE I Ll W e
1 2

J1=0j,=0 j3= .]3
» T, +6, +DI(S, + j; + DI (5 + DI (r, +1)
I'(6, + 5, +0, + j, +3)

Oy =m—=s+j,=Jjs

k

,0,=n—r,—j,0,=r+j,and

Predictive survival function thus may be obtained by evaluating the following expression.
P(Y, >v|x) :J.h*(ys | X)dy,.

A 1007% prediction interval for Y, is then given by
PL(x) <Y, <U(¥)]=
where L(x) and U(x) are obtained by solving the following two equations, respectively.

P(Y. > L(x))= HTT and P(Y, >U(x))= I_TT

5.3. Bayesian reliability estimation
Bayes estimator of the reliability function under SELF is

R(t,) = E[R(1,) | x]

—A z("_ j{B(n—rz—k+2,r2 Ty S AR NG RO

o7,
(s +1)1"(r2 +1)

7+l

7/1 0)2

B(n—r,—k+1,r,+k+2) : (40)
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where A is the normalizing constant, @, =y, +(T—u), @, =y, +(T —yu) and y,,y, are

defined earlier.

5.4. Illustrative Example

The lower and upper prediction bounds for one and two sample scheme are obtained. It is
assumed that these failure times follow a mixture model defined in (2). A sample of size n=15
is generated from the said mixture model assuming parameters A,,4,, u, p, tobe 0.2,0.8, 0.5 and
0.40, respectively under type-I censoring. Censoring time i.e. 7 is taken to be 5. A uniform
number u is generated n times by applying inverse transformation method. If u <p,, 1
observations are taken from subpopulation-1, and if u > p,, r, observations are considered to
belong to subpopulation-11. Thus the following sample is generated.

0.1780, 0.3067, 0.7904, 3.2148 so =4,

0.3214, 0.4531, 0.4688, 0.6571, 0.6968, 0.8712, 1.8926 and 2.4649  so r, =8.

Using this informative sample, Equation (9) are evaluated with z = 0.95 which provides
probable values for the remaining “ n — r ”” observations in the sample. Thus 95% lower and upper
predictive bounds for x,,,x, and x,; are (3.4251, 4.3751), (3.6073, 4.5573) and (4.2714,
5.2214), respectively.

Now on the basis of current sample Y, and Y,

m>

representing the first and last failure times

in a future sample of size m =10 are obtained. The lower and upper 95% prediction bounds for
Y,, the first failure time, are 0.1375, 1.0875 and the 95% prediction bounds for ¥,,, the last

failure time are given by 1.5173, 2.4673 respectively. The reliability estimate using (39)at 7 =5
is obtained as 0.1907.

02

6. Simulation Study
To investigate the properties of derived Bayes estimators a large scale simulation study is
conducted. Random samples of size n=50, 100, 200, 300 and 500 have been generated from

the two-component shifted exponential mixture model. The data is generated in a Minitab
(Minitab 1991) routine by generating pseudo-random uniform numbers. If u < p, then

observations are taken randomly from first component of shifted exponential distribution,
otherwise observations are taken from 2™ component of the same distribution. Mixture data is
obtained by using probabilistic mixing. Different parametric points have been considered to have
insight into characteristics of BEs. Threshold parameter, x is considered as 0.5 and 1. Censoring

rate is taken 10%. Estimates are computed using two informative Priors (Exponential and SR).
For Bayesian analysis using informative priors, hyper-parameters are selected in such a way that
the prior mean becomes the expected value of the corresponding parameter. Numerical results of
a simulation study are presented in Tables 1-6.
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Table 1 Bayes estimates of shifted exponential mixture parameters along with posterior risks
(in parentheses) when 4,,4,, p, (0.05, 0.5, 0.40) and x =0.5. Hyperparameters taken

are k, =20.5, k, =2.5,a, =3.54, a, =1

Exponential Prior Squared Rayleigh Prior
A n ﬂt‘ /iz 2 }:1 /iz 2
SELF 0.0400 0.3024 0.5576 0.0414 0.3127 0.5576
50 (0.000062)  (0.0040) (0.0047)  (0.00076) (0.0043)  (0.0047)
0.0561 0.4832 0.4411 0.0582 0.4937 0.4412

1000 0.000098)  (0.0041)  (0.0024)  (0.00094)  (0.0043)  (0.0024)

0.0454  0.5244 0.4802 0.0460 05310  0.4802
2000 0.000027)  (0.0026)  (0.0012)  (0.00025)  (0.0027)  (0.0012)

0.0469  0.6096 04172 0.0474 06149 04172
300 (0.000023)  (0.0021)  (0.0008)  (0.00022)  (0.0022)  (0.0008)

0.0578  0.4994 0.3864 0.0583 05015  0.3864
2000 (0.00002)  (0.0008)  (0.00051)  (0.00019)  (0.0008)  (0.0005)

WLF 0.0382  0.2891 0.5490 0.0396 02990  0.5490
50 (0.0018)  (0.0133)  (0.0086)  (0.0018)  (0.0137)  (0.0086)
0.0545  0.4747 0.4356 0.0564 04850  0.4356

100 (0.0016) (0.0085)  (0.0055)  (0.0018)  (0.0087) (0.0056)

0.0448  0.5194 0.4776 0.0454 05260  0.4776
2000 (0.0006)  (0.0050)  (0.0026)  (0.0006)  (0.0050)  (0.0026)

0.0464  0.6061 0.4153 0.0469 06114 04153
3000 0.0005)  (0.0035)  (0.0019)  (0.0005)  (0.0035) (0.0019)

0.0574  0.4978 03852 0.0579 04998 03852

500 (0.0004) (0.0016)  (0.0012)  (0.0004)  (0.0017) (0.0012)

QLF 0.0364  0.2758 0.5400 0.0378 02853  0.5399
500 (0.0455)  (0.0461)  (0.0164)  (0.0455)  (0.0460) (0.0164)

0.0528  0.4662 0.4300 0.0547 04763  0.4300

100 0.0303) (0.0179)  (0.0130)  (0.0303)  (0.0179)  (0.0130)

0.0442 05144 0.4750 0.0448 05209 04750
2000 (0.0133)  (0.0096)  (0.0055)  (0.0133)  (0.0096)  (0.0055)

0.0459  0.6027 0.4133 0.0464 06079  0.4133
3000 0.0106)  (0.0057)  (0.0047)  (0.0106)  (0.0057)  (0.0047)
0.0569  0.4962 0.3840 0.0575 04982  0.3840

2000 0.0070)  (0.0033)  (0.0032)  (0.0070)  (0.0033)  (0.0032)
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Table 2 Bayes estimates of shifted exponential mixture parameters along with posterior risks
(in parentheses) when 4,,4,, p, (0.2, 0.8, 0.40) and g =0.5. Hyperparameters taken as

k =55,k =175 a, =158, a, =0.79

Exponential Prior Squared Rayleigh Prior
2 n 4 4 b A 4 b,
SELF 0.3231 0.9557 0.3241 0.4303 0.9326 0.3127
50 (0.0130)  (0.0429) (0.0048) (0.0422) (0.0525)  (0.0053)
0.1647 0.8095 0.3407 0.1711 0.8192 0.3407
100 (0.0012)  (0.0110) (0.0022) (0.0012) (0.0113)  (0.0022)
0.1962 0.8413 0.4497 0.1991 0.8476 0.4497
200 (0.0005)  (0.0068) (0.0012) (0.0006) (0.0069)  (0.0013)
0.2512 0.8735 0.4030 0.2548 0.8776 0.4031
300 (0.0007)  (0.0053) (0.0008) (0.0004) (0.0053)  (0.0008)
0.1861 0.7849 0.4048 0.1873 0.7869 0.4048
500 (0.0002)  (0.0023) (0.0005) (0.0002) (0.0023)  (0.0005)
WLF 0.2881 0.9094 0.3082 0.3609 0.8745 0.2942
50 (0.0350)  (0.0463) (0.0159) (0.0694) (0.0581)  (0.0185)
0.1579 0.7957 0.3341 0.1638 0.8052 0.3341
100 (0.0068)  (0.0138) (0.0066) (0.0073) (0.0140)  (0.0066)
0.1933 0.8332 0.4470 0.1962 0.8395 0.4470

2000 0.0029)  (0.0081)  (0.0027)  (0.0029)  (0.0081)  (0.0027)

02483  0.8676 0.4010 0.2520 08716  0.4010
3000 0.0029)  (0.0059)  (0.0020)  (0.0028)  (0.0060)  (0.0021)

0.1848  0.7820 0.4036 0.1860 0.7840  0.4036
2000 0.0013)  (0.0029)  (0.0012)  (0.0013)  (0.0029)  (0.0012)

QLF 02567  0.8621 0.2911 0.3096 08162  0.2740
00 (0.1094)  (0.0520)  (0.0556)  (0.1422)  (0.0667)  (0.0690)
0.1509  0.7818 0.3273 0.1565 07911  0.3273

100 (0.0442)  (0.0175)  (0.0202)  (0.0443)  (0.0175)  (0.0202)

0.1905  0.8251 0.4442 0.1934 08313 0.4442
2000 (0.0146)  (0.0098)  (0.0062)  (0.0146)  (0.0098)  (0.0062)

02455 08616 03990  0.2491 0.8656  0.3990
3000 (0.0114)  (0.0069)  (0.0051)  (0.0114)  (0.0069)  (0.0051)
0.1836  0.7791 04024 0.1848 07811 0.4024

2000 0.0067)  (0.0037)  (0.0030)  (0.0067)  (0.0037)  (0.0030)
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Table 3 Bayes estimates of shifted exponential mixture parameters along with posterior risks
(in parentheses) when 4,,4,, p, (2.0, 4.0, 0.40) and = 0.5. Hyperparameters taken as

k =10, k, =075, a, =0.5, a, = 0.35

Exponential Prior Squared Rayleigh Prior
A n /?Aq ﬂ; 131 ﬂ; 22 131
SELF 50 1.9700 4.0443 0.3866 2.0591 4.1887 0.4005
(0.0235) (0.0037) (0.0045) (0.0210) (0.0033)  (0.0052)
100 1.9328 3.9168 0.3851 1.9822 3.9801 0.3857
(0.0108) (0.0014) (0.0025) (0.0103) (0.0014)  (0.0025)
200 1.8052 4.2100 0.3609 1.8309 4.2409 0.3611
(0.0058)  (0.00055) (0.0012) (0.0056) (0.0005)  (0.0012)
300 1.6974 3.8720 0.3867 1.7298 3.7071 0.3877
(0.0042)  (0.00045) (0.0008) (0.0042) (0.0005)  (0.0008)
500 2.2565 3.8954 0.3948 2.2663 3.9083 0.3949

(0.0018)  (0.00031)  (0.0008)  (0.0018)  (0.0003)  (0.0005)
WLF 2.2373 42793 0.3876 2.2799 44169 03873

50
(0.2673)  (0.2350)  (0.0010)  (0.2208)  (0.2282)  (0.0132)

oo 20357 4.0072 0.3789 2.0670 40667 03791
(0.1029)  (0.0904)  (0.0062)  (0.0848)  (0.0866)  (0.0066)

200 1.8499 42542 0.3577 1.8670 42824 03578
(0.0447)  (0.0442)  (0.0032)  (0.0361)  (0.0415)  (0.0033)

100 1.7419 3.7135 0.3855 1.7524 37331 0.3856
(0.0445)  (0.1585)  (0.0012)  (0.0226)  (0.0260)  (0.0021)

w0 22813 3.9142 0.3935 2.2871 39264  0.3936
(0.0248)  (0.0188)  (0.0013)  (0.0281)  (0.0181)  (0.0013)

QLF s 25479 45132 0.3738 2.5744 46503 0.3737
(0.1219)  (0.0518)  (0.0356)  (0.1292)  (0.0528)  (0.0353)

o 21297 4.0953 0.3721 2.1614 41558  0.3724
(0.0441)  (0.0215)  (0.0177)  (0.0437)  (0.0215)  (0.0177)

200 1.8879 42962 0.3544 2.2938 43247 03545
(0.0201)  (0.0098)  (0.0092)  (0.0206)  (0.0099)  (0.0093)

100 1.7653 3.7396 0.3834 1.7760 37594 0.3835
(0.0132)  (0.0070)  (0.0055)  (0.0133)  (0.0070)  (0.0055)

w00 23027 3.9323 0.3922 2.3085 3.9445 03922

(0.0093)  (0.0046)  (0.0034)  (0.0093)  (0.0046)  (0.0034)
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Table 4 Bayes estimates of shifted exponential mixture parameters along with posterior risks
(in parentheses) when 4,,4,, p, (0.05, 0.5, 0.40) and x =1.0. Hyperparameters taken as

k=21, k=3, a,=3.54,a, =1

Exponential Prior Squared Rayleigh Prior
PR 7 i b H i 5
SELF 0.0458 05180 0.3653 0.0854 05473  0.3654
(0.0002)  (0.0082)  (0.0044)  (0.0003)  (0.0090)  (0.0043)
0.0580  0.5528 0.4706 00753 05726  0.4706
100 (0.000091)  (0.0056)  (0.0024)  (0.0001)  (0.0060)  (0.0024)
0.0636  0.4196 0.3761 0.0764 04247 03761
200 0.000077)  (0.0015)  (0.0012)  (0.0001)  (0.0014)  (0.0011)
0.0438  0.5362 0.3907 0.0490 05417  0.3907
300 0.000022)  (0.0016)  (0.00081)  (0.0008)  (0.0015)  (0.0008)
0.0547  0.4670 0.3924 0.0587 04696  0.3924
200 0.00002)  (0.0008)  (0.0005)  (0.00002)  (0.0007)  (0.0005)
WLF 0.0423 05023 0.3529 0.0816 05309  0.3529
00 (0.0035)  (0.0157)  (0.0124)  (0.0038)  (0.0164) (0.0125)
0.0565  0.5425 0.4653 0.0737 05620  0.4653
100 0.0015) (0.0103)  (0.0053)  (0.0016)  (0.0106) (0.0053)
0.0625  0.4163 0.3730 00753 04213 0.3730
2000 (0.0011)  (0.0033)  (0.0031)  (0.0011)  (0.0034) (0.0031)
0.0433 05333 0.3887 0.0486 05387  0.3887
300 (0.0005)  (0.0029)  (0.0020)  (0.0004)  (0.0070)  (0.0020)
0.0543  0.4655 03912 0.0583 04681 03912
2000 (0.0004)  (0.0015)  (0.0012)  (0.0004)  (0.0015) (0.0012)
QLF 0.0387  0.4866 0.3400 0.0778 05145  0.3400
00 (0.0833)  (0.0313)  (0.0367)  (0.0465)  (0.0310) (0.0367)
0.0549  0.5323 0.4600 00721 05515  0.4600
100 0.0278)  (0.0189)  (0.0115)  (0.0220)  (0.0187) (0.0115)
0.0613  0.4129 0.3699 0.0741 04178 0.3698
2000 (0.0185)  (0.0081)  (0.0084)  (0.0158)  (0.0081)  (0.0084)
0.0428  0.5304 0.3867 0.0481 05358  0.3867
3000 (0.0116)  (0.0055)  (0.0052)  (0.0105)  (0.0054)  (0.0052)
0.0539  0.4640 0.3900 0.0579 04665  0.3900
2000 0.0069)  (0.0033)  (0.0031)  (0.0065)  (0.0033) (0.0031)
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Table 5 Bayes estimates of shifted exponential mixture parameters along with posterior risks
(in parentheses) when 4,,4,, p, (0.2, 0.8, 0.40) and 2 =1.0. Hyperparameters taken as

k, =6.0,k, =2.25,a, =1.58, a, =0.79
Exponential Prior Squared Rayleigh Prior
A n /i.‘ jz ﬁl j“ jz ﬁl
SELF 0.2816 0.7966 0.3844 0.3810 0.7813 0.3731
50 (0.0793)  (0.0308) (0.0050) (0.0157) (0.0323)  (0.0054)

03025  0.6203 0.3968 0.3728 0.5889  0.3838
100 0.0049)  (0.0122)  (0.0028)  (0.0112)  (0.0146)  (0.0032)

0.1864  0.6924 0.4177 0.1952 0.6977 04176

2000 0.0006)  (0.0048)  (0.0012)  (0.0006)  (0.0049)  (0.0012)

0.1789  0.8437 0.4230 0.1843 0.8494  0.4230

3000 (0.0003)  (0.0043)  (0.0008)  (0.0003)  (0.0045)  (0.0008)

0.1713  0.8143 0.4038 0.1745 08174  0.4038

3000 (0.0002)  (0.0023)  (0.0005)  (0.0002)  (0.0023)  (0.0005)

WLF 02592 0.7570 0.3706 0.3458 07325  0.3576

00 0.0224)  (0.0396)  (0.0138)  (0.0352)  (0.0488)  (0.0155)

02879  0.6000 0.3894 0.3474 0.5637  0.3753
1000 0.0146)  (0.0203)  (0.0074)  (0.0254)  (0.0252)  (0.0085)

0.1834  0.6854 0.4147 0.1921 0.6906  0.4146
2000 0.0030)  (0.0070)  (0.0030)  (0.0031)  (0.0071)  (0.0030)

0.1771 08385 04211 0.1824 0.8442 04211
3000 0.0018)  (0.0052)  (0.0019)  (0.0019)  (0.0052)  (0.0019)

0.1702 08114 0.4026 0.1734 08145  0.4026
000 (0.0011)  (0.0029)  (0.0012)  (0.0011)  (0.0029)  (0.0012)

QLF 02380  0.7168 0.3560 0.3153 0.6837  0.3409
00 (0.0818)  (0.0532)  (0.0395)  (0.0884)  (0.0667)  (0.0468)

02747 0.5791 03818 0.3260 05387 0.3664
100 0.0462)  (0.0347)  (0.0195)  (0.0617)  (0.0444)  (0.0238)

0.1804 06784 04118 0.1891 0.6835 04117
200 (0.0163)  (0.0102)  (0.0071)  (0.0158)  (0.0103)  (0.0072)

0.1752  0.8333 0.4191 0.1806 08390  0.4191
3000 (0.0105)  (0.0062)  (0.0046)  (0.0103)  (0.0062)  (0.0046)

0.1690  0.8086 0.4014 0.1722 08116 04014
3000 (0.0067)  (0.0035)  (0.0030)  (0.0066)  (0.0035)  (0.0030)
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Table 6 Bayes estimates of shifted exponential mixture parameters along with posterior risks
(in parentheses) when 4,,4,, p, (2.0, 4.0, 0.40) and g =1.0. Hyperparameters taken as

k =15k =125 4 =05, a, =035

Exponential Prior Squared Rayleigh Prior
A n ﬂ; /iz P ﬂ; ﬂ; 2
SELF 50 2.0720 3.2333 0.4133 2.0982 3.2915 0.4133
(0.0197) (0.0050) (0.0054) (0.0193) (0.0049)  (0.0053)
100 1.8796 4.0772 0.4011 1.8932 4.1107 0.4012
(0.0114) (0.0602) (0.0025) (0.0113) (0.0014)  (0.0025)
200 1.9635 3.8352 0.4022 1.9613 3.8487 0.4021
(0.0053)  (0.00078) (0.0013) (0.0054) (0.0008)  (0.0013)
300 1.9815 3.7935 0.4019 1.9993 3.8051 0.4022
(0.0035)  (0.00052) (0.0009) (0.0034) (0.0005)  (0.0009)
500 2.0177 3.7134 0.4030 2.0207 3.7195 0.4030
(0.0021)  (0.00033) (0.0005) (0.0021) (0.0003)  (0.0005)
WLF 50 2.1360 3.2530 0.3895 2.2919 3.4652 0.3999
(0.0640) (0.0197) (0.0238) (0.1937) (0.1737)  (0.0134)
100 2.0036 4.1832 0.3953 1.9783 4.2094 0.3984
(0.1240) (0.1060) (0.0058) (0.0851) (0.0987)  (0.0028)
200 2.0254 3.8841 0.3994 2.0037 3.8931 0.3989
(0.0619) (0.0489) (0.0028) (0.0424) (0.0444)  (0.0032)
300 2.0226 3.8256 0.4000 2.0280 3.8342 0.4000
(0.0411) (0.0321) (0.0019) (0.0287) (0.0291)  (0.0022)
500 2.0426 3.7323 0.4018 2.0379 3.7365 0.4017
(0.0249) (0.0189) (0.0012) (0.0172) (0.0170)  (0.0013)
QLF 50 2.3122 3.4000 0.3762 2.5193 3.6491 0.3859
(0.0762) (0.0432) (0.0342) (0.0903) (0.0504)  (0.0349)
100 2.1070 4.2833 0.3888 2.0790 4.3098 0.3883
(0.0491) (0.0234) (0.0164) (0.0484) (0.0233)  (0.0164)
200 2.0715 3.9291 0.3961 2.0490 3.9381 0.3957
(0.0223) (0.0114) (0.0081) (0.0221) (0.0114)  (0.0081)
300 2.0524 3.8548 0.3978 2.0580 3.8636 0.3979
(0.0145) (0.0076) (0.0054) (0.0146) (0.0076)  (0.0054)
500 2.0603 3.7494 0.4005 2.0556 3.7536 0.4004
(0.0086) (0.00406) (0.0032) (0.0086) (0.0046)  (0.0032)
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7. A Real Data Application

The life test data set given in Table 7 has been taken from the web site
www.home.math.utwente.nl. This is survival data set of 49 patients with Dukes’C colorectal
cancer. The data set is divided into two groups. Survival times (months) of two treatment groups
are as follows. Suppose that the survival times, of a homogeneous group of n patients are
represented by ,,¢,,....¢,.

Table 7 Survival data of patients with Dukes’C colorectal cancer

Control (n=24) Treatment ( y linoleic acid , n = 25)
3,6,6,6,6,8,8,12,12, 12, 15, 16, 1,5,6,6,9, 10,10, 10,12, 12, 12, 12,
18, 18, 20, 22, 24, 28, 28, 28, 30, 12, 13, 15, 16, 20, 24, 24, 27, 32, 34,
30, 33, 42 36, 36, 44

On the basis of the fact that life/failure times of patients are frequently modeled by
exponential distribution, and since least survival time is known to be 1 month, considering it
threshold value, the study can ideally be represented by a mixture model of shifted exponential
distribution. In this example right censoring is considered, which indicates that some failure times
are not known. For these unknown failure times, one only knows that the failure time exceeds
some known value, the so-called censoring time. For the given situation, it is believed that study
can be carried out only for twenty months and all patients who survive after 20 months are
considered as censored. So from given data set the following information are extracted.

n=49, n-r=17, =15 n =17, r=n+r, =32, u=1

T=20, D (t,-pu)=1585and Y (t,, —p)=172.5.

Bayes estimates obtained by using real data are given in Table 8. To conduct Bayesian

analysis under exponential and SR priors hyperparameters are selected by equating prior mean
against sample mean.

Table 8 Bayes estimates obtained by using Real life data set with posterior risks in
parentheses. Hyperparameters taken as: k,,k, =0.56 and a,,a, =1

SELF WLF QLF
4 4 p 4 z p 4 4 p
Exponential Prior
0.0528 0.0559 0.4783 0.0465 0.0499 0.4539 0.0410 0.0446 0.4278
(0.0004) (0.0004) (0.0107) (0.0063) (0.0060) (0.0244) (0.1173) (0.1048) (0.0575)
SR Prior

00502  0.0536 04790 00442  0.0479 04554  0.0390  0.0428  0.4300
(0.0003)  (0.0004)  (0.0104) (0.0060) (0.0057) (0.0236) (0.1179) (0.1053)  (0.0558)

Bayes estimates for real data set are obtained by using informative priors under three loss
functions. Numerical results for real life data indicate that average survival rate for the two-
treatment groups are almost same for both type of priors. However SELF produces lesser
posterior risks than the other two loss functions used. Posterior risk for the two-component of
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mixture (two treatments) is also same under SELF. Graphs for marginal posterior densities depict
symmetrical behavior. So Bayes estimates can be reported from these graphs. Now we consider
the prediction problem. Suppose that 10 new patients arrive and put on a test. It is desired to
construct 95% predictive interval for the smallest and largest predictive life-length. Based on
the observed sample, it is found that smallest life length may occur between (22.5, 23.5) while

largest life length can be (40.4, 41.3).
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Figure 1 Graph of marginal posterior densities using real data set

8. Conclusions
In this paper Bayesian analysis of the shifted exponential mixture model is conducted using

type-I censoring scheme assuming informative priors. A simulation study is carried out to
scrutinize the convergence of Bayes estimators. Some important and interesting findings are
observed from simulation results presented in Tables 1-6. No serious over/under estimation is
observed. Posterior risks are pretty close to each other under both informative priors. Overall the
variation among posterior risks is insignificant/negligible. But remarkable thing is that the
posterior risks under WLF are the same for the both components of the population under both
priors. Posterior risks for mixture weight are also almost same for both priors. However, SELF
proves to be superior at every point by producing lesser posterior risks. Problem of prediction is
considered and future sample is predicted for one sample and two sample cases. Reliability
estimator is also considered. All the proposed estimators are applied to a real data set.
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