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Abstract 

In this study, Bayesian parameter estimation for the shifted exponential mixture model is 

conducted by using informative priors under squared error loss function (SELF), weighted loss 

function (WLF) and quadratic loss function (QLF). Properties of the proposed Bayes estimators 

(BEs) are highlighted through simulation study. One and two sample prediction bounds are 

obtained. Proposed mixture model is applied to a real life example. 

______________________________ 
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1. Introduction 

Exponential failure distributions occur frequently in practice and are widely used in mixed 

population problems where data arise from times to failure of units (e.g. patients, machines, 

components etc.). The exponential distribution finds applications in queuing theory and 

reliability studies. In queuing theory, it is used to model the time elapsed between customer 

arrivals at the terminal and in reliability it is being used to model the failure time of electronic 

components. In many life testing problems, shifted exponential (two parameters exponential) 

distribution is considered more appropriate for fitting life test data than one parameter 

distribution. In real life, failure does not always occur at its initial point. Hence such situations 

are best represented by shifted exponential distribution which contains a location parameter. So 

in life testing shifted exponential distribution is often required to provide an adequate 

representation of the observed results.   

The shifted exponential distribution for a random variable X  is formulated as 

  ( )( ; , ) ,xf x e         x    and  0,               (1) 
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where   is the scale parameter and   is the location parameter. The location parameter is 

referred as a threshold or guarantee time parameter before which no failure occurs and the scale 

parameter represents the mean life time of an object. 

A number of authors have considered shifted exponential distribution in their work. Epstein 

(1960) has addressed the problem of estimation of shifted exponential distribution from censored 

samples. Wu and Yu (2008) proposed a simultaneous inferences of extreme populations for 

shifted exponential distribution based on doubly type-II censored samples. Krishnamoorthy et al. 

(2007) took into account the problem of hypothesis testing and interval estimation of the 

reliability parameter in stress-strength model for shifted exponential distribution. Balakrishnan 

and Basu (1995) had given excellent review on the properties, genesis and characterization of 

the distribution in their book “The exponential distribution: theory, methods and applications”. 

Sae-ung and Lertprapai (2010) made comparison of the scale parameter of a shifted exponential 

distribution based on multiple criteria decision making. Jewell (1982) provided maximum 

likelihood estimates of mixture of exponential distributions using EM algorithm. Raqab and Madi 

(2005) had taken into account two parameter generalized exponential distribution and importance 

sampling is used to estimate the parameters, as well as the reliability function, and the Gibbs and 

Metropolis samplers data sets are used to predict the behavior of further observations from the 

distribution. Mohamed et al. (2014) used heterogeneous population which is represented by a 

mixture of two generalized exponential distributions. Mohamed and Leonard (1996) had 

discussed the Bayesian estimation for the shifted exponential distributions.  

In this paper Bayesian analysis of the shifted exponential mixture model is conducted using 

type-I censoring scheme assuming informative priors. The shifted exponential mixture model is 

described in Section 2. Likelihood function is constructed in Section 3. Section 4 consists of 

Bayes estimators and posterior risks under squared error loss function (SELF), weighted loss 

function (WLF) and quadratic loss function (QLF) using informative priors. Bayesian prediction 

is conducted in Section 5. Simulation analysis is provided in Section 6. A real data application is 

presented in Section 7. Finally in Section 8, conclusion is presented.  

 

2. The Shifted Exponential Mixture Model 

Suppose that a random variable X  takes n  independent values in a sample space ,  and 

X  is said to have a finite k  component mixture distribution with known specified functional 

form but varying unknown parameters and mixing weights if its distribution can be represented 

by a following probability density function (pdf) 
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where   is a complete set of parameters of the mixture model. The mixture model and its 

corresponding survival function, when shifted exponential distribution is assumed for the two-
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3. Sampling and Likelihood Function 

It is assumed that lifetime of an object is independently and identically distributed as shifted 

exponential random variable. It is common practice in the Bayesian analysis to consider location 

parameter known. Dozen of references exist on the subject. Some examples include Soland 

(1968), Zanakis (1979), Al-Hussaini et al. (2001), Panaitescu et al. (2010), Kundu and Howlader 

(2010) etc. For simplicity it is assumed here that location parameter j  is known and equal, thus

1 2 .      

Experimenter frequently ends up experiments due to restrictions on available time or cost on 

reaching a predetermined length of time or predetermined number of failures. Censored sampling 

with fixed test termination time is known as type-I right censoring. The Likelihood function for 

mixture model under type-I censoring given by Mendenhall and Hader (1958), there are many 

practical situations in which the failed objects can be pointed out easily as subset of 

subpopulation-I or subpopulation-II. Out of ‘ r ’ units, suppose 1r  and 2r  units belong to 

subpopulation-I or subpopulation-II respectively and such that 1 2.r r r   
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where
1 211 12 1 21 22 2( , ,..., , , ,..., )r rX x x x x x x  are the observed failure times for the uncensored 

observations, 1 2 1( , , ),p    0( ) 1 ( ),R t F t   1 2 1p p   and T  is the fixed test termination 

time under type-1 right censoring. 
 

4. Bayesian Estimation Assuming Informative Priors 

Exponential prior which is also a conjugate prior and squared Rayleigh (SR) prior are taken 

as informative priors for the Bayesian estimation of the parameters of the mixture model. 

 

4.1. The posterior distribution assuming exponential prior  

The parameters i  and 1p are assumed to be independent. The parameters i  assume 

exponential distribution as a prior with hyperparameter i  and its pdf may be written as 
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and 1p  assumes an uniform prior i.e. 1( ) 1g p  . The joint posterior distribution of the parameters 

i  and 1p  is 
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where 
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Marginal posterior distributions of i  and 1p  can be derived by integrating the nuisance 
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1) Bayes estimators and their posterior risks under “SELF” 

The squared error loss function (SELF) is suggested by Legendre (1806) and is defined as 
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Following BEs of i  and 1p  are obtained under SELF. 
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and the expressions for Bayes PRs for i  and 1p  are 
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2) Bayes estimators and their posterior risks under “WLF” 

Bayes estimators under weighted loss function (WLF) can be evaluated from 
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Posterior risks can be attained from the following expressions 

( ) ( ) ( )
ˆ ˆ ˆ( ) ,i W i S i W     1,2i   and  

1( ) 1( ) 1( )
ˆ ˆ ˆ( ) .W S Wp p p    

 

3) Bayes estimators and their posterior risks under “QLF” 
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The expressions for the Bayes posterior risks are given by 
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4.2. The posterior distribution using squared Rayleigh (SR) prior 
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1) Bayes estimators and their posterior risks under “SELF” 

Bayes estimators of i  and 1p  under squared error loss function (SELF) are 
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and the expressions for Bayes posterior risks for i  and 1p  are 
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2) Bayes estimators and their posterior risks under “WLF” 

Bayes estimators under weighted loss function (WLF) can be obtained as 
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and posterior risks can be attained from the following expressions 

( ) ( ) ( )
ˆ ˆ ˆ( )i W i S i W       and  1( ) 1( ) 1( )

ˆ ˆ ˆ( ) .W S Wp p p    

 

3) Bayes estimators and their posterior risks under “QLF” 

Bayes estimators are obtained under the quadratic loss function (QLF) as 
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The expressions for the Bayes posterior risks are given by 
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5. Bayesian Prediction Using Exponential Prior 

It is often desirable to predict future sample based on the current sample. Problem of 

prediction is being widely applied due to its increasing importance in analysis.  

 

5.1. Bayesian one-sample predictions 

Let 1 ... rx x   be the informative sample and 1 ...r nx x    represent the future sample. It 
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where , 1 .n r s j s j n r           The Bayesian predictive density function is defined 

by  
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Predictive survival function thus may be obtained as 

 *( | ) ( | ) .s s s

v

P Y v x f y x dy


         (36) 

A 100 % prediction interval for sY  is then given by 
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5.2. Bayesian two-sample prediction 

Suppose a sample of size n  is taken from a population whose density function is defined in 

(2) for life testing experiment. Now a future sample of size ,m  independent of past sample of 

size n  is obtained from the same population. Let sY  be the ordered lifetime of a ths  component 
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The Bayesian predictive density function of sY  given x  suggested by Aitchison and Dunsmore 

(1975) is defined by 
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where ( | )x   is the posterior density given by (7) and  ( )sh y     is the pdf of ths  component 

in a future sample given by (36) 
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Predictive survival function thus may be obtained by evaluating the following expression. 
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5.3. Bayesian reliability estimation 

Bayes estimator of the reliability function under SELF is  
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where   is the normalizing constant, 1 1 2 2( ), ( )T T            and 1 2,   are 

defined earlier. 

 

5.4. Illustrative Example 

The lower and upper prediction bounds for one and two sample scheme are obtained. It is 

assumed that these failure times follow a mixture model defined in (2). A sample of size 15n   

is generated from the said mixture model assuming parameters 1 2 1, , , p    to be 0.2, 0.8, 0.5 and 

0.40, respectively under type-I censoring. Censoring time i.e. T  is taken to be 5. A uniform 

number u  is generated n  times by applying inverse transformation method. If 1,u p  1r

observations are taken from subpopulation-1, and if 1,u p  2r  observations are considered to 

belong to subpopulation-II. Thus the following sample is generated. 

0.1780, 0.3067, 0.7904, 3.2148                                           so 1 4,r   

0.3214, 0.4531, 0.4688, 0.6571, 0.6968, 0.8712, 1.8926 and 2.4649      so 2 8.r   

Using this informative sample, Equation (9) are evaluated with 0.95   which provides 

probable values for the remaining “ n r ” observations in the sample. Thus 95% lower and upper 

predictive bounds for 13 14,x x  and 15x  are (3.4251, 4.3751), (3.6073, 4.5573) and (4.2714, 

5.2214), respectively. 

Now on the basis of current sample 1Y  and ,mY  representing the first and last failure times 

in a future sample of size 10m   are obtained. The lower and upper 95% prediction bounds for 

1,Y  the first failure time, are 0.1375, 1.0875 and the 95% prediction bounds for 10 ,Y  the last 

failure time are given by 1.5173, 2.4673 respectively. The reliability estimate using (39) at 5T   

is obtained as 0.1907. 

 

6.    Simulation Study 

To investigate the properties of derived Bayes estimators a large scale simulation study is 

conducted. Random samples of size 50, 100, 200, 300n  and 500  have been generated from 

the two-component shifted exponential mixture model. The data is generated in a Minitab 

(Minitab 1991) routine by generating pseudo-random uniform numbers.  If  1u p  then 

observations are taken randomly from first component of shifted exponential distribution, 

otherwise observations are taken from nd2  component of the same distribution. Mixture data is 

obtained by using probabilistic mixing. Different parametric points have been considered to have 

insight into characteristics of BEs. Threshold parameter,   is considered as 0.5 and 1. Censoring 

rate is taken 10%. Estimates are computed using two informative Priors (Exponential and SR). 

For Bayesian analysis using informative priors, hyper-parameters are selected in such a way that 

the prior mean becomes the expected value of the corresponding parameter. Numerical results of 

a simulation study are presented in Tables 1-6. 
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Table 1 Bayes estimates of shifted exponential mixture parameters along with posterior risks 
(in parentheses) when 1 2 1, , p  (0.05, 0.5, 0.40) and 0.5.   Hyperparameters taken 

are 1 2 1 220.5, 2.5, 3.54, 1k k a a     

  Exponential  Prior Squared Rayleigh Prior 

  n  1̂  2̂  1p̂  
1̂  2̂  1p̂  

SELF 
50 

0.0400 

(0.000062) 

0.3024 

(0.0040) 

0.5576 

(0.0047) 

0.0414 

(0.00076) 

0.3127 

(0.0043) 

0.5576 

(0.0047) 

100 
0.0561 

(0.000098) 

0.4832 

(0.0041) 

0.4411 

(0.0024) 

0.0582 

(0.00094) 

0.4937 

(0.0043) 

0.4412 

(0.0024) 

200 
0.0454 

(0.000027) 

0.5244 

(0.0026) 

0.4802 

(0.0012) 

0.0460 

(0.00025) 

0.5310 

(0.0027) 

0.4802 

(0.0012) 

300 
0.0469 

(0.000023) 

0.6096 

(0.0021) 

0.4172 

(0.0008) 

0.0474 

(0.00022) 

0.6149 

(0.0022) 

0.4172 

(0.0008) 

500 
0.0578 

(0.00002) 

0.4994 

(0.0008) 

0.3864 

(0.00051) 

0.0583 

(0.00019) 

0.5015 

(0.0008) 

0.3864 

(0.0005) 

WLF 
50 

0.0382 

(0.0018) 

0.2891 

(0.0133) 

0.5490 

(0.0086) 

0.0396 

(0.0018) 

0.2990 

(0.0137) 

0.5490 

(0.0086) 

100 
0.0545 

(0.0016) 

0.4747 

(0.0085) 

0.4356 

(0.0055) 

0.0564 

(0.0018) 

0.4850 

(0.0087) 

0.4356 

(0.0056) 

200 
0.0448 

(0.0006) 

0.5194 

(0.0050) 

0.4776 

(0.0026) 

0.0454 

(0.0006) 

0.5260 

(0.0050) 

0.4776 

(0.0026) 

300 
0.0464 

(0.0005) 

0.6061 

(0.0035) 

0.4153 

(0.0019) 

0.0469 

(0.0005) 

0.6114 

(0.0035) 

0.4153 

(0.0019) 

500 
0.0574 

(0.0004) 

0.4978 

(0.0016) 

0.3852 

(0.0012) 

0.0579 

(0.0004) 

0.4998 

(0.0017) 

0.3852 

(0.0012) 

QLF 
50 

0.0364 

(0.0455) 

0.2758 

(0.0461) 

0.5400 

(0.0164) 

0.0378 

(0.0455) 

0.2853 

(0.0460) 

0.5399 

(0.0164) 

100 
0.0528 

(0.0303) 

0.4662 

(0.0179) 

0.4300 

(0.0130) 

0.0547 

(0.0303) 

0.4763 

(0.0179) 

0.4300 

(0.0130) 

200 
0.0442 

(0.0133) 

0.5144 

(0.0096) 

0.4750 

(0.0055) 

0.0448 

(0.0133) 

0.5209 

(0.0096) 

0.4750 

(0.0055) 

300 
0.0459 

(0.0106) 

0.6027 

(0.0057) 

0.4133 

(0.0047) 

0.0464 

(0.0106) 

0.6079 

(0.0057) 

0.4133 

(0.0047) 

500 
0.0569 

(0.0070) 

0.4962 

(0.0033) 

0.3840 

(0.0032) 

0.0575 

(0.0070) 

0.4982 

(0.0033) 

0.3840 

(0.0032) 
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Table 2 Bayes estimates of shifted exponential mixture parameters along with posterior risks 
(in parentheses) when 1 2 1, , p  (0.2, 0.8, 0.40) and 0.5.   Hyperparameters taken as 

1 2 1 25.5, 1.75, 1.58, 0.79k k a a     

  Exponential  Prior Squared Rayleigh Prior 

  n  1̂  2̂  1p̂  
1̂  2̂  1p̂  

SELF 
50 

0.3231 

(0.0130) 

0.9557 

(0.0429) 

0.3241 

(0.0048) 

0.4303 

(0.0422) 

0.9326 

(0.0525) 

0.3127 

(0.0053) 

100 
0.1647 

(0.0012) 

0.8095 

(0.0110) 

0.3407 

(0.0022) 

0.1711 

(0.0012) 

0.8192 

(0.0113) 

0.3407 

(0.0022) 

200 
0.1962 

(0.0005) 

0.8413 

(0.0068) 

0.4497 

(0.0012) 

0.1991 

(0.0006) 

0.8476 

(0.0069) 

0.4497 

(0.0013) 

300 
0.2512 

(0.0007) 

0.8735 

(0.0053) 

0.4030 

(0.0008) 

0.2548 

(0.0004) 

0.8776 

(0.0053) 

0.4031 

(0.0008) 

500 
0.1861 

(0.0002) 

0.7849 

(0.0023) 

0.4048 

(0.0005) 

0.1873 

(0.0002) 

0.7869 

(0.0023) 

0.4048 

(0.0005) 

WLF 
50 

0.2881 

(0.0350) 

0.9094 

(0.0463) 

0.3082 

(0.0159) 

0.3609 

(0.0694) 

0.8745 

(0.0581) 

0.2942 

(0.0185) 

100 
0.1579 

(0.0068) 

0.7957 

(0.0138) 

0.3341 

(0.0066) 

0.1638 

(0.0073) 

0.8052 

(0.0140) 

0.3341 

(0.0066) 

200 
0.1933 

(0.0029) 

0.8332 

(0.0081) 

0.4470 

(0.0027) 

0.1962 

(0.0029) 

0.8395 

(0.0081) 

0.4470 

(0.0027) 

300 
0.2483 

(0.0029) 

0.8676 

(0.0059) 

0.4010 

(0.0020) 

0.2520 

(0.0028) 

0.8716 

(0.0060) 

0.4010 

(0.0021) 

500 
0.1848 

(0.0013) 

0.7820 

(0.0029) 

0.4036 

(0.0012) 

0.1860 

(0.0013) 

0.7840 

(0.0029) 

0.4036 

(0.0012) 

QLF 
50 

0.2567 

(0.1094) 

0.8621 

(0.0520) 

0.2911 

(0.0556) 

0.3096 

(0.1422) 

0.8162 

(0.0667) 

0.2740 

(0.0690) 

100 
0.1509 

(0.0442) 

0.7818 

(0.0175) 

0.3273 

(0.0202) 

0.1565 

(0.0443) 

0.7911 

(0.0175) 

0.3273 

(0.0202) 

200 
0.1905 

(0.0146) 

0.8251 

(0.0098) 

0.4442 

(0.0062) 

0.1934 

(0.0146) 

0.8313 

(0.0098) 

0.4442 

(0.0062) 

300 
0.2455 

(0.0114) 

0.8616 

(0.0069) 

0.3990 

(0.0051) 

0.2491 

(0.0114) 

0.8656 

(0.0069) 

0.3990 

(0.0051) 

500 
0.1836 

(0.0067) 

0.7791 

(0.0037) 

0.4024 

(0.0030) 

0.1848 

(0.0067) 

0.7811 

(0.0037) 

0.4024 

(0.0030) 
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Table 3 Bayes estimates of shifted exponential mixture parameters along with posterior risks 
(in parentheses) when 1 2 1, , p  (2.0, 4.0, 0.40) and 0.5.   Hyperparameters taken as 

1 2 1 21.0, 0.75, 0.5, 0.35k k a a     

  Exponential  Prior Squared Rayleigh Prior 

  n  1̂  2̂  1p̂  
1̂  2̂  1p̂  

SELF 
50 

1.9700 

(0.0235) 

4.0443 

(0.0037) 

0.3866 

(0.0045) 

2.0591 

(0.0210) 

4.1887 

(0.0033) 

0.4005 

(0.0052) 

100 
1.9328 

(0.0108) 

3.9168 

(0.0014) 

0.3851 

(0.0025) 

1.9822 

(0.0103) 

3.9801 

(0.0014) 

0.3857 

(0.0025) 

200 
1.8052 

(0.0058) 

4.2100 

(0.00055) 

0.3609 

(0.0012) 

1.8309 

(0.0056) 

4.2409 

(0.0005) 

0.3611 

(0.0012) 

300 
1.6974 

(0.0042) 

3.8720 

(0.00045) 

0.3867 

(0.0008) 

1.7298 

(0.0042) 

3.7071 

(0.0005) 

0.3877 

(0.0008) 

500 
2.2565 

(0.0018) 

3.8954 

(0.00031) 

0.3948 

(0.0008) 

2.2663 

(0.0018) 

3.9083 

(0.0003) 

0.3949 

(0.0005) 

WLF 
50 

2.2373 

(0.2673) 

4.2793 

(0.2350) 

0.3876 

(0.0010) 

2.2799 

(0.2208) 

4.4169 

(0.2282) 

0.3873 

(0.0132) 

100 
2.0357 

(0.1029) 

4.0072 

(0.0904) 

0.3789 

(0.0062) 

2.0670 

(0.0848) 

4.0667 

(0.0866) 

0.3791 

(0.0066) 

200 
1.8499 

(0.0447) 

4.2542 

(0.0442) 

0.3577 

(0.0032) 

1.8670 

(0.0361) 

4.2824 

(0.0415) 

0.3578 

(0.0033) 

300 
1.7419 

(0.0445) 

3.7135 

(0.1585) 

0.3855 

(0.0012) 

1.7524 

(0.0226) 

3.7331 

(0.0260) 

0.3856 

(0.0021) 

500 
2.2813 

(0.0248) 

3.9142 

(0.0188) 

0.3935 

(0.0013) 

2.2871 

(0.0281) 

3.9264 

(0.0181) 

0.3936 

(0.0013) 

QLF 
50 

2.5479 

(0.1219) 

4.5132 

(0.0518) 

0.3738 

(0.0356) 

2.5744 

(0.1292) 

4.6503 

(0.0528) 

0.3737 

(0.0353) 

100 
2.1297 

(0.0441) 

4.0953 

(0.0215) 

0.3721 

(0.0177) 

2.1614 

(0.0437) 

4.1558 

(0.0215) 

0.3724 

(0.0177) 

200 
1.8879 

(0.0201) 

4.2962 

(0.0098) 

0.3544 

(0.0092) 

2.2938 

(0.0206) 

4.3247 

(0.0099) 

0.3545 

(0.0093) 

300 
1.7653 

(0.0132) 

3.7396 

(0.0070) 

0.3834 

(0.0055) 

1.7760 

(0.0133) 

3.7594 

(0.0070) 

0.3835 

(0.0055) 

500 
2.3027 

(0.0093) 

3.9323 

(0.0046) 

0.3922 

(0.0034) 

2.3085 

(0.0093) 

3.9445 

(0.0046) 

0.3922 

(0.0034) 
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Table 4 Bayes estimates of shifted exponential mixture parameters along with posterior risks 
(in parentheses) when 1 2 1, , p  (0.05, 0.5, 0.40) and 1.0.   Hyperparameters taken as

1 2 1 221, 3, 3.54, 1k k a a     

  Exponential  Prior Squared Rayleigh Prior 

  n  1̂  2̂  1p̂  
1̂  2̂  1p̂  

SELF 
50 

0.0458 

(0.0002) 

0.5180 

(0.0082) 

0.3653 

(0.0044) 

0.0854 

(0.0003) 

0.5473 

(0.0090) 

0.3654 

(0.0043) 

100 
0.0580 

(0.000091) 

0.5528 

(0.0056) 

0.4706 

(0.0024) 

0.0753 

(0.0001) 

0.5726 

(0.0060) 

0.4706 

(0.0024) 

200 
0.0636 

(0.000077) 

0.4196 

(0.0015) 

0.3761 

(0.0012) 

0.0764 

(0.0001) 

0.4247 

(0.0014) 

0.3761 

(0.0011) 

300 
0.0438 

(0.000022) 

0.5362 

(0.0016) 

0.3907 

(0.00081) 

0.0490 

(0.0008) 

0.5417 

(0.0015) 

0.3907 

(0.0008) 

500 
0.0547 

(0.00002) 

0.4670 

(0.0008) 

0.3924 

(0.0005) 

0.0587 

(0.00002) 

0.4696 

(0.0007) 

0.3924 

(0.0005) 

WLF 
50 

0.0423 

(0.0035) 

0.5023 

(0.0157) 

0.3529 

(0.0124) 

0.0816 

(0.0038) 

0.5309 

(0.0164) 

0.3529 

(0.0125) 

100 
0.0565 

(0.0015) 

0.5425 

(0.0103) 

0.4653 

(0.0053) 

0.0737 

(0.0016) 

0.5620 

(0.0106) 

0.4653 

(0.0053) 

200 
0.0625 

(0.0011) 

0.4163 

(0.0033) 

0.3730 

(0.0031) 

0.0753 

(0.0011) 

0.4213 

(0.0034) 

0.3730 

(0.0031) 

300 
0.0433 

(0.0005) 

0.5333 

(0.0029) 

0.3887 

(0.0020) 

0.0486 

(0.0004) 

0.5387 

(0.0070) 

0.3887 

(0.0020) 

500 
0.0543 

(0.0004) 

0.4655 

(0.0015) 

0.3912 

(0.0012) 

0.0583 

(0.0004) 

0.4681 

(0.0015) 

0.3912 

(0.0012) 

QLF 
50 

0.0387 

(0.0833) 

0.4866 

(0.0313) 

0.3400 

(0.0367) 

0.0778 

(0.0465) 

0.5145 

(0.0310) 

0.3400 

(0.0367) 

100 
0.0549 

(0.0278) 

0.5323 

(0.0189) 

0.4600 

(0.0115) 

0.0721 

(0.0220) 

0.5515 

(0.0187) 

0.4600 

(0.0115) 

200 
0.0613 

(0.0185) 

0.4129 

(0.0081) 

0.3699 

(0.0084) 

0.0741 

(0.0158) 

0.4178 

(0.0081) 

0.3698 

(0.0084) 

300 
0.0428 

(0.0116) 

0.5304 

(0.0055) 

0.3867 

(0.0052) 

0.0481 

(0.0105) 

0.5358 

(0.0054) 

0.3867 

(0.0052) 

500 
0.0539 

(0.0069) 

0.4640 

(0.0033) 

0.3900 

(0.0031) 

0.0579 

(0.0065) 

0.4665 

(0.0033) 

0.3900 

(0.0031) 
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Table 5 Bayes estimates of shifted exponential mixture parameters along with posterior risks 
(in parentheses) when 1 2 1, , p  (0.2, 0.8, 0.40) and 1.0.   Hyperparameters taken as  

1 2 1 26.0, 2.25, 1.58, 0.79k k a a     

  Exponential  Prior Squared Rayleigh Prior 

  n  1̂  2̂  1p̂  
1̂  2̂  1p̂  

SELF 
50 

0.2816 

(0.0793) 

0.7966 

(0.0308) 

0.3844 

(0.0050) 

0.3810 

(0.0157) 

0.7813 

(0.0323) 

0.3731 

(0.0054) 

100 
0.3025 

(0.0049) 

0.6203 

(0.0122) 

0.3968 

(0.0028) 

0.3728 

(0.0112) 

0.5889 

(0.0146) 

0.3838 

(0.0032) 

200 
0.1864 

(0.0006) 

0.6924 

(0.0048) 

0.4177 

(0.0012) 

0.1952 

(0.0006) 

0.6977 

(0.0049) 

0.4176 

(0.0012) 

300 
0.1789 

(0.0003) 

0.8437 

(0.0043) 

0.4230 

(0.0008) 

0.1843 

(0.0003) 

0.8494 

(0.0045) 

0.4230 

(0.0008) 

500 
0.1713 

(0.0002) 

0.8143 

(0.0023) 

0.4038 

(0.0005) 

0.1745 

(0.0002) 

0.8174 

(0.0023) 

0.4038 

(0.0005) 

WLF 
50 

0.2592 

(0.0224) 

0.7570 

(0.0396) 

0.3706 

(0.0138) 

0.3458 

(0.0352) 

0.7325 

(0.0488) 

0.3576 

(0.0155) 

100 
0.2879 

(0.0146) 

0.6000 

(0.0203) 

0.3894 

(0.0074) 

0.3474 

(0.0254) 

0.5637 

(0.0252) 

0.3753 

(0.0085) 

200 
0.1834 

(0.0030) 

0.6854 

(0.0070) 

0.4147 

(0.0030) 

0.1921 

(0.0031) 

0.6906 

(0.0071) 

0.4146 

(0.0030) 

300 
0.1771 

(0.0018) 

0.8385 

(0.0052) 

0.4211 

(0.0019) 

0.1824 

(0.0019) 

0.8442 

(0.0052) 

0.4211 

(0.0019) 

500 
0.1702 

(0.0011) 

0.8114 

(0.0029) 

0.4026 

(0.0012) 

0.1734 

(0.0011) 

0.8145 

(0.0029) 

0.4026 

(0.0012) 

QLF 
50 

0.2380 

(0.0818) 

0.7168 

(0.0532) 

0.3560 

(0.0395) 

0.3153 

(0.0884) 

0.6837 

(0.0667) 

0.3409 

(0.0468) 

100 
0.2747 

(0.0462) 

0.5791 

(0.0347) 

0.3818 

(0.0195) 

0.3260 

(0.0617) 

0.5387 

(0.0444) 

0.3664 

(0.0238) 

200 
0.1804 

(0.0163) 

0.6784 

(0.0102) 

0.4118 

(0.0071) 

0.1891 

(0.0158) 

0.6835 

(0.0103) 

0.4117 

(0.0072) 

300 
0.1752 

(0.0105) 

0.8333 

(0.0062) 

0.4191 

(0.0046) 

0.1806 

(0.0103) 

0.8390 

(0.0062) 

0.4191 

(0.0046) 

500 
0.1690 

(0.0067) 

0.8086 

(0.0035) 

0.4014 

(0.0030) 

0.1722 

(0.0066) 

0.8116 

(0.0035) 

0.4014 

(0.0030) 
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Table 6 Bayes estimates of shifted exponential mixture parameters along with posterior risks 
(in parentheses) when 1 2 1, , p  (2.0, 4.0, 0.40) and 1.0.   Hyperparameters taken as  

1 2 1 21.5, 1.25, 0.5, 0.35k k a a     

  Exponential  Prior Squared Rayleigh Prior 

  n  1̂  2̂  1p̂  
1̂  2̂  1p̂  

SELF 
50 

 2.0720 

(0.0197) 

3.2333 

(0.0050) 

0.4133 

(0.0054) 

2.0982 

(0.0193) 

3.2915 

(0.0049) 

0.4133 

(0.0053) 

100 
1.8796 

(0.0114) 

4.0772 

(0.0602) 

0.4011 

(0.0025) 

1.8932 

(0.0113) 

4.1107 

(0.0014) 

0.4012 

(0.0025) 

200 
1.9635 

(0.0053) 

3.8352 

(0.00078) 

0.4022 

(0.0013) 

1.9613 

(0.0054) 

3.8487 

(0.0008) 

0.4021 

(0.0013) 

300 
1.9815 

(0.0035) 

3.7935 

(0.00052) 

0.4019 

(0.0009) 

1.9993 

(0.0034) 

3.8051 

(0.0005) 

0.4022 

(0.0009) 

500 
2.0177 

(0.0021) 

3.7134 

(0.00033) 

0.4030 

(0.0005) 

2.0207 

(0.0021) 

3.7195 

(0.0003) 

0.4030 

(0.0005) 

WLF 
50 

2.1360 

(0.0640) 

3.2530 

(0.0197) 

0.3895 

(0.0238) 

2.2919 

(0.1937) 

3.4652 

(0.1737) 

0.3999 

(0.0134) 

100 
2.0036 

(0.1240) 

4.1832 

(0.1060) 

0.3953 

(0.0058) 

1.9783 

(0.0851) 

4.2094 

(0.0987) 

0.3984 

(0.0028) 

200 
2.0254 

(0.0619) 

3.8841 

(0.0489) 

0.3994 

(0.0028) 

2.0037 

(0.0424) 

3.8931 

(0.0444) 

0.3989 

(0.0032) 

300 
2.0226 

(0.0411) 

3.8256 

(0.0321) 

0.4000 

(0.0019) 

2.0280 

(0.0287) 

3.8342 

(0.0291) 

0.4000 

(0.0022) 

500 
2.0426 

(0.0249) 

3.7323 

(0.0189) 

0.4018 

(0.0012) 

2.0379 

(0.0172) 

3.7365 

(0.0170) 

0.4017 

(0.0013) 

QLF 
50 

2.3122 

(0.0762) 

3.4000 

(0.0432) 

0.3762 

(0.0342) 

2.5193 

(0.0903) 

3.6491 

(0.0504) 

0.3859 

(0.0349) 

100 
2.1070 

(0.0491) 

4.2833 

(0.0234) 

0.3888 

(0.0164) 

2.0790 

(0.0484) 

4.3098 

(0.0233) 

0.3883 

(0.0164) 

200 
2.0715 

(0.0223) 

3.9291 

(0.0114) 

0.3961 

(0.0081) 

2.0490 

(0.0221) 

3.9381 

(0.0114) 

0.3957 

(0.0081) 

300 
2.0524 

(0.0145) 

3.8548 

(0.0076) 

0.3978 

(0.0054) 

2.0580 

(0.0146) 

3.8636 

(0.0076) 

0.3979 

(0.0054) 

500 
2.0603 

(0.0086) 

3.7494 

(0.0046) 

0.4005 

(0.0032) 

2.0556 

(0.0086) 

3.7536 

(0.0046) 

0.4004 

(0.0032) 
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7.    A Real Data Application 

The life test data set given in Table 7 has been taken from the web site 

www.home.math.utwente.nl. This is survival data set of 49 patients with Dukes’C colorectal 

cancer. The data set is divided into two groups. Survival times (months) of two treatment groups 

are as follows. Suppose that the survival times, of a homogeneous group of n  patients are 

represented by 1 2, ,..., .nt t t  

 

Table 7 Survival data of patients with Dukes’C colorectal cancer 
 

Control ( 24n  ) Treatment (   linoleic acid , 25)n   

3, 6, 6, 6, 6, 8, 8, 12, 12, 12, 15, 16, 

18, 18, 20, 22, 24, 28, 28, 28, 30, 

30, 33, 42 

1, 5, 6, 6, 9, 10, 10, 10,12, 12, 12, 12, 

12, 13, 15, 16, 20, 24, 24, 27, 32, 34, 

36, 36, 44 

 

On the basis of the fact that life/failure times of patients are frequently modeled by 

exponential distribution, and since least survival time is known to be 1 month, considering it 

threshold value, the study can ideally be represented by a mixture model of shifted exponential 

distribution. In this example right censoring is considered, which indicates that some failure times 

are not known. For these unknown failure times, one only knows that the failure time exceeds 

some known value, the so-called censoring time. For the given situation, it is believed that study 

can be carried out only for twenty months and all patients who survive after 20 months are 

considered as censored.  So from given data set the following information are extracted. 

1 2 1 2

1 2

49, 17 , 15, 17, 32, 1

20, ( ) 158.5 and ( ) 172.5.j j

n n r r r r r r

T t t



 

        

     
 

Bayes estimates obtained by using real data are given in Table 8. To conduct Bayesian 

analysis under exponential and SR priors hyperparameters are selected by equating prior mean 

against sample mean. 

 

Table 8  Bayes estimates obtained by using Real life data set with posterior risks in 

parentheses. Hyperparameters taken as: 1 2, 0.56k k   and 1 2, 1a a   

 

Bayes estimates for real data set are obtained by using informative priors under three loss 

functions. Numerical results for real life data indicate that average survival rate for the two-

treatment groups are almost same for both type of priors. However SELF produces lesser 

posterior risks than the other two loss functions used. Posterior risk for the two-component of 

SELF WLF QLF 

1̂  2̂  p̂  
1̂  2̂  p̂  

1̂  2̂  p̂  

Exponential Prior 

0.0528 

(0.0004) 

0.0559 

(0.0004) 

0.4783 

(0.0107) 

0.0465 

(0.0063) 

0.0499 

(0.0060) 

0.4539 

(0.0244) 

0.0410 

(0.1173) 

0.0446 

(0.1048) 

0.4278 

(0.0575) 

SR Prior 

0.0502 

(0.0003) 

0.0536 

(0.0004) 

0.4790 

(0.0104) 

0.0442 

(0.0060) 

0.0479 

(0.0057) 

0.4554 

(0.0236) 

0.0390 

(0.1179) 

0.0428 

(0.1053) 

0.4300 

(0.0558) 
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mixture (two treatments) is also same under SELF.  Graphs for marginal posterior densities depict 

symmetrical behavior. So Bayes estimates can be reported from these graphs. Now we consider 

the prediction problem. Suppose that 10 new patients arrive and put on a test. It is desired to 

construct 95% predictive interval for the smallest and largest predictive life-length.  Based on 

the observed sample, it is found that smallest life length may occur between (22.5, 23.5) while 

largest life length can be (40.4, 41.3). 
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                                                                                                   1p  

 

Figure 1 Graph of marginal posterior densities using real data set 

 

8.    Conclusions 

In this paper Bayesian analysis of the shifted exponential mixture model is conducted using 

type-I censoring scheme assuming informative priors. A simulation study is carried out to 

scrutinize the convergence of Bayes estimators. Some important and interesting findings are 

observed from simulation results presented in Tables 1-6. No serious over/under estimation is 

observed. Posterior risks are pretty close to each other under both informative priors. Overall the 

variation among posterior risks is insignificant/negligible. But remarkable thing is that the 

posterior risks under WLF are the same for the both components of the population under both 

priors. Posterior risks for mixture weight are also almost same for both priors.  However, SELF 

proves to be superior at every point by producing lesser posterior risks. Problem of prediction is 

considered and future sample is predicted for one sample and two sample cases. Reliability 

estimator is also considered. All the proposed estimators are applied to a real data set. 

 

Acknowledgements 

The authors would like to thank the editor as well as anonymous referees as suggestions 

given by referees contributed to improve the quality of the work.   

 

0.02 0.04 0.06 0.08 0.10 0.12 0.14

5

10

15

20

25

0.02 0.04 0.06 0.08 0.10 0.12 0.14

5

10

15

20

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5



372 Thailand Statistician, 2020; 18(3): 354-372 

References 

Aitchison J, Dunsmore IR. Statistical prediction analysis. Cambridge: Cambridge University 

Press; 1975. 

Al-Hussaini EK, Jaheen ZF, Nigm AM. Bayesian prediction based on finite mixtures of Lomax 

components model and type I censoring. Statistics. 2001; 35(3): 259-268. 

Balakrishnan N, Basu AP. The exponential distribution: theory, methods and applications.  

Australia: Gordon and Breach; 1995. 

David HA. Order statistics. New York: John Wiley; 1981. 

Epstein B. Estimation of the parameters of two parameter exponential distributions from 

censored samples. Technometrics. 1960; 2(3): 403-406. 

Jewell NP. Mixtures of exponential distributions. Ann Stat. 1982; 10(2): 479-484. 

Krishnamoorthy K, Mukherjee S, Guo H. Inference on reliability in two-parameter exponential 

stress-strength model. Metrika. 2007; 65: 261-273. 

Kundu D, Howlader H. Bayesian inference and prediction of the inverse Weibull distribution for 

Type-II censored data. Comput Stat Data Ana. 2010; 54(6): 1547-1558. 

Legendre AM. Nouvelles méthodes pour la détermination des orbites des comètes, F. Didot; 

1806. 

Mendenhall W, Hader RA. Estimation of parameters of mixed exponentially distributed failure 

time distributions from censored life test data. Biometrika. 1958; 45(3-4): 504-520. 

Minitab Inc. Minitab reference manual: Macintosh version, release 8. State College: Minitab; 

1991. 

Mohamed  MM, Saleh EH, Helmy SM. Bayesian prediction under a finite mixture of generalized 

exponential lifetime model. Pak J Stat Oper Res. 2014; 10(4): 417-433. 

Mohamed TM, Leonard T. Bayesian estimation for shifted exponential distributions. J Stat Plan 

Infer. 1996; 55(3): 345-351. 

Panaitescu E, Popescu PG, Cozma P, Popa M. Bayesian and non-Bayesian estimators using 

record statistics of the modified inverse Weibull distribution. Proceedings of the Romanian 

Academy, Series A. 2010; 24-231. 

Raqab MZ, Madi MT. Bayesian inference for the generalized exponential distribution. J Stat 

Comput Siml. 2005; 75(10): 841-852. 

Sae-ung S, Lertprapai S. A comparison of scale parameter estimators in the 2-parameter 

exponential distribution based on multiple criteria decisions making. Thai J Math. 2010; 

8(4): 73-82. 

Soland RM. Bayesian analysis of the Weibull process with unknown scale parameter and its 

application to acceptance sampling. IEEE Trans Reliab. 1968; 17(2): 84-90. 

Wu S, Yu Y. Simultaneous inferences of extreme populations for two-parameter exponential 

populations based on the doubly type-II censored sample. Int J Inf Manag Sci. 2008; 19(2): 

339-352. 

Zanakis SH. A simulation study of some simple estimators for the three-parameter Weibull 

distribution. J Stat Comput Simul. 1979; 9(2): 101-116. 

 


